I am facing issue in Airflow v1.10.12. Scheduler seems to be running fine but it is not picking up tasks after certain time and then pause and restart and take tasks again. Have checked the logs for all Web server, Worker, Scheduler no error is recorded. Also, memory spike is not there. Can someone help me what the issue can be
Below is the configuration file
[core]
dags_folder = /home/airflow/dags
base_log_folder = /home/airflow/logs
remote_logging = False
remote_log_conn_id =
remote_base_log_folder =
encrypt_s3_logs = False
logging_level = INFO
fab_logging_level = WARN
logging_config_class =
colored_console_log = True
colored_log_format = [%%(blue)s%%(asctime)s%%(reset)s] {%%(blue)s%%(filename)s:%%(reset)s%%(lineno)d} %%(log_color)s%%(levelname)s%%(reset)s - %%(log_color)s%%(message)s%%(reset)s
colored_formatter_class = airflow.utils.log.colored_log.CustomTTYColoredFormatter
log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
log_filename_template = {{ ti.dag_id }}/{{ ti.task_id }}/{{ ts }}/{{ try_number }}.log
log_processor_filename_template = {{ filename }}.log
dag_processor_manager_log_location = /home/airflow/logs/dag_processor_manager/dag_processor_manager.log
hostname_callable = socket:getfqdn
default_timezone = utc
executor = CeleryExecutor
sql_alchemy_conn = postgresql+psycopg2://devairflow:airflow#localhost:5432/pcfdb
sql_engine_encoding = utf-8
sql_alchemy_pool_enabled = True
sql_alchemy_pool_size = 0
sql_alchemy_max_overflow = -1
# The SqlAlchemy pool recycle is the number of seconds a connection
# can be idle in the pool before it is invalidated. This config does
# not apply to sqlite. If the number of DB connections is ever exceeded,
# a lower config value will allow the system to recover faster.
sql_alchemy_pool_recycle = 1800
sql_alchemy_pool_pre_ping = True
sql_alchemy_schema =
parallelism = 50
dag_concurrency = 50
dags_are_paused_at_creation = True
max_active_runs_per_dag = 50
load_examples = False
load_default_connections = True
plugins_folder = /home/airflow/plugins
fernet_key = M4dpP6f2Hd5p3N--CxtIoUo9XaSDifA42MPLs1UR7-g=
donot_pickle = False
dagbag_import_timeout = 41460
dag_file_processor_timeout = 60
task_runner = StandardTaskRunner
default_impersonation =
security =
secure_mode = False
unit_test_mode = False
enable_xcom_pickling = True
killed_task_cleanup_time = 60
dag_run_conf_overrides_params = False
worker_precheck = False
dag_discovery_safe_mode = True
default_task_retries = 0
store_serialized_dags = False
min_serialized_dag_update_interval = 30
max_num_rendered_ti_fields_per_task = 100
# On each dagrun check against defined SLAs
check_slas = True
[secrets]
# Full class name of secrets backend to enable (will precede env vars and metastore in search path)
# Example: backend = airflow.contrib.secrets.aws_systems_manager.SystemsManagerParameterStoreBackend
backend =
# The backend_kwargs param is loaded into a dictionary and passed to __init__ of secrets backend class.
# See documentation for the secrets backend you are using. JSON is expected.
# Example for AWS Systems Manager ParameterStore:
# ``{"connections_prefix": "/airflow/connections", "profile_name": "default"}``
backend_kwargs =
[cli]
# In what way should the cli access the API. The LocalClient will use the
# database directly, while the json_client will use the api running on the
# webserver
api_client = airflow.api.client.local_client
# If you set web_server_url_prefix, do NOT forget to append it here, ex:
# ``endpoint_url = http://localhost:8080/myroot``
# So api will look like: ``http://localhost:8080/myroot/api/experimental/...``
endpoint_url = http://localhost:8080
[debug]
# Used only with DebugExecutor. If set to True DAG will fail with first
# failed task. Helpful for debugging purposes.
fail_fast = False
[api]
# How to authenticate users of the API. See
# https://airflow.apache.org/docs/stable/security.html for possible values.
# ("airflow.api.auth.backend.default" allows all requests for historic reasons)
auth_backend = airflow.api.auth.backend.deny_all
[lineage]
# what lineage backend to use
backend =
[atlas]
sasl_enabled = False
host =
port = 21000
username =
password =
[operators]
# The default owner assigned to each new operator, unless
# provided explicitly or passed via ``default_args``
default_owner = airflow
default_cpus = 1
default_ram = 1024
default_disk = 1024
default_gpus = 0
[hive]
# Default mapreduce queue for HiveOperator tasks
default_hive_mapred_queue =
[webserver]
