Intersection of a ray with a segment in 3d - c++

Ray and segment of polygon lie in the same plane. The normal vector of this plane is known. I need to know if a ray intersects this segment

Choose the largest component of plane normal and make projection onto corresponding plane OXY, OXZ or OYZ (in general we can use any non-zero component)
Say Z-component is the largest, so make projection onto OXY plane. This projection is very simple - just use X and Y components. You have rather simple 2d problem now. (Example for line segments intersection).

Related

Rotating plane such that it has a certain normal vector

I've got the following problem:
In 3D there's a vector from fixed the center of a plane to the origin. This plane has arbitrary coordinates around this center thus its normal vector is not necessarily the mentioned vector. Therefore I have to rotate the plane around this fixed center such that the mentioned vector is the plane's normal vector.
My first idea was to compute the angle between the vector and the normal vector, but the problem then is how to rotate the plane.
Any ideas?
A plane is a mathematical entity which satisfies the following equation:
Where n is the normal, and a is any point on the plane (in this case the center point as above). It makes no sense to "rotate" this equation - if you want the plane to face a certain direction, just make the normal equal to that direction (i.e. the "mentioned" vector).
You later mentioned in the comments that the "plane" is an OpenGL quad, in which case you can use Quaternions to compute the rotation.
This Stackoverflow post tells you how to compute the rotation quaternion from your current normal vector to the "mentioned" vector. This site tells you how to convert a quaternion into a rotation matrix (whose dimensions are 3x3).
Let's suppose the center point is called q, and that the rotation matrix you obtain has the following form:
This can only rotate geometry about the origin. A rotation about a general point requires a 4x4 matrix (what OpenGL uses), which can be constructed as follows:

Transforming point cloud coordinates

I am required to shift the origin to the vertex of a plane obtained after segmentation using pcl. I am aware of the pcl function getTransformationFromTwoUnitVectorsAndOrigin which gives the transformation matrix.
But I am not sure how to calculate the unit vector of the planes edges.
I able to get the plane from the point cloud. But not the line equation or unit vector of the edges. I tried to find the planes intersection on the x-z and y-z plane but using that I cannot find the vertex of the plane obtained. That's my major issue. I need the vertex of the plane to fix my origin using the gettransformationFromTwoUnitVectorsAndOrigin.
Any suggestion on how to find the unit vectors along the plane's edges and their intersection point (for placing the origin) will be helpful. Thank you.

Convert a bounding box in ECEF coordinates to ENU coordinates

I have a geometry with its vertices in cartesian coordinates. These cartesian coordinates are the ECEF(Earth centred earth fixed) coordinates. This geometry is actually present on an ellipsoidal model of the earth using wgs84 corrdinates.The cartesian coordinates were actually obtained by converting the set of latitudes and longitudes along which the geomtries lie but i no longer have access to them. What i have is an axis aligned bounding box with xmax, ymax, zmax and xmin,ymin,zmin obtained by parsing the cartesian coordinates (There is no obviously no cartesian point of the geometry at xmax,ymax,zmax or xmin,ymin,zmin. The bounding box is just a cuboid enclosing the geometry).
What i want to do is to calculate the camera distance in an overview mode such that this geometry's bounding box perfectly fits the camera frustum.
I am not very clear with the approach to take here. A method like using a local to world matrix comes to mind but its not very clear.
#Specktre I referred to your suggestions on shifting points in 3D and that led me to another improved solution, nevertheless not perfect.
Compute a matrix that can transfer from ECEF to ENU. Refer this - http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates
Rotate all eight corners of my original bounding box using this matrix.
Compute a new bounding box by finding the min and max of x,y,z of these rotated points
compute distance
cameraDistance1 = ((newbb.ymax - newbb.ymin)/2)/tan(fov/2)
cameraDistance2 = ((newbb.xmax - newbb.xmin)/2)/(tan(fov/2)xaspectRatio)
cameraDistance = max(cameraDistance1, cameraDistance2)
This time i had to use the aspect ratio along x as i had previously expected since in my application fov is along y. Although this works almost accurately, there is still a small bug i guess. I am not very sure if it a good idea to generate a new bounding box. May be it is more accurate to identify 2 points point1(xmax, ymin, zmax) and point(xmax, ymax, zmax) in the original bounding box, find their values after multiplying with matrix and then do (point2 - point1).length(). Similarly for y. Would that be more accurate?
transform matrix
first thing is to understand that transform matrix represents coordinate system. Look here Transform matrix anatomy for another example.
In standard OpenGL notation If you use direct matrix then you are converting from matrix local space (LCS) to world global space (GCS). If you use inverse matrix then you converting coordinates from GCS to LCS
camera matrix
camera matrix converts to camera space so you need the inverse matrix. You get camera matrix like this:
camera=inverse(camera_space_matrix)
now for info on how to construct your camera_space_matrix so it fits the bounding box look here:
Frustrum distance computation
so compute midpoint of the top rectangle of your box compute camera distance as max of distance computed from all vertexes of box so
camera position = midpoint + distance*midpoint_normal
orientation depends on your projection matrix. If you use gluPerspective then you are viewing -Z or +Z according selected glDepthFunc. So set Z axis of matrix to normal and Y,X vectors can be aligned to North/South and East/West so for example
Y=Z x (1,0,0)
X = Z x Y
now put position, and axis vectors X,Y,Z inside matrix, compute inverse matrix and that it is.
[Notes]
Do not forget that FOV can have different angles for X and Y axis (aspect ratio).
Normal is just midpoint - Earth center which is (0,0,0) so normal is also the midpoint. Just normalize it to size 1.0.
For all computations use cartesian world GCS (global coordinate system).

