I am trying to compare tumors or not for 2 different groups. However, when I run the Proc Freq it shows the results in different charts. What should I do differently?
Code
proc freq data=tCto502 order=data;
by Group;
table TumorYesorNoCoded*Group / fisher;
run;
I got the following notes.
NOTE: No statistics are computed for TumorYesorNoCoded * Group because Group has fewer than 2
nonmissing levels.
NOTE: The above message was for the following BY group:
Group=50
NOTE: No statistics are computed for TumorYesorNoCoded * Group because TumorYesorNoCoded has fewer
than 2 nonmissing levels.
NOTE: The above message was for the following BY group:
Group=Control
Results
Data
You dont need the group by, since the table argument is already combining TumorYesorNoCoded*Group.
Just run:
proc freq data=tCto502;
table TumorYesorNoCoded*Group / fisher;
run;
Edited:
After the question was updated with the desired output, to get the exactly the same result, you can run:
proc freq data=tCto502 order=internal;
table Group*TumorYesorNoCoded / fisher NOCOL NOPERCENT NOROW;
run;
Related
I'm trying to get SAS to give me all the age_groups when count = 0. I can't figure it out and if I have to copy and paste 2000 lines from one xlsx to another, I will mess up counts somewhere as there are rows missing for age_groups. I tried various ways to make it work, including the use of sparse in the PROC FREQ step. None of them seem to work and I think it's because the age_group is a character value so it's completely missing from the frequency counts.
Here is what currently outputs:
Here's what I need:
Here is the SAS Code I used for this output:
PROC FREQ data=partial ORDER=INTERNAL ;
tables mmwr_case*age_group / out=partial_2021 sparse list nocol nocum norow nopercent;
by mmwr_case;
where case_year = 2021;
title 'Cases, 2021, by MMWR Week';
RUN;
I have approximately 1,000,000 rows and 25 columns of data and I'm trying to return a list of column names, the number of distinct values and whether there are missing values.
I am not able to directly code in column names in PROC SQL and count distinct as I have numerous data sets with different column names and I'm trying to automatically return the desired outcome for all tables with one piece of code.
I've tried running the following code
proc freq nlevels data= &DATASET_NAME;
ods output nlevels=nlevels ;
tables _all_ NOPRINT;
run;
This returns an out of memory error. Is there another way to achieve the result, avoiding the out of memory error.
It is unnecessary to input column name by table _all_, but it possibly makes out of memory by inputting all columns at the same time, try to separate column to do proc freq and then combine results:
proc sql;
create table name as
select name from dictionary.columns where libname='SASHELP' and memname='CLASS';
quit;
data want;
run;
data _null_;
set name;
call execute(
'proc freq data=class nlevels;
table '||name||';
ods output nlevels=nlevels;
run;
data want;
set want nlevels;
run;'
);
run;
This question is very similar to SAS summary statistic from a dataset
The answers cover techniques for
transpose + freq
hash
freq w/ ODS exclude+output
When I run a proc glimmix in SAS, sometimes it drops observations.
How do I get the set of dropped/excluded observations or maybe the set of included observations so that I can identify the dropped set?
My current Proc GLIMMX code is as follows-
%LET EST=inputf.aarefestimates;
%LET MODEL_VAR3 = age Male Yearc2010 HOSPST
Hx_CTSURG Cardiogenic_Shock COPD MCANCER DIABETES;
data work.refmodel;
set inputf.readmref;
Yearc2010 = YEAR - 2010;
run;
PROC GLIMMIX DATA = work.refmodel NOCLPRINT MAXLMMUPDATE=100;
CLASS hospid HOSPST(ref="xx");
ODS OUTPUT PARAMETERESTIMATES = &est (KEEP=EFFECT ESTIMATE STDERR);
MODEL RADM30 = &MODEL_VAR3 /Dist=b LINK=LOGIT SOLUTION;
XBETA=_XBETA_;
LINP=_LINP_;
RANDOM INTERCEPT/SUBJECT= hospid SOLUTION;
OUTPUT OUT = inputf.aar
PRED(BLUP ILINK)=PREDPROB PRED(NOBLUP ILINK)=EXPPROB;
ID XBETA LINP hospst hospid Visitlink Key RADM30;
NLOPTIONS TECH=NRRIDG;
run;
Thank you in advance!