# The base url of your website as airflow cannot guess what domain or
# cname you are using. This is used in automated emails that
# airflow sends to point links to the right web server
base_url = http://localhost:8080
# Default timezone to display all dates in the RBAC UI, can be UTC, system, or
# any IANA timezone string (e.g. Europe/Amsterdam). If left empty the
# default value of core/default_timezone will be used
# Example: default_ui_timezone = America/New_York
default_ui_timezone = UTC
# The ip specified when starting the web server
web_server_host = 0.0.0.0
# The port on which to run the web server
web_server_port = 8080
# Paths to the SSL certificate and key for the web server. When both are
# provided SSL will be enabled. This does not change the web server port.
web_server_ssl_cert =
# Paths to the SSL certificate and key for the web server. When both are
# provided SSL will be enabled. This does not change the web server port.
web_server_ssl_key =
# Number of seconds the webserver waits before killing gunicorn master that doesn't respond
web_server_master_timeout = 41460
# Number of seconds the gunicorn webserver waits before timing out on a worker
web_server_worker_timeout = 41460
# Number of workers to refresh at a time. When set to 0, worker refresh is
# disabled. When nonzero, airflow periodically refreshes webserver workers by
# bringing up new ones and killing old ones.
worker_refresh_batch_size = 1
# Number of seconds to wait before refreshing a batch of workers.
worker_refresh_interval = 30
# If set to True, Airflow will track files in plugins_folder directory. When it detects changes,
# then reload the gunicorn.
reload_on_plugin_change = False
# Secret key used to run your flask app
# It should be as random as possible
secret_key = temporary_key
# Number of workers to run the Gunicorn web server
workers = 4
# The worker class gunicorn should use. Choices include
# sync (default), eventlet, gevent
worker_class = sync
# Log files for the gunicorn webserver. '-' means log to stderr.
access_logfile = -
# Log files for the gunicorn webserver. '-' means log to stderr.
error_logfile = -
# Expose the configuration file in the web server
expose_config = True
# Expose hostname in the web server
expose_hostname = True
# Expose stacktrace in the web server
expose_stacktrace = True
# Set to true to turn on authentication:
# https://airflow.apache.org/security.html#web-authentication
authenticate = False
# Filter the list of dags by owner name (requires authentication to be enabled)
filter_by_owner = False
# Filtering mode. Choices include user (default) and ldapgroup.
# Ldap group filtering requires using the ldap backend
#
# Note that the ldap server needs the "memberOf" overlay to be set up
# in order to user the ldapgroup mode.
owner_mode = user
# Default DAG view. Valid values are:
# tree, graph, duration, gantt, landing_times
dag_default_view = tree
# "Default DAG orientation. Valid values are:"
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
dag_orientation = LR
# Puts the webserver in demonstration mode; blurs the names of Operators for
# privacy.
demo_mode = False
# The amount of time (in secs) webserver will wait for initial handshake
# while fetching logs from other worker machine
log_fetch_timeout_sec = 5
# Time interval (in secs) to wait before next log fetching.
log_fetch_delay_sec = 2
# Distance away from page bottom to enable auto tailing.
log_auto_tailing_offset = 30
# Animation speed for auto tailing log display.
log_animation_speed = 1000
# By default, the webserver shows paused DAGs. Flip this to hide paused
# DAGs by default
hide_paused_dags_by_default = False
# Consistent page size across all listing views in the UI
page_size = 100
# Use FAB-based webserver with RBAC feature
rbac = False
# Define the color of navigation bar
navbar_color = #007A87
# Default dagrun to show in UI
default_dag_run_display_number = 25
# Enable werkzeug ``ProxyFix`` middleware for reverse proxy
enable_proxy_fix = False
# Number of values to trust for ``X-Forwarded-For``.
# More info: https://werkzeug.palletsprojects.com/en/0.16.x/middleware/proxy_fix/
proxy_fix_x_for = 1
# Number of values to trust for ``X-Forwarded-Proto``
proxy_fix_x_proto = 1
# Number of values to trust for ``X-Forwarded-Host``
proxy_fix_x_host = 1
# Number of values to trust for ``X-Forwarded-Port``
proxy_fix_x_port = 1
# Number of values to trust for ``X-Forwarded-Prefix``
proxy_fix_x_prefix = 1
# Set secure flag on session cookie
cookie_secure = False
# Set samesite policy on session cookie
cookie_samesite =
# Default setting for wrap toggle on DAG code and TI log views.
default_wrap = False
# Allow the UI to be rendered in a frame
x_frame_enabled = True
# Send anonymous user activity to your analytics tool
# choose from google_analytics, segment, or metarouter
# analytics_tool =
# Unique ID of your account in the analytics tool
# analytics_id =
# Update FAB permissions and sync security manager roles
# on webserver startup
update_fab_perms = True
# Minutes of non-activity before logged out from UI
# 0 means never get forcibly logged out
force_log_out_after = 0
# The UI cookie lifetime in days
session_lifetime_days = 30
[email]
email_backend = airflow.utils.email.send_email_smtp
[smtp]
# If you want airflow to send emails on retries, failure, and you want to use
# the airflow.utils.email.send_email_smtp function, you have to configure an
# smtp server here
#smtp_host = localhost
# SMTP Address
# 192.168.152.213
# SMTP Port
# 25
# User Name
# etf#csopasset.com
smtp_host = *.*.*.*
smtp_starttls = True
smtp_ssl = False
# smtp_user = etf#csopasset.com
# smtp_password = etfGen2013
smtp_port = 25
smtp_mail_from = etf#***.com
[sentry]
# Sentry (https://docs.sentry.io) integration
sentry_dsn =
[celery]
# This section only applies if you are using the CeleryExecutor in
# ``[core]`` section above
# The app name that will be used by celery
celery_app_name = airflow.executors.celery_executor
# The concurrency that will be used when starting workers with the
# ``airflow celery worker`` command. This defines the number of task instances that
# a worker will take, so size up your workers based on the resources on
# your worker box and the nature of your tasks
worker_concurrency = 50
# The maximum and minimum concurrency that will be used when starting workers with the
# ``airflow celery worker`` command (always keep minimum processes, but grow
# to maximum if necessary). Note the value should be max_concurrency,min_concurrency
# Pick these numbers based on resources on worker box and the nature of the task.
# If autoscale option is available, worker_concurrency will be ignored.
# http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#cmdoption-celery-worker-autoscale
# Example: worker_autoscale = 16,12
# worker_autoscale =
# When you start an airflow worker, airflow starts a tiny web server
# subprocess to serve the workers local log files to the airflow main
# web server, who then builds pages and sends them to users. This defines
# the port on which the logs are served. It needs to be unused, and open
# visible from the main web server to connect into the workers.
worker_log_server_port = 8793
# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#broker-settings
#roker_url = sqla+mysql://airflow:airflow#localhost:3306/airflow
broker_url = amqp://guest:guest#localhost:5672//
# The Celery result_backend. When a job finishes, it needs to update the
# metadata of the job. Therefore it will post a message on a message bus,
# or insert it into a database (depending of the backend)
# This status is used by the scheduler to update the state of the task
# The use of a database is highly recommended
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings
#result_backend = db+mysql://airflow:airflow#localhost:3306/airflow
result_backend = db+postgresql+psycopg2://devairflow:airflow#localhost:5432/pcfdb
# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it ``airflow flower``. This defines the IP that Celery Flower runs on
flower_host = 0.0.0.0
# The root URL for Flower
# Example: flower_url_prefix = /flower
flower_url_prefix =
# This defines the port that Celery Flower runs on
flower_port = 5555
# Securing Flower with Basic Authentication
# Accepts user:password pairs separated by a comma
# Example: flower_basic_auth = user1:password1,user2:password2
flower_basic_auth =
# Default queue that tasks get assigned to and that worker listen on.
default_queue = default
# How many processes CeleryExecutor uses to sync task state.
# 0 means to use max(1, number of cores - 1) processes.
sync_parallelism = 0
# Import path for celery configuration options
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
# In case of using SSL
ssl_active = False
ssl_key =
ssl_cert =
ssl_cacert =
# Celery Pool implementation.
# Choices include: prefork (default), eventlet, gevent or solo.
# See:
# https://docs.celeryproject.org/en/latest/userguide/workers.html#concurrency
# https://docs.celeryproject.org/en/latest/userguide/concurrency/eventlet.html
pool = prefork
# The number of seconds to wait before timing out ``send_task_to_executor`` or
# ``fetch_celery_task_state`` operations.
operation_timeout = 50
[celery_broker_transport_options]
# This section is for specifying options which can be passed to the
# underlying celery broker transport. See:
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options
# The visibility timeout defines the number of seconds to wait for the worker
# to acknowledge the task before the message is redelivered to another worker.
# Make sure to increase the visibility timeout to match the time of the longest
# ETA you're planning to use.
# visibility_timeout is only supported for Redis and SQS celery brokers.
# See:
# http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options
# Example: visibility_timeout = 21600
# visibility_timeout =
[dask]
# This section only applies if you are using the DaskExecutor in
# [core] section above
# The IP address and port of the Dask cluster's scheduler.
cluster_address = 127.0.0.1:8786
# TLS/ SSL settings to access a secured Dask scheduler.
tls_ca =
tls_cert =
tls_key =
[scheduler]
# Task instances listen for external kill signal (when you clear tasks
# from the CLI or the UI), this defines the frequency at which they should
# listen (in seconds).
job_heartbeat_sec = 5
# The scheduler constantly tries to trigger new tasks (look at the
# scheduler section in the docs for more information). This defines
# how often the scheduler should run (in seconds).
scheduler_heartbeat_sec = 5
# After how much time should the scheduler terminate in seconds
# -1 indicates to run continuously (see also num_runs)
run_duration = -1
# The number of times to try to schedule each DAG file
# -1 indicates unlimited number
num_runs = -1
# The number of seconds to wait between consecutive DAG file processing
processor_poll_interval = 1
# after how much time (seconds) a new DAGs should be picked up from the filesystem
min_file_process_interval = 0
# How often (in seconds) to scan the DAGs directory for new files. Default to 5 minutes.
dag_dir_list_interval = 300
# How often should stats be printed to the logs. Setting to 0 will disable printing stats
print_stats_interval = 30
# If the last scheduler heartbeat happened more than scheduler_health_check_threshold
# ago (in seconds), scheduler is considered unhealthy.
# This is used by the health check in the "/health" endpoint
scheduler_health_check_threshold = 30
child_process_log_directory = /home/airflow/logs/scheduler
# Local task jobs periodically heartbeat to the DB. If the job has
# not heartbeat in this many seconds, the scheduler will mark the
# associated task instance as failed and will re-schedule the task.
scheduler_zombie_task_threshold = 1800
# Turn off scheduler catchup by setting this to False.
# Default behavior is unchanged and
# Command Line Backfills still work, but the scheduler
# will not do scheduler catchup if this is False,
# however it can be set on a per DAG basis in the
# DAG definition (catchup)
catchup_by_default = True
# This changes the batch size of queries in the scheduling main loop.
# If this is too high, SQL query performance may be impacted by one
# or more of the following:
# - reversion to full table scan
# - complexity of query predicate
# - excessive locking
# Additionally, you may hit the maximum allowable query length for your db.
# Set this to 0 for no limit (not advised)
max_tis_per_query = 512
# Statsd (https://github.com/etsy/statsd) integration settings
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow
# If you want to avoid send all the available metrics to StatsD,
# you can configure an allow list of prefixes to send only the metrics that
# start with the elements of the list (e.g: scheduler,executor,dagrun)
statsd_allow_list =
# The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
max_threads = 2
authenticate = False
# Turn off scheduler use of cron intervals by setting this to False.
# DAGs submitted manually in the web UI or with trigger_dag will still run.
use_job_schedule = True
# Allow externally triggered DagRuns for Execution Dates in the future
# Only has effect if schedule_interval is set to None in DAG
allow_trigger_in_future = False
[ldap]
# set this to ldaps://<your.ldap.server>:<port>
uri =
user_filter = objectClass=*
user_name_attr = uid
group_member_attr = memberOf
superuser_filter =
data_profiler_filter =
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
search_scope = LEVEL
# This setting allows the use of LDAP servers that either return a
# broken schema, or do not return a schema.
ignore_malformed_schema = False
[mesos]
# Mesos master address which MesosExecutor will connect to.
master = localhost:5050
# The framework name which Airflow scheduler will register itself as on mesos
framework_name = Airflow
# Number of cpu cores required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_cpu = 1
# Memory in MB required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_memory = 256
# Enable framework checkpointing for mesos
# See http://mesos.apache.org/documentation/latest/slave-recovery/
checkpoint = False
# Failover timeout in milliseconds.
# When checkpointing is enabled and this option is set, Mesos waits
# until the configured timeout for
# the MesosExecutor framework to re-register after a failover. Mesos
# shuts down running tasks if the
# MesosExecutor framework fails to re-register within this timeframe.
# Example: failover_timeout = 604800
# failover_timeout =
# Enable framework authentication for mesos
# See http://mesos.apache.org/documentation/latest/configuration/
authenticate = False
# Mesos credentials, if authentication is enabled
# Example: default_principal = admin
# default_principal =
# Example: default_secret = admin
# default_secret =
# Optional Docker Image to run on slave before running the command
# This image should be accessible from mesos slave i.e mesos slave
# should be able to pull this docker image before executing the command.
# Example: docker_image_slave = puckel/docker-airflow
# docker_image_slave =
[kerberos]
ccache = /tmp/airflow_krb5_ccache
# gets augmented with fqdn
principal = airflow
reinit_frequency = 3600
kinit_path = kinit
keytab = airflow.keytab
[github_enterprise]
api_rev = v3
[admin]
# UI to hide sensitive variable fields when set to True
hide_sensitive_variable_fields = True
[elasticsearch]
# Elasticsearch host
host =
# Format of the log_id, which is used to query for a given tasks logs
log_id_template = {dag_id}-{task_id}-{execution_date}-{try_number}
# Used to mark the end of a log stream for a task
end_of_log_mark = end_of_log
# Qualified URL for an elasticsearch frontend (like Kibana) with a template argument for log_id
# Code will construct log_id using the log_id template from the argument above.
# NOTE: The code will prefix the https:// automatically, don't include that here.
frontend =
# Write the task logs to the stdout of the worker, rather than the default files
write_stdout = False
# Instead of the default log formatter, write the log lines as JSON
json_format = False
# Log fields to also attach to the json output, if enabled
json_fields = asctime, filename, lineno, levelname, message
[elasticsearch_configs]
use_ssl = False
verify_certs = True
Below are the Worker logs:
Worker logs File
Related
I have a problem logging into a file using python built-in module.
Here is an example of how logs are generated:
logging.info('a log message')
Logging works fine when running the app directly through Python. However when running the app through uWSGI, logging does not work.
Here is my uWSGI configuration:
[uwsgi]
module = myapp.app:application
master = true
processes = 5
uid = nginx
socket = /run/uwsgi/myapp.sock
chown-socket = nginx:nginx
chmod-socket = 660
vacuum = true
die-on-term = true
logto = /var/log/myapp/myapp.log
logfile-chown = nginx:nginx
logfile-chmod = 640
EDIT:
The path /var/log/myapp/myapp.log is logging nginx access logs. There is another path configured in a settings.py file. The 2nd path is where application logs are ment to go. But there are non when using uWSGI.
Thanks in advance
I am not able to enable remote logging to AWS S3 after moving loggin setup from [core] to [logging] section?
This is what I moved:
[logging]
# The folder where airflow should store its log files
# This path must be absolute
base_log_folder = /usr/local/airflow/logs
# Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
# Users must supply an Airflow connection id that provides access to the storage
# location. If remote_logging is set to true, see UPDATING.md for additional
# configuration requirements.
remote_logging = True
remote_log_conn_id = MyS3Conn
remote_base_log_folder = s3://bucket/tst/
encrypt_s3_logs = False
# Logging level
logging_level = INFO
fab_logging_level = WARN
# Logging class
# Specify the class that will specify the logging configuration
# This class has to be on the python classpath
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
logging_config_class =
# Log format
# we need to escape the curly braces by adding an additional curly brace
log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
# Log filename format
# we need to escape the curly braces by adding an additional curly brace
log_filename_template = {{ ti.dag_id }}/{{ ti.task_id }}/{{ ts }}/{{ try_number }}.log
log_processor_filename_template = {{ filename }}.log
# Name of handler to read task instance logs.
# Default to use task handler.
task_log_reader = task
I just move the properties.
airflow upgrade_check returns that Logging configuration has been moved to new section check is okei.
I have apache-airflow[crypto,postgres,ssh,s3,log]==1.10.15, when all the properties that are now under logging were in core remote logging was working fine.
I do not find any information regarding how to setup it. I only found this but it only says that the following configurations have been moved from [core] to the new [logging] section.
You should continue use [core] for logging in 1.10.15, only when you update to Airflow >= 2.0.0, you should use [logging] section.
The upgrade_check command says it has been moved to [logging] section in >=2.0.0. It will keep working just raise a deprecation warning.
I want to host Elasticsearch and Enterprise Search on an AWS server. How exactly do I have to configure the .yml files so that it's working? Do I have to do anything different at all? The documentation is not clear about that.
Edit:
Maybe it's helpful, to show you the current configuration:
For elasticsearch.yml:
# ======================== Elasticsearch Configuration =========================
#
# NOTE: Elasticsearch comes with reasonable defaults for most settings.
# Before you set out to tweak and tune the configuration, make sure you
# understand what are you trying to accomplish and the consequences.
#
# The primary way of configuring a node is via this file. This template lists
# the most important settings you may want to configure for a production cluster.
#
# Please consult the documentation for further information on configuration options:
# https://www.elastic.co/guide/en/elasticsearch/reference/index.html
#
# ---------------------------------- Cluster -----------------------------------
#
# Use a descriptive name for your cluster:
#
#cluster.name: my-application
#
# ------------------------------------ Node ------------------------------------
#
# Use a descriptive name for the node:
#
#node.name: node-1
#
# Add custom attributes to the node:
#
#node.attr.rack: r1
#
# ----------------------------------- Paths ------------------------------------
#
# Path to directory where to store the data (separate multiple locations by comma):
#
#path.data: /path/to/data
#
# Path to log files:
#
#path.logs: /path/to/logs
#
# ----------------------------------- Memory -----------------------------------
#
# Lock the memory on startup:
#
#bootstrap.memory_lock: true
#
# Make sure that the heap size is set to about half the memory available
# on the system and that the owner of the process is allowed to use this
# limit.
#
# Elasticsearch performs poorly when the system is swapping the memory.
#
# ---------------------------------- Network -----------------------------------
#
# Set the bind address to a specific IP (IPv4 or IPv6):
#
#network.host: 192.168.0.1
#
# Set a custom port for HTTP:
#
#http.port: 9200
#
# For more information, consult the network module documentation.
#
# --------------------------------- Discovery ----------------------------------
#
# Pass an initial list of hosts to perform discovery when this node is started:
# The default list of hosts is ["127.0.0.1", "[::1]"]
#
#discovery.seed_hosts: ["host1", "host2"]
#
# Bootstrap the cluster using an initial set of master-eligible nodes:
#
#cluster.initial_master_nodes: ["node-1", "node-2"]
#
# For more information, consult the discovery and cluster formation module documentation.
#
# ---------------------------------- Gateway -----------------------------------
#
# Block initial recovery after a full cluster restart until N nodes are started:
#
#gateway.recover_after_nodes: 3
#
# For more information, consult the gateway module documentation.
#
# ---------------------------------- Various -----------------------------------
#
# Require explicit names when deleting indices:
#
#action.destructive_requires_name: true
#
xpack.security.enabled: true
discovery.type: single-node
cluster.routing.allocation.disk.threshold_enabled: true
cluster.routing.allocation.disk.watermark.flood_stage: 200mb
cluster.routing.allocation.disk.watermark.low: 500mb
cluster.routing.allocation.disk.watermark.high: 300mb
xpack.security.authc.api_key.enabled: true
And for enterprise-search.yml:
