Linear Programming - Re-setting a variable based on it's cumulative count - linear-programming

Detailed business problem:
I'm trying to solve a production scheduling business problem as below:
I have two plants producing FG A and B respectively.
Both the products consume the same Raw Material x
I need to create a 30 day production schedule looking at the Raw Material availability.
FG A and B can be produced if there is sufficient raw material available on the day.
After every 6 days of production the plant has to undergo maintenance and the production on that day will be zero.
Objective is to maximize the margin looking at the day level Raw material available and adhere to the production constraint (i.e. shutdown after every 6th day)
I need to build a linear programming to address the below problem:
Variable y: (binary)
variable z: cumulative of y
When z > 6 then y = 0. I also need to reset the cumulation of z after this point.
Desired output:
How can I build the statement to MILP constraint. Are there any techniques for solving this problem. Thank you.

I think you can model your maintenance differently. Just forbid any sequences of 7 ones for y. I.e.
y[t-6]+y[t-5]+y[t-4]+y[t-3]+y[t-2]+y[t-1]+y[t] <= 6 for t=1,..,T
This is easier than using your accumulator. Note that the beginning needs some attention: you can use historic data for this. I.e., at t=1, the values for t=0,-1,-2,.. are known.
Your accumulator approach is not inherently wrong. We often use it to model inventory. An inventory capacity is a restriction on how large the accumulated inventory can be.

Related

Random Forest with more features than data points

I am trying to predict whether a particular service ticket raised by client needs a code change.
I have training data.
I have around 17k data points with problem description and tag (Y for code change required and N for no code change)
I did TF-IDF and it gave me 27k features. So I tried to fit RandomForestClassifier (sklearn python) with this 17k x 27k matrix.
I am getting very low scores on test set while training accuracy is very high.
Precision on train set: 89%
Precision on test set: 21%
Can someone suggest any workarounds?
I am using this model now:
sklearn.RandomForestClassifier(n_jobs=3,n_estimators=100,class_weight='balanced',max_features=None,oob_score=True)
Please help!
EDIT:
I have 11k training data with 900 positives (skewed). I tried LinearSVC sparsify but didn't work as well as Truncated SVD (Latent Semantic Indexing). maxFeatures=None performs better on the test set than without it.
I have also tried SVM, logistic (l2 and l1), ExtraTrees. RandonForest still is working best.
Right now, going at 92% precision on positives but recall is 3% only
Any other suggestions would be appreciated!
Update:
Feature engineering helped a lot. I pulled features out of the air (len of chars, len of words, their, difference, ratio, day of week the problem was of reported, day of month, etc) and now I am at 19-20% recall with >95% accuracy.
Food for your thoughts on using word2vec average vectors as deep features for the free text instead of tf-idf or bag of words ???
[edited]
Random forest handles more features than data points quite fine. RF is e.g. used for micro-array studies with e.g. a 100:5000 data point/feature ratio or in single-nucleotide_polymorphism(SNP) studies with e.g 5000:500,000 ratio.
I do disagree with the diagnose provided by #ncfirth, but the suggested treatment of variable selection may help anyway.
Your default random forest is not badly overfitted. It is just not meaningful to pay any attention to a non-cross validated training set prediction performance for a RF model, because any sample will end in the terminal nodes/leafs it has itself defined. But the overall ensemble model is still robust.
[edit] If you would change the max_depth or min_samples_split, the training precision would probably drop, but that is not the point. The non-cross validated training error/precision of a random forest model or many other ensemble models simply does not estimate anything useful.
[I did before edit confuse max_features with n_estimators, sry I mostly use R]
Setting max_features="none" is not random forest, but rather 'bagged trees'. You may benefit from a somewhat lower max_features which improve regularization and speed, maybe not. I would try lowering max_features to somewhere between 27000/3 and sqrt(27000), the typical optimal range.
You may achieve better test set prediction performance by feature selection. You can run one RF model, keep the top ~5-50% most important features and then re-run the model with fewer features. "L1 lasso" variable selection as ncfirth suggests may also be a viable solution.
Your metric of prediction performance, precision, may not be optimal in case unbalanced data or if the cost of false-negative and false-positive is quite different.
If your test set is still predicted much worse than the out-of-bag cross-validated training set, you may have problems with your I.I.D. assumptions that any supervised ML model rely on or you may need to wrap the entire data processing in an outer cross-validation loop, to avoid over optimistic estimation of prediction performance due to e.g. the variable selection step.
Seems like you've overfit on your training set. Basically the model has learnt noise on the data rather than the signal. There are a few ways to combat this, but it seems fairly obvious that you're model has overfit because of the incredibly large number of features you're feeding it.
EDIT:
It seems I was perhaps too quick to jump to the conclusion of overfitting, however this may still be the case (left as an exercise to the reader!). However feature selection may still improve the generalisability and reliability of your model.
A good place to start for removing features in scikit-learn would be here. Using sparsity is a fairly common way to perform feature selection:
from sklearn.svm import LinearSVC
from sklearn.feature_selection import SelectFromModel
import numpy as np
# Create some data
X = np.random.random((1800, 2700))
# Boolean labels as the y vector
y = np.random.random(1800)
y = y > 0.5
y = y.astype(bool)
lsvc = LinearSVC(C=0.05, penalty="l1", dual=False).fit(X, y)
model = SelectFromModel(lsvc, prefit=True)
X_new = model.transform(X)
print X_new.shape
Which returns a new matrix of shape (1800, 640). You can tune the number of features selected by altering the C parameter (called the penalty parameter in scikit-learn but sometimes called the sparsity parameter).