It drops records with missing values in any variable you're using in the model, in a CLASS, BY, MODEL, RANDOM statement. So you can check for missing among those variables to see what you get. Usually the output data set will also indicate this by not having predictions for the records that are not used.
You can run the code below.
*create fake data;
data heart;set sashelp.heart; ;run;
*Logistic Regression model, ageCHDdiag is missing ;
proc logistic data=heart;
class sex / param=ref;
model status(event='Dead') = ageCHDdiag height weight diastolic;
*generate output data;
output out=want p=pred;
run;
*explicitly flag records as included;
data included;
set want;
if missing(pred) then include='N'; else include='Y';
run;
*check that Y equals total obs included above;
proc freq data=included;
table include;
run;
The output will show:
The LOGISTIC Procedure
Model Information
Data Set WORK.HEART
Response Variable Status
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher's scoring
Number of Observations Read 5209
Number of Observations Used 1446
And then the PROC FREQ will show:
The FREQ Procedure
Cumulative Cumulative
include Frequency Percent Frequency Percent
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
N 3763 72.24 3763 72.24
Y 1446 27.76 5209 100.00
And 1,446 records are included in both of the data sets.
I think I answered my question.
The code line -
OUTPUT OUT = inputf.aar
gives the output of the model. This table includes all the observations used in the proc statement. So I can match the data in this table to my input table and find the observations that get dropped.
#REEZA - I already looked for missing values for all the columns in the data. Was not able to identify the records there are getting dropped by only identifying the no. of records with missing values. Thanks for the suggestion though.
I would like to create multiple 2-way tables stratified by a certain variable. I would like the order of the printing to be like this:
"AxB when strata=1
AxB when strata=2
AxC when strata=1"
etc...
Instead, my code gives me
"AxB when strata=1
AxC when strata=1
AxB when strata=2"
etc...
Here is my code:
PROC SORT data=mydata;
by riskgroup;
run;
PROC FREQ data=mydata;
by riskgroup;
tables Stent*(RACE INCOME EDUCATION);
run;
thank you for your help!
BY is inherently going to do that, unfortunately (it literally calculates the x1 table first, then the x2 table).
You have options though: both PROC FREQ and PROC TABULATE have a concept of 'pages', more or less. Instead of by have a third crossing:
So instead of:
proc sort data=sashelp.cars out=cars;
by origin;
run;
proc freq data=cars;
by origin;
table type*(cylinders drivetrain);
run;
You want:
proc freq data=cars;
table origin*type*(cylinders drivetrain);
run;
You don't even have to sort first here.
And the equivalent in Tabulate, I like a bit better:
proc tabulate data=sashelp.cars;
class Origin Cylinders Type DriveTrain;
tables origin, Type, Cylinders;
tables origin, Type, DriveTrain;
run;
Note the multiple table statements here, you can do that in either proc and it sometimes looks a bit cleaner especially when doing a 3 level crossing.
Just use multiple TABLES statements.
PROC FREQ data=mydata;
tables riskgroup*Stent*RACE;
tables riskgroup*Stent*INCOME;
run;
If your list of variables is long then write a macro (or other method) to generate the statements.
I have the following problem. I need to run PROC FREQ on multiple variables, but I want the output to all be on the same table. Currently, a PROC FREQ statement with something like TABLES ERstatus Age Race, InsuranceStatus; will calculate frequencies for each variable and print them all on separate tables. I just want the data on ONE table.
Any help would be appreciated. Thanks!
P.S. I tried using PROC TABULATE, but it didn't not calculate N correctly, so I'm not sure what I did wrong. Here is my code for PROC TABULATE. My variables are all categorical, so I just need to know N and percentages.