## ================= Elastic Enterprise Search Configuration ==================
#
# NOTE: Elastic Enterprise Search comes with reasonable defaults.
# Before adjusting the configuration, make sure you understand what you
# are trying to accomplish and the consequences.
#
# NOTE: For passwords, the use of environment variables is encouraged
# to keep values from being written to disk, e.g.
# elasticsearch.password: ${ELASTICSEARCH_PASSWORD:changeme}
#
# ---------------------------------- Secrets ----------------------------------
#
# Encryption keys to protect your application secrets. This field is required.
#
secret_management.encryption_keys: [5322b64cf4260f9d94751a471e5921829f3b83cda9fcc9999346671c590430eb]
#
# ------------------------------- Elasticsearch -------------------------------
#
# Enterprise Search needs one-time permission to alter Elasticsearch settings.
# Ensure the Elasticsearch settings are correct, then set the following to
# true. Or, adjust Elasticsearch's config/elasticsearch.yml instead.
# See README.md for more details.
#
allow_es_settings_modification: true
#
# Elasticsearch full cluster URL:
#
#elasticsearch.host: http://127.0.0.1:9200
#
# Elasticsearch credentials:
#
elasticsearch.username: elastic
elasticsearch.password: 5gJDLZPSnl1ut8OrtUla
#
# Elasticsearch custom HTTP headers to add to each request:
#
#elasticsearch.headers:
# X-My-Header: Contents of the header
#
# Elasticsearch SSL settings:
#
#elasticsearch.ssl.enabled: false
#elasticsearch.ssl.certificate:
#elasticsearch.ssl.certificate_authority:
#elasticsearch.ssl.key:
#elasticsearch.ssl.key_passphrase:
#elasticsearch.ssl.verify: true
#
# Elasticsearch startup retry:
#
#elasticsearch.startup_retry.enabled: true
#elasticsearch.startup_retry.interval: 5 # seconds
#elasticsearch.startup_retry.fail_after: 200 # seconds
#
# ------------------------------- Hosting & Network ---------------------------
#
# Define the exposed URL at which users will reach Enterprise Search.
# Defaults to localhost:3002 for testing purposes.
# Most cases will use one of:
#
# * An IP: http://255.255.255.255
# * A FQDN: http://example.com
# * Shortname defined via /etc/hosts: http://ent-search.search
#
#ent_search.external_url: http://localhost:3002
#
# Web application listen_host and listen_port.
# Your application will run on this host and port.
#
# * ent_search.listen_host: Must be a valid IPv4 or IPv6 address.
# * ent_search.listen_port: Must be a valid port number (1-65535).
#
#ent_search.listen_host: 127.0.0.1
#ent_search.listen_port: 3002
#
# ------------------------------ Authentication -------------------------------
#
# The origin of authenticated Enterprise Search users.
# Options are standard, elasticsearch-native, and elasticsearch-saml.
#
# Docs: https://www.elastic.co/guide/en/workplace-search/current/workplace-search-security.html
#
# * standard: Users are created within the Enterprise Search dashboard.
# * elasticsearch-native: Users are managed via the Elasticsearch native realm.
# * elasticsearch-saml: Users are managed via the Elasticsearch SAML realm.
#
ent_search.auth.source: standard
#
# (SAML only) Name of the realm within the Elasticsearch realm chain.
#
#ent_search.auth.name:
#
# ---------------------------------- Limits -----------------------------------
#
# Configurable limits for Enterprise Search.
# NOTE: Overriding the default limits can impact performance negatively.
# Also, changing a limit here does not actually guarantee that
# Enterprise Search will work as expected as related Elasticsearch limits
# can be exceeded.
#
#### Workplace Search
#
# Configure the maximum allowed document size for Custom API Sources.
#
#workplace_search.custom_api_source.document_size.limit: 100kb
#
# Configure how many fields a Custom API Source can have.
# NOTE: The Elasticsearch/Lucene setting `indices.query.bool.max_clause_count`
# might also need to be adjusted if "Max clause count exceeded" errors start
# occurring. See more here: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-settings.html
#
#workplace_search.custom_api_source.total_fields.limit: 64
#
#### App Search
#
# Configure the maximum allowed document size.
#
#app_search.engine.document_size.limit: 100kb
#
# Configure how many fields an engine can have.
# NOTE: The Elasticsearch/Lucene setting `indices.query.bool.max_clause_count`
# might also need to be adjusted if "Max clause count exceeded" errors start
# occurring. See more here: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-settings.html
#
#app_search.engine.total_fields.limit: 64
#
# Configure how many source engines a meta engine can have.
#
#app_search.engine.source_engines_per_meta_engine.limit: 15
#
# Configure how many facet values can be returned by a search.
#
#app_search.engine.total_facet_values_returned.limit: 250
#
# Configure how big full-text queries are allowed.
# NOTE: The Elasticsearch/Lucene setting `indices.query.bool.max_clause_count`
# might also need to be adjusted if "Max clause count exceeded" errors start
# occurring. See more here: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-settings.html
#
#app_search.engine.query.limit: 128
#
# Configure total number of synonym sets an engine can have.
#
#app_search.engine.synonyms.sets.limit: 256
#
# Configure total number of terms a synonym set can have.
#
#app_search.engine.synonyms.terms_per_set.limit: 32
#
# Configure how many analytics tags can be associated with a single query or clickthrough.
#
#app_search.engine.analytics.total_tags.limit: 16
#
# ---------------------------------- Workers ----------------------------------
#
# Configure the number of worker threads.
#
#worker.threads: 4
#
# ----------------------------------- APIs ------------------------------------
#
# Set to true hide product version information from API responses.
#
#hide_version_info: false
#
# ---------------------------------- Mailer -----------------------------------
#
# Connect Enterprise Search to a mailer.
# Docs: https://www.elastic.co/guide/en/workplace-search/current/workplace-search-smtp-mailer.html
#
#email.account.enabled: false
#email.account.smtp.auth: plain
#email.account.smtp.starttls.enable: false
#email.account.smtp.host: 127.0.0.1
#email.account.smtp.port: 25
#email.account.smtp.user:
#email.account.smtp.password:
#email.account.email_defaults.from:
#
# ---------------------------------- Logging ----------------------------------
#
# Choose your log export path.
#
#log_directory: log
#
# Log level can be: debug, info, warn, error, fatal, or unknown.
#
#log_level: info
#
# Log format can be: default, json
#
#log_format: default
#
# Choose your Filebeat logs export path.
#
#filebeat_log_directory: log
#
# Enable logging app logs to stdout (enabled by default).
#
#enable_stdout_app_logging: true
#
# The number of files to keep on disk when rotating logs. When set to 0, no
# rotation will take place.
#
#log_rotation.keep_files: 7
#
# The maximum file size in bytes before rotating the log file. If
# log_rotation.keep_files is set to 0, no rotation will take place and there
# will be no size limit for the singular log file.
#
#log_rotation.rotate_every_bytes: 1048576 # 1 MiB
#
# ---------------------------------- TLS/SSL ----------------------------------
#
# Configure TLS/SSL encryption.
#
#ent_search.ssl.enabled: false
#ent_search.ssl.keystore.path:
#ent_search.ssl.keystore.password:
#ent_search.ssl.keystore.key_password:
#ent_search.ssl.redirect_http_from_port:
#
# ---------------------------------- Session ----------------------------------
#
# Set a session key to persist user sessions through process restarts.
#
#secret_session_key:
#
# --------------------------------- Telemetry ---------------------------------
#
# Reporting your basic feature usage statistics helps us improve your user
# experience. Your data is never shared with anyone.
#
# Set to false to disable telemetry capabilities entirely. You can alternatively
# opt out through the Settings page.
#
#telemetry.enabled: true
#
# If false, collection of telemetry data is disabled; however, it can be
# enabled via the Settings page if telemetry.allow_changing_opt_in_status is
# true.
#
#telemetry.opt_in: true
#
# If true, users are able to change the telemetry setting at a later time
# through the Settings page. If false, the value of telemetry.opt_in determines
# whether to send telemetry data or not.
#
#telemetry.allow_changing_opt_in_status: true
#
# ----------------------------- Diagnostics report ----------------------------
#
# Path where diagnostic reports will be generated.
#
#diagnostic_report_directory: diagnostics
#
AWS has its own version
See this https://aws.amazon.com/elasticsearch-service/
I am currently trying to use tinymce-rails-imageupload to upload images into tinymce. I am able to get this working 100% in development, however as soon as I deploy this using heroku it breaks. Inspecting the logs I get
ActionController::RoutingError (No route matches [GET] "/assets/tinymce/plugins/uploadimage/plugin.js"):
When I investigate further using heroku run bash I find the following:
~/public/assets/tinymce/plugins/uploadimage $ ls
langs plugin-74a8687262c8f0c4968dada326bb655886fe560f78b0083f59437770fb5a658c.js
I am not sure if it is perhaps the fingerprint that is causing problems?
my production.rb is
Rails.application.configure do
# Settings specified here will take precedence over those in config/application.rb.
# Code is not reloaded between requests.
config.cache_classes = true
# Eager load code on boot. This eager loads most of Rails and
# your application in memory, allowing both threaded web servers
# and those relying on copy on write to perform better.
# Rake tasks automatically ignore this option for performance.
config.eager_load = true
# Full error reports are disabled and caching is turned on.
config.consider_all_requests_local = false
config.action_controller.perform_caching = true
# Enable Rack::Cache to put a simple HTTP cache in front of your application
# Add `rack-cache` to your Gemfile before enabling this.
# For large-scale production use, consider using a caching reverse proxy like
# NGINX, varnish or squid.
# config.action_dispatch.rack_cache = true
# Disable serving static files from the `/public` folder by default since
# Apache or NGINX already handles this.
config.serve_static_files = ENV['RAILS_SERVE_STATIC_FILES'].present?