Individual score contributions in ML estimation

I've estimated a model via maximum likelihood in Stata and was surprised to find that estimated standard errors for one particular parameter are drastically smaller when clustering observations. I take it from the Stata manual on robust standard error estimation in ML that this can happen if the contributions of individual observations to the score (the derivative of the log-likelihood) tend to cancel each other within clusters.
I would now like to dig a little deeper into what exactly is happening and would therefore like to have a look at these score contributions. As far as I can see, however, Stata only gives me the total sum as e(gradient). Is there any way to pry the individual summands out of Stata?
If you have written your own command, you can create a new variable containing these scores using the ml score command. Official Stata commands and most finished user written commands will often have score as an option for predict, which does the same thing but with an easier syntax.
These will give you the score of the log likelihood ($\ell$) with respect to the linear predictor, $x\beta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \elipses$. To get the derivative of the log likelihood with respect to an individual parameter, say $\beta_1$, you just use the chain rule:
$\frac{\partial \ell}{\partial \beta_1} = \frac{\partial \ell }{\partial x\beta} \frac{\partial x\beta}{\partial \beta_1}$
The scores returned by Stata are $ \frac{\partial \ell }{\partial x\beta}$, and $\frac{\partial x\beta}{\partial \beta_1} = x_1$.
So, to get the score for $\beta_1$ you just multiply the score returned by Stata and $x_1$.