PROC TABULATE DATA = BCanalysis;
CLASS ERstatus PRstatus Race TumorStage InsuranceStatus;
TABLE (ERstatus PRstatus Race TumorStage) * (N COLPCTN), InsuranceStatus;
RUN;
The above code does not return the correct frequencies based on InsuranceStatus where 0 = insured and 1 = uninsured, but PROC FREQ does. Also doesn't calculate correctly with ROWPCTN. So any way that I can get PROC FREQ to calculate multiple variables on one table, or PROC TABULATE to return the correct frequencies, would be appreciated.
Here is a nice image of my output in a simplified analysis of only ERstatus and InsuranceStatus. You can see that PROC FREQ returns 204 people with an ERstatus of 1 and InsuranceStatus of 1. That's correct. The values in PROC TABULATE are not.
OUTPUT
I'll answer this separately as this is answering the other possible interpretation of the question; when it's clarified I'll delete one or the other.
If you want this in a single printed table, then you either need to use proc tabulate or you need to normalize your data - meaning put it in the form of variable | value. PROC FREQ is not capable of doing multiple one-way frequencies in a single table.
For PROC TABULATE, likely your issue is missing data. Any variable that is on the class statement will be checked for missingness, and if any rows are missing data for any of the class variables, those rows are entirely excluded from the tabulation for all variables.
You can override this by adding the missing option on the class statement, or in the table statement, or in the proc tabulate statement. So:
PROC TABULATE DATA = BCanalysis;
CLASS ERstatus PRstatus Race TumorStage InsuranceStatus/missing;
TABLE (ERstatus PRstatus Race TumorStage) * (N COLPCTN), InsuranceStatus;
RUN;
This will result in a slightly different appearance than on your table, though, as it will include the missing rows in places you probably do not want them, and they'll be factored against the colpctn when again you probably don't want them.
Typically some manipulation is then necessary; the easiest is to normalize your data and then run a tabulation (using PROC TABULATE or PROC FREQ, whichever is more appropriate; TABULATE has better percentaging options though) against that normalized dataset.
Let's say we have this:
data class;
set sashelp.class;
if _n_=5 then call missing(age);
if _n_=3 then call missing(sex);
run;
And we want these two tables in one table.
proc freq data=class;
tables age sex;
run;
If we do this:
proc tabulate data=class;
class age sex;
tables (age sex),(N colpctn);
run;
Then we get an N=17 total for both subtables - that's not what we want, we want N=18. Then we can do:
proc tabulate data=class;
class age sex/missing;
tables (age sex),(N colpctn);
run;
But that's not quite right either; I want F to have 8/18 = 44.44% and M 10/18 = 55.55%, not 42% and 53% with 5% allocated to the missing row.
The way I do this is to normalize the data. This means you get a dataset with 2 variables, varname and val, or whatever makes sense for your data, plus whatever identifier/demographic/whatnot variables you might have. val has to be character unless all of your values are numeric.
So for example here I normalize class with age and sex variables. I don't keep any identifiers, but you certainly could in your data, I imagine InsuranceStatus would be kept there if I understand what you're doing in that table. Once I have the normalized table, I just use those two variables, and carefully construct a denominator definition in proc tabulate to have the right basis for my pctn value. It's not quite the same as the single table before - the variable name is in its own column, not on top of the list of values - but honestly that looks better in my opinion.
data class_norm;
set class;
length val $2;
varname='age';
val=put(age,2. -l);
if not missing(age) then output;
varname='sex';
val=sex;
if not missing(sex) then output;
keep varname val;
run;
proc tabulate data=class_norm;
class varname val;
tables varname=' '*val=' ',n pctn<val>;
run;
If you want something better than this, you'll probably have to construct it in proc report. That gives you the most flexibility, but is the most onerous to program in also.
You can use ODS OUTPUT to get all of the PROC FREQ output to one dataset.
ods output onewayfreqs=class_freqs;
proc freq data=sashelp.class;
tables age sex;
run;
ods output close;
or
ods output crosstabfreqs=class_tabs;
proc freq data=sashelp.class;
tables sex*(height weight);
run;
ods output close;
Crosstabfreqs is the name of the cross-tab output, while one-way frequencies are onewayfreqs. You can use ods trace to find out the name if you forget it.
You may (probably will) still need to manipulate this dataset some to get the structure you want ultimately.