# Compress JavaScripts and CSS.
config.assets.js_compressor = :uglifier
# config.assets.css_compressor = :sass
# Do not fallback to assets pipeline if a precompiled asset is missed.
config.assets.compile = false
# Asset digests allow you to set far-future HTTP expiration dates on all assets,
# yet still be able to expire them through the digest params.
config.assets.digest = true
# `config.assets.precompile` and `config.assets.version` have moved to config/initializers/assets.rb
# Specifies the header that your server uses for sending files.
# config.action_dispatch.x_sendfile_header = 'X-Sendfile' # for Apache
# config.action_dispatch.x_sendfile_header = 'X-Accel-Redirect' # for NGINX
# Force all access to the app over SSL, use Strict-Transport-Security, and use secure cookies.
# config.force_ssl = true
# Use the lowest log level to ensure availability of diagnostic information
# when problems arise.
config.log_level = :debug
# Prepend all log lines with the following tags.
# config.log_tags = [ :subdomain, :uuid ]
# Use a different logger for distributed setups.
# config.logger = ActiveSupport::TaggedLogging.new(SyslogLogger.new)
# Use a different cache store in production.
# config.cache_store = :mem_cache_store
# Enable serving of images, stylesheets, and JavaScripts from an asset server.
# config.action_controller.asset_host = 'http://assets.example.com'
# Ignore bad email addresses and do not raise email delivery errors.
# Set this to true and configure the email server for immediate delivery to raise delivery errors.
# config.action_mailer.raise_delivery_errors = false
# Enable locale fallbacks for I18n (makes lookups for any locale fall back to
# the I18n.default_locale when a translation cannot be found).
config.i18n.fallbacks = true
# Send deprecation notices to registered listeners.
config.active_support.deprecation = :notify
# Use default logging formatter so that PID and timestamp are not suppressed.
config.log_formatter = ::Logger::Formatter.new
# Do not dump schema after migrations.
config.active_record.dump_schema_after_migration = false
end
I have also seen this same problem but the fix of adding
Rails.application.config.assets.paths << Rails.root.join('app', 'assets', 'fonts')
Rails.application.config.assets.precompile += %w( tinymce/plugins/uploadimage/plugin.js tinymce/plugins/uploadimage/langs/en.js )
Did not seem to work.
Help would be greatly appreciated I have been stuck on this for days.
In production.rb row should be config.cache_classes = false
I've set up django-sphinx in my project, which works perfectly only for some time. Later it always returns empty result set. Surprisingly restarting django app fixes it. And search works again but again only for short time (or very limiter number of queries). Heres my sphinx.conf:
source src_questions
{
# data source
type = mysql
sql_host = xxxxxx
sql_user = xxxxxx #replace with your db username
sql_pass = xxxxxx #replace with your db password
sql_db = xxxxxx #replace with your db name
# these two are optional
sql_port = xxxxxx
#sql_sock = /var/lib/mysql/mysql.sock
# pre-query, executed before the main fetch query
sql_query_pre = SET NAMES utf8
# main document fetch query
sql_query = SELECT q.id AS id, q.title AS title, q.tagnames AS tags, q.html AS text, q.level AS level \
FROM question AS q \
WHERE q.deleted=0 \
# optional - used by command-line search utility to display document information
sql_query_info = SELECT title, id, level FROM question WHERE id=$id
sql_attr_uint = level
}
index questions {
# which document source to index
source = src_questions
# this is path and index file name without extension
# you may need to change this path or create this folder
path = /home/rafal/index/index_questions
# docinfo (ie. per-document attribute values) storage strategy
docinfo = extern
# morphology
morphology = stem_en
# stopwords file
#stopwords = /var/data/sphinx/stopwords.txt
# minimum word length
min_word_len = 3
# uncomment next 2 lines to allow wildcard (*) searches
min_infix_len = 1
enable_star = 1
# charset encoding type
charset_type = utf-8
}
# indexer settings
indexer
{
# memory limit (default is 32M)
mem_limit = 64M
}
# searchd settings
searchd
{
# IP address on which search daemon will bind and accept
# optional, default is to listen on all addresses,
# ie. address = 0.0.0.0
address = 127.0.0.1
# port on which search daemon will listen
port = 3312
# searchd run info is logged here - create or change the folder
log = ../log/sphinx.log
# all the search queries are logged here
query_log = ../log/query.log
# client read timeout, seconds
read_timeout = 5
# maximum amount of children to fork
max_children = 30
# a file which will contain searchd process ID
pid_file = searchd.pid
# maximum amount of matches this daemon would ever retrieve
# from each index and serve to client
max_matches = 1000
}
and heres my search part from views.py:
content = Question.search.query(keywords)
if level:
content = content.filter(level=level)#level is array of integers
There are no errors in any logs, it just isnt returning any results. I have set 'indexer --rotate --all' to be run every 5 mins in cron, and searchd is up and running all time.
All help would be most appreciated.
What's the version of sphinx? django-sphinx? sphinxsearch api? python?
Anyway, try to remove the indexer from the cron & see if this problem persists. Let me know how this goes.