Data Mining and Frequent Datasets

I've been doing some work for my exams in a few days and I'm going through some past papers but unfortunately there are no corresponding answers. I've answered the question and I was wondering if someone could tell me if I am correct.
My question is
(c) A transactional dataset, T, is given below:
t1: Milk, Chicken, Beer
t2: Chicken, Cheese
t3: Cheese, Boots
t4: Cheese, Chicken, Beer,
t5: Chicken, Beer, Clothes, Cheese, Milk
t6: Clothes, Beer, Milk
t7: Beer, Milk, Clothes
Assume that minimum support is 0.5 (minsup = 0.5).
(i) Find all frequent itemsets.
Here is how I worked it out:
Item : Amount
Milk : 4
Chicken : 4
Beer : 5
Cheese : 4
Boots : 1
Clothes : 3
Now because the minsup is 0.5 you eliminate boots and clothes and make a combo of the remaining giving:
{items} : Amount
{Milk, Chicken} : 2
{Milk, Beer} : 4
{Milk, Cheese} : 1
{Chicken, Beer} : 3
{Chicken, Cheese} : 3
{Beer, Cheese} : 2
Which leaves milk and beer as the only frequent item set then as it is the only one above the minsup?
I agree you should go for the Apriori Algorithm.
The Apriori algorithm is based on the idea that for a pair o items to be frequent, each individual item should also be frequent.
If the hamburguer-ketchup pair is frequent, the hamburger itself must also appear frequently in the baskets. The same can be said about the ketchup.
So for the algorithm, it is established a "threshold X" to define what is or it is not frequent. If an item appears more than X times, it is considered frequent.
The first step of the algorithm is to pass for each item in each basket, and calculate their frequency (count how many time it appears).
This can be done with a hash of size N, where the position y of the hash, refers to the frequency of Y.
If item y has a frequency greater than X, it is said to be frequent.
In the second step of the algorithm, we iterate through the items again, computing the frequency of pairs in the baskets. The catch is that
we compute only for items that are individually frequent. So if item y and item z are frequent on itselves,
we then compute the frequency of the pair. This condition greatly reduces the pairs to compute, and the amount of memory taken.
Once this is calculated, the frequencies greater than the threshold are said frequent itemset.
(http://girlincomputerscience.blogspot.com.br/2013/01/frequent-itemset-problem-for-mapreduce.html)
There are two ways to solve the problem:
using Apriori algorithm
Using FP counting
Assuming that you are using Apriori, the answer you got is correct.
The algorithm is simple:
First you count frequent 1-item sets and exclude the item-sets below minimum support.
Then count frequent 2-item sets by combining frequent items from previous iteration and exclude the item-sets below support threshold.
The algorithm can go on until no item-sets are greater than threshold.
In the problem given to you, you only get 1 set of 2 items greater than threshold so you can't move further.
There is a solved example of further steps on Wikipedia here.
You can refer "Data Mining Concepts and Techniques" by Han and Kamber for more examples.
OK to start, you must first understand, data mining (sometimes called data or knowledge discovery) is the process of analyzing data from different perspectives and summarizing it into useful information - information that can be used to increase revenue, cuts costs, or both. Data mining software is one of a number of analytical tools for analyzing data. It allows users to analyze data from many different dimensions or angles, categorize it, and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational databases.
Now, the amount of raw data stored in corporate databases is exploding. From trillions of point-of-sale transactions and credit card purchases to pixel-by-pixel images of galaxies, databases are now measured in gigabytes and terabytes. (One terabyte = one trillion bytes. A terabyte is equivalent to about 2 million books!) For instance, every day, Wal-Mart uploads 20 million point-of-sale transactions to an A&T massively parallel system with 483 processors running a centralized database. Raw data by itself, however, does not provide much information. In today's fiercely competitive business environment, companies need to rapidly turn these terabytes of raw data into significant insights into their customers and markets to guide their marketing, investment, and management strategies.
Now you must understand that association rule mining is an important model in data mining. Its mining algorithms discover all item associations (or rules) in the data that satisfy the user-specified minimum support (minsup) and minimum confidence (minconf) constraints. Minsup controls the minimum number of data cases that a rule must cover. Minconf controls the predictive strength of the rule. Since only one minsup is used for the whole database, the model implicitly assumes that all items in the data are of the same nature and/or have similar frequencies in the data. This is, however, seldom the case in real- life applications. In many applications, some items appear very frequently in the data, while others rarely appear. If minsup is set too high, those rules that involve rare items will not be found. To find rules that involve both frequent and rare items, minsup has to be set very low. This may cause combinatorial explosion because those frequent items will be associated with one another in all possible ways. This dilemma is called the rare item problem. This paper proposes a novel technique to solve this problem. The technique allows the user to specify multiple minimum supports to reflect the natures of the items and their varied frequencies in the database. In rule mining, different rules may need to satisfy different minimum supports depending on what items are in the rules.
Given a set of transactions T (the database), the problem of mining association rules is to discover all association rules that have support and confidence greater than the user-specified minimum support (called minsup) and minimum confidence (called minconf).
I hope that once you understand the very basics of data mining that the answer to this question shall become apparent.

Most efficient way to process complex histogram data?