How to check if a point is inside a quad in perspective projection?

I want to test if any given point in the world is on a quad/plane? The quad/plane can be translated/rotated/scaled by any values but it still should be able to detect if the given point is on it. I also need to get the location where the point should have been, if the quad was not applied any rotation/scale/translation.
For example, consider a quad at 0, 0, 0 with size 100x100, rotated at an angle of 45 degrees along z axis. If my mouse location in the world is at ( x, y, 0, ), I need to know if that point falls on that quad in its current transformation? If yes, then I need to know if no transformations were applied to the quad, where that point would have been on it? Any code sample would be of great help
A ray-casting approach is probably simplest:
Use gluUnProject() to get the world-space direction of the ray to cast into the scene. The ray's origin is the camera position.
Put this ray into object space by transforming it by the inverse of your rectangle's transform. Note that you need to transform both the ray's origin point and direction vector.
Compute the intersection point between this ray and the XY plane with a standard ray-plane intersection test.
Check that the intersection point's x and y values are within your rectangle's bounds, if they are then that's your desired result.
A math library such as GLM will be very helpful if you aren't confident about some of the math involved here, it has corresponding functions such as glm::unProject() as well as functions to invert matrices and do all the other transformations you'd need.

Orientation of figures in space

I have a sphere in my program and I intend to draw some rectangles over at a distance x from the centre of this sphere. The figure looks something below:
The rectangles are drawn at (x,y,z) points that I have already have in a vector of 3d points.
Let's say the distance x from centre is 10. Notice the orientation of these rectangles and these are tangential to an imaginary sphere of radius 10 (perpendicular to an imaginary line from the centre of sphere to the centre of rectangle)
Currently, I do something like the following:
For n points vector<vec3f> pointsInSpace where the rectnagles have to be plotted
for(int i=0;i<pointsInSpace.size();++i){
//draw rectnagle at (x,y,z)
}
which does not have this kind of tangential orientation that I am looking for.
It looked to me of applying roll,pitch,yaw rotations for each of these rectangles and using quaternions somehow to make them tangential as to what I am looking for.
However, it looked a bit complex to me and I wanted to ask about some better method to do this.
Also, the rectangle in future might change to some other shape, so a kind of generic solution would be appreciated.
I think you essentially want the same transformation as would be accomplished with a LookAt() function (you want the rectangle to 'look at' the sphere, along a vector from the rectangle's center, to the sphere's origin).
If your rectangle is formed of the points:
(-1, -1, 0)
(-1, 1, 0)
( 1, -1, 0)
( 1, 1, 0)
Then the rectangle's normal will be pointing along Z. This axis needs to be oriented towards the sphere.
So the normalised vector from your point to the center of the sphere is the Z-axis.
Then you need to define a distinct 'up' vector - (0,1,0) is typical, but you will need to choose a different one in cases where the Z-axis is pointing in the same direction.
The cross of the 'up' and 'z' axes gives the x axis, and then the cross of the 'x' and 'z' axes gives the 'y' axis.
These three axes (x,y,z) directly form a rotation matrix.
This resulting transformation matrix will orient the rectangle appropriately. Either use GL's fixed function pipