OPENMP Parallel Problem Error for Double Loop - c++

I was getting the error: "free(): corrupted unsorted chunks" when trying to run:
#pragma omp parallel for reduction(+:save) shared(save2)
for (size_t i = 0; i <= N; ++i) {
vector<float> dist = cdist(i, arestas);
vector<float> distinv(dist.size());
for (size_t j = 0; j < N(); ++j) {
if (arr[j] > 0)
arrv[j] = (1/N) + (1 / arr[j]);
else
arrv[j] = 0;
}
save = accumulate(arrv.begin(), arrv.end(), 0.0);
vector<double>::iterator iter = save2.begin() + i;
save2.insert(iter, sum);
}

I might miss the point here, but what about just doing it this way (not tested)?
vector<double> sum2(N);
#pragma omp parallel for num_threads(8)
for ( size_t i = 0; i < N; i++ ) {
double sum = 0;
for ( size_t j = 0; j < dist.size(); ++j ) {
if ( dist[j] > 0 ) {
sum += 1. / dist[j];
}
}
sum2[i] = sum;
}
There is still some room for improving this version (by removing the if statement for example, in order to help the vectorization), but unless you had some unexplained constrains in your code, I think this version is a good starting point.

Related

Is there a way to parallelize a lower triangle matrix solver?

The goal is to add OpenMP parallelization to for (i = 0; i < n; i++) for the lower triangle solver for the form Ax=b. Expected result is exactly same as the result when there is NO parallelization added to for (i = 0; i < n; i++).
vector<vector<double>> represents a 2-D matrix. makeMatrix(int m, int n) initializes a vector<vector<double>> of all zeroes of size mxn.
Two of the most prominent tries have been left in comments.
vector<vector<double>> lowerTriangleSolver(vector<vector<double>> A, vector<vector<double>> b)
{
vector<vector<double>> x = makeMatrix(A.size(), 1);
int i, j;
int n = A.size();
double s;
//#pragma omp parallel for reduction(+: s)
//#pragma omp parallel for shared(s)
for (i = 0; i < n; i++)
{
s = 0.0;
#pragma omp parallel for
for (j = 0; j < i; j++)
{
s = s + A[i][j] * x[j][0];
}
x[i][0] = (b[i][0] - s) / A[i][i];
}
return x;
}
You could try to assign the outer loop iterations among threads, instead of the inner loop. In this way, you increase the granularity of the parallel tasks and avoid the reduction of the 's' variable.
#pragma omp parallel for
for (int i = 0; i < n; i++){
double s = 0.0;
for (int j = 0; j < i; j++){
s = s + A[i][j] * x[j][0];
}
x[i][0] = (b[i][0] - s) / A[i][i];
}
Unfortunately, that is not possible because there is a dependency between s = s + A[i][j] * x[j][0]; and x[i][0] = (b[i][0] - s) / A[i][i];, more precisely x[j][0] depends upon the x[i][0].
So you can try two approaches:
for (int i = 0; i < n; i++){
double s = 0.0;
#pragma omp parallel for reduction(+:s)
for (int j = 0; j < i; j++){
s = s + A[i][j] * x[j][0];
}
x[i][0] = (b[i][0] - s) / A[i][i];
}
or using SIMD :
for (int i = 0; i < n; i++){
double s = 0.0;
#pragma omp simd reduction(+:s)
for (int j = 0; j < i; j++){
s = s + A[i][j] * x[j][0];
}
x[i][0] = (b[i][0] - s) / A[i][i];
}

How to add OpenMp to triple nested for-loop

The goal is to add as much OpenMP to the following Cholesky factor function to increase parallelization. So far, I only have one #pragma omp parallel for implemented correctly. vector<vector<double>> represents a 2-D matrix. I've already tried adding #pragma omp parallel for for
for (int i = 0; i < n; ++i), for (int k = 0; k < i; ++k), and for (int j = 0; j < k; ++j) but the parallelization goes wrong. makeMatrix(n, n) initializes a vector<vector<double>> of all zeroes of size nxn.
vector<vector<double>> cholesky_factor(vector<vector<double>> input)
{
int n = input.size();
vector<vector<double>> result = makeMatrix(n, n);
for (int i = 0; i < n; ++i)
{
for (int k = 0; k < i; ++k)
{
double value = input[i][k];
for (int j = 0; j < k; ++j)
{
value -= result[i][j] * result[k][j];
}
result[i][k] = value / result[k][k];
}
double value = input[i][i];
#pragma omp parallel for
for (int j = 0; j < i; ++j)
{
value -= result[i][j] * result[i][j];
}
result[i][i] = std::sqrt(value);
}
return result;
}
I don't think you can parallelize much more than this with this algorithm, as the ith iteration of the outer loop depends on the results of the i - 1th iteration and the kth iteration of the inner loop depends on the results of the k - 1th iteration.
vector<vector<double>> cholesky_factor(vector<vector<double>> input)
{
int n = input.size();
vector<vector<double>> result = makeMatrix(n, n);
for (int i = 0; i < n; ++i)
{
for (int k = 0; k < i; ++k)
{
double value = input[i][k];
// reduction(-: value) does the same
// (private instances of value are initialized to zero and
// added to the initial instance of value when the threads are joining
#pragma omp parallel for reduction(+: value)
for (int j = 0; j < k; ++j)
{
value -= result[i][j] * result[k][j];
}
result[i][k] = value / result[k][k];
}
double value = input[i][i];
#pragma omp parallel for reduction(+: value)
for (int j = 0; j < i; ++j)
{
value -= result[i][j] * result[i][j];
}
result[i][i] = std::sqrt(value);
}
return result;
}

Parallel summation with openMP - what to do when i canĀ“t use the reduction clause?

I have a function inside a class that i call millions of times in my code.
There are demanding loops in this function that could be parallelized. My problem is that they perform summations that are stored in non-sclar variables.
here is the code.
void Forces::ForRes(vector<vector<double> > & Posicoes,double epsilon,double sigma,double rc,double L)
{
double rij_2,rij_6,rij_12,rijx,rijy,rijz;
double t;
double sigma6 = pow(sigma,6);
double sigma12 = pow (sigma6,2);
for ( unsigned int i = 0 ; i < Posicoes.size() - 1 ; i++ )
{
for (unsigned int j = i + 1 ; j < Posicoes.size() ; j++)
{
rijx = (Posicoes[i][0]-Posicoes[j][0]) - L*round((Posicoes[i][0]-Posicoes[j][0])/L);
rijy = (Posicoes[i][1]-Posicoes[j][1]) - L*round((Posicoes[i][1]-Posicoes[j][1])/L);
rijz = (Posicoes[i][2]-Posicoes[j][2]) - L*round((Posicoes[i][2]-Posicoes[j][2])/L);
rij_2 = rijx*rijx + rijy*rijy + rijz*rijz;
rij_6 = pow(rij_2,3);
rij_12 = pow(rij_6,2);
if (rij_2 <= rc*rc)
{
U += 4*epsilon*((sigma12)/(rij_12)- (sigma6)/(rij_6));
for (int k =0 ; k <3 ; k++)
{
t = ((24*epsilon)/(rij_2))*(2*(sigma12)/(rij_12)- (sigma6)/(rij_6))*((Posicoes[i][k]-Posicoes[j][k])
- L*round((Posicoes[i][k]-Posicoes[j][k])/L));
F[i][k] += t;
F[j][k] -= t;
}
}
}
}
}
Here is an example that i did in another part of the code:
#pragma omp parallel for default(shared) reduction(+:K) private(pi_2)
for (int i = 0 ; i < Nparticulas;i++)
{
for (int k = 0 ; k < 3 ; k++)
{
pi_2 += Momentos.M[i][k]*Momentos.M[i][k];
}
K += pi_2/2;
pi_2 = 0;
}
Thanks in advance.
Code after #phadjido suggestion:
void Forces::ForRes(vector<vector<double> > & Posicoes,double epsilon,double sigma,double rc,double L)
{
double rij_2,rij_6,rij_12,rijx,rijy,rijz;
double t;
double sigma6 = pow(sigma,6);
double sigma12 = pow (sigma6,2);
U = 0;
unsigned int j;
for ( unsigned int i = 0 ; i < Posicoes.size() - 1 ; i++ )
{
#pragma omp parallel private (rij_2,rij_6,rij_12,j)
{
double Up = 0;
vector <vector <double> > Fp(Posicoes.size() , vector<double>(Posicoes[0].size(),0));
#pragma omp for
for ( j = i + 1 ; j < Posicoes.size() ; j++)
{
rijx = (Posicoes[i][0]-Posicoes[j][0]) - L*round((Posicoes[i][0]-Posicoes[j][0])/L);
rijy = (Posicoes[i][1]-Posicoes[j][1]) - L*round((Posicoes[i][1]-Posicoes[j][1])/L);
rijz = (Posicoes[i][2]-Posicoes[j][2]) - L*round((Posicoes[i][2]-Posicoes[j][2])/L);
rij_2 = rijx*rijx + rijy*rijy + rijz*rijz;
rij_6 = pow(rij_2,3);
rij_12 = pow(rij_6,2);
if (rij_2 <= rc*rc)
{
Up += 4*epsilon*((sigma12)/(rij_12)- (sigma6)/(rij_6));
for (int k =0 ; k <3 ; k++)
{
t = ((24*epsilon)/(rij_2))*(2*(sigma12)/(rij_12)- (sigma6)/(rij_6))*((Posicoes[i][k]-Posicoes[j][k])
- L*round((Posicoes[i][k]-Posicoes[j][k])/L));
Fp[i][k] += t;
Fp[j][k] -= t;
}
}
}
#pragma omp atomic
U += Up;
for(j = i + 1 ; j < Posicoes.size() ; j++)
{
for ( int k = 0 ; k < 3; k++)
{
#pragma omp atomic
F[i][k] += Fp[i][j];
#pragma omp atomic
F[j][k] -= Fp[j][k];
}
}
}
}
}
If user defined reductions are not supported by the compiler, you can simply implement the reduction operation on your own. The code below shows how this can be done for your second example. Please note that pi_2 is initialized at the beginning of the loop. In your example, pi_2 is a private variable and might not have been initialized to zero. You would need firstprivate and proper initialization of pi_2 before the parallel region.
K = 0;
#pragma omp parallel private(pi_2)
{
double local_K = 0; /* initialize here */
#pragma omp for
for (int i = 0 ; i < Nparticulas;i++)
{
pi_2 = 0; /* be careful */
for (int k = 0 ; k < 3 ; k++)
{
pi_2 += Momentos.M[i][k]*Momentos.M[i][k];
}
local_K += pi_2/2;
}
#pragma omp atomic
K += local_K;
}

OpenMP for matrix multiplication

I am new to OpenMP and am trying desperately to learn. I have tried to write an example code in C++ in visual studio 2012 to implement matrix multiplication. I was hoping someone with OpenMP experience could take a look at this code and help me to obtain the ultimate speed / parallelization for this:
#include <iostream>
#include <stdlib.h>
#include <omp.h>
#include <random>
using namespace std;
#define NUM_THREADS 4
// Program Variables
double** A;
double** B;
double** C;
double t_Start;
double t_Stop;
int Am;
int An;
int Bm;
int Bn;
// Program Functions
void Get_Matrix();
void Mat_Mult_Serial();
void Mat_Mult_Parallel();
void Delete_Matrix();
int main()
{
printf("Matrix Multiplication Program\n\n");
cout << "Enter Size of Matrix A: ";
cin >> Am >> An;
cout << "Enter Size of Matrix B: ";
cin >> Bm >> Bn;
Get_Matrix();
Mat_Mult_Serial();
Mat_Mult_Parallel();
system("pause");
return 0;
}
void Get_Matrix()
{
A = new double*[Am];
B = new double*[Bm];
C = new double*[Am];
for ( int i=0; i<Am; i++ ){A[i] = new double[An];}
for ( int i=0; i<Bm; i++ ){B[i] = new double[Bn];}
for ( int i=0; i<Am; i++ ){C[i] = new double[Bn]; }
for ( int i=0; i<Am; i++ )
{
for ( int j=0; j<An; j++ )
{
A[i][j]= rand() % 10 + 1;
}
}
for ( int i=0; i<Bm; i++ )
{
for ( int j=0; j<Bn; j++ )
{
B[i][j]= rand() % 10 + 1;
}
}
printf("Matrix Create Complete.\n");
}
void Mat_Mult_Serial()
{
t_Start = omp_get_wtime();
for ( int i=0; i<Am; i++ )
{
for ( int j=0; j<Bn; j++ )
{
double temp = 0;
for ( int k=0; k<An; k++ )
{
temp += A[i][k]*B[k][j];
}
}
}
t_Stop = omp_get_wtime() - t_Start;
cout << "Serial Multiplication Time: " << t_Stop << " seconds" << endl;
}
void Mat_Mult_Parallel()
{
int i,j,k;
t_Start = omp_get_wtime();
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for private(i,j,k) schedule(dynamic)
for ( i=0; i<Am; i++ )
{
for ( j=0; j<Bn; j++ )
{
//double temp = 0;
for ( k=0; k<An; k++ )
{
C[i][j] += A[i][k]*B[k][j];
}
}
}
t_Stop = omp_get_wtime() - t_Start;
cout << "Parallel Multiplication Time: " << t_Stop << " seconds." << endl;
}
void Delete_Matrix()
{
for ( int i=0; i<Am; i++ ){ delete [] A[i]; }
for ( int i=0; i<Bm; i++ ){ delete [] B[i]; }
for ( int i=0; i<Am; i++ ){ delete [] C[i]; }
delete [] A;
delete [] B;
delete [] B;
}
My examples are based on a matrix class I created for parallel teaching. If you are interested feel free to contact me.
There are several ways to speedup your matrix multiplication :
Storage
Use a one dimension array in row major order for accessing the element in a faster way.
You can access to A(i,j) with A[i * An + j]
Use loop invariant optimization
for (int i = 0; i < m; i ++)
for (int j = 0; j < p; j ++)
{
Scalar sigma = C(i, j);
for (int k = 0; k < n; k ++)
sigma += (*this)(i, k) * B(k, j);
C(i, j) = sigma;
}
This prevents to recompute C(i,j) several times in the most inner loop.
Change loop order "for k <-> for i"
for (int i = 0; i < m; i ++)
for (int k = 0; k < n; k ++)
{
Aik = (*this)(i, k);
for (int j = 0; j < p; j ++)
C(i, j) += Aik * B(k, j);
}
This allows to play with spatial data locality
Use loop blocking/tiling
for(int ii = 0; ii < m; ii += block_size)
for(int jj = 0; jj < p; jj += block_size)
for(int kk = 0; kk < n; kk += block_size)
#pragma omp parallel for // I think this is the best place for this case
for(int i = ii; i < ii + block_size; i ++)
for(int k = kk; k < kk + block_size; k ++)
{
Scalar Aik = (*this)(i, k);
for(int j = jj; j < jj + block_size; j ++)
C(i, j) += Aik * B(k, j);
}
This can use better temporal data locality. The optimal block_size depends on your architecture and matrix size.
Then parallelize !
Generally, the #pragma omp parallel for should be done a the most outter loop. Maybe using two parallel loop at the two first outter loops can give better results. It depends then on the architecture you use, the matrix size... You have to test !
Since the matrix multiplication has a static workload I would use a static schedule.
Moar optimization !
You can do loop nest optimization.
You can vectorize your code.
You can take look at how BLAS do it.
I am very new to OpenMP and this code is very instructive. However I found an error in the serial version that gives it an unfair speed advantage over the parallel version.
Instead of writing C[i][j] += A[i][k]*B[k][j]; as you do in the parallel version, you have written temp += A[i][k]*B[k][j]; in the serial version. This is much faster (but doesn't help you compute the C matrix). So you're not comparing apples to apples, which makes the parallel code seem slower by comparison. When I fixed this line and ran it on my laptop (which allows 2 threads), the parallel version was almost twice as fast. Not bad!

OpenMP: Nested for-loop, barely any difference in execution time

I am doing some image processing and have a nested for loop. I want to implement multiprocessing using OpenMP. The for loop looks like this, where I have added the pragma tags and declared some of the variables private as well.
int a,b,j, idx;
#pragma omp parallel for private(b,j,sumG,sumGI)
for(a = 0; a < ny; ++a)
{
for(b = 0; b < nx; ++b)
{
idx = a*ny+b;
if (imMask[idx] == 0)
{
Wshw[idx] = 0;
continue;
}
sumG = 0;
sumGI = 0;
for(j = a; j < ny; ++j)
{
sumG += shadowM[j-a];
sumGI += shadowM[j-a] * imBlurred[nx*j + b];
}
Wshw[idx] = sumGI / sumG;
}
}
The size of both nx and ny is large and I thought that, using OpenMP, I would get a descent decrease in execution time, instead there is almost no difference. Am I doing something wrong when I implement the multi-threading maybe?
You have a race conditon in idx. You need to make it private as well.
However, instead you could try something like this.
int a,b,j, idx;
#pragma omp parallel for private(a,b,j,sumG,sumGI)
for(idx=0; idx<ny*nx; ++idx) {
if (imMask[idx] == 0)
{
Wshw[idx] = 0;
continue;
}
sumG = 0;
sumGI = 0;
a=idx/ny;
b=idx%ny;
for(j = a; j < ny; ++j) {
sumG += shadowM[j-a];
sumGI += shadowM[j-a] * imBlurred[nx*j + b];
}
Wshw[idx] = sumGI / sumG;
}
You might be able to simiply the inner loop as well as a functcion of idx instead a and b.