I'm currently implementing a histogram that will show a very large scale data using Qt and I have some doubts about which data structure(s) I should be using for my problem. I will be displaying the amount of queries received from users of an application and the way I should display is as follows -in a single application that will show different histograms upon clicking different "show me this data etc." buttons-
1) Display the histogram of total queries per every month -4 months of data here, I
kept four variables and incremented them as I caught queries belonging to those months
in the CSV file-
2) Display the histogram of total queries per every single day in a selected month -I was thinking of using 4 QVectors to represent the months for this one, incrementing every element of the vector (day), as I come by that specific day -e.g. the vector represents the month of August and whenever I come across a data with 2011-08-XY , I will increment the (XY + 1)th element of that vector by 1- my second alternative is to use 4 QLinkedList's for the sake of better complexity but I'm not sure if the ways I've come up with are efficient enough and I'm willing to listen to any other idea.
3) Here's where things get a bit complicated. Display the histogram of total queries per every hour in a selected day and month. The data represented is multiplied in a vast manner and I don't know which data structure -or combination of structures- I should use to implement this one. A list of lists perhaps?
Any ideas on my problems at 2) and 3) would be helpful, Thanks in advance.
Actually, it shouldn't be too unmanageable to always do queries per hour. Assuming that the number of queries per hour is never greater than the maximum int value, that's only 24 ints per day = 32 bits or 64 depending on your machine. Assuming 32 bits, then you could get up to 28 years worth of data per MB.
There's no need to transfer the month/year - your program can work that out. Just assign hour 0 to the earliest point in your data, which you keep as a constant, then work out the date based on hours passed since then.
This avoids having to have a list of lists or anything fancy - just use an array where each address contains the number of hours since hour 0, and the number of queries for that hour.
Why don't you simply use a classical database?
When you start asking these kind of question I think it is a good time to consider a more robust structure.There are multiple data structures implemented inside any DB, optimized either for different access type. You should considerate at least lookup, insertion, deletion, range queries. There is no structure which is better than the others in all costs, so there is always a trade-off.
Qt has some database classes you can use. I never used the Qt SQL library, but I think you should give it a shot. Fortunately, there is a Qt SQL programming guide at the end of the page linked.

Achieving Mutability When Mixing Primitives and Cocoa Collections

Okay, I think I might be over-complicating this issue but I truly am stuck. Basically, I am trying to model a weight set, specifically an olympic weight set. So I have the bar which is 45 lbs, then I have 2 weights of 2.5 lbs, 4 of 5 lbs, and then 2 of 10, 25, 35, and 45 respectively. This makes a total of 300 lbs.
bar = 45 lbs
2 of 2.5
4 of 5
2 of 10
2 of 25
2 of 35
2 of 45
I want to model this weight set so that I have this information: the weight and the quantity of weights I have. I know I could hard-code this but I eventually want to let the user enter how many of each weight they may have.
Anyways, originally I thought I could simply have an NSDictionary with the key being the weight, such as 35, and the value being the quantity.
Naturally I cannot store primitives in an NSDictionary or other Cocoa collection, so I have to encapsulate each integer in an NSNumber. However, the point of my modeling this weight set is so that I can simulate the use of certain weights. For example, if I use a 35 lbs. weight that takes 2 off (one for each side), so I have to go and edit the value for the 35 lbs. weight to reflect the fact that I have deducted 2 from the quantity.
This involves the tedious task of unboxing the NSNumber, converting back to a primitive, doing the math, and then re-boxing into an NSNumber and assigning that new result to the appropriate location in the NSDictionary. After searching around a bit, I confirmed my initial premonition that this was not a good idea.
So I have a couple questions. First of all, is there a better way of modeling a weight set aside from using a dictionary-style solution? If not, what is the suggested way to go about doing this? Do I have to leave the cocoa-realm and resort to using some sort of C++ STL template such as a map?
I have seen some information on NSDecimalNumber, should I just use that?
Like I said, I wouldn't be surprised if I am over-complicating this. I would really appreciate any help, thanks.
EDIT: I am beginning to think that the weight set 'definition' as described should indeed be immutable, as it is a definition after all. Then when I use a certain weight, I can add to some sort of tally. The thing is that the tally will also be some form of collection whose values I will be modifying (adding to), so that I can correlate it to the specific weight. So I guess I am in the same problem.
I think where I am trying to get at is creating a 'clone' so to speak of the weight set definition which I can easily modify (to simulate the usage of individual weights).
Sorry, I'm burned out.
Storing this in a dictionary isn't a natural fit. I think the best approach would be to make a Weight class that represents the weights, and stick them in an NSCountedSet. You can get the individual kinds of Weight and the counts for each kind, and you can get the weight of the whole set with [weightSet valueForKeyPath:#"#sum.weightInPounds"] (assuming the Weights have a weightInPounds property that represents how heavy they are).
You could use NSNumbers in the NSCountedSet and sum them with #sum.integerValue if you wanted, but it seems a bit awkward to me. At any rate, NSCountedSet is definitely a more natural collection than an NSDictionary for storing — well, a counted set.
There's nothing wrong with storing your numbers in an NSDictionary! The question you referenced was referring to complicated, frequent math. Converting from NSNumber and back is slow compared to simple int addition, but is still super-fast compared to human perception. I think your dictionary idea is EDIT: not as good as Chuck's NSCountedSet idea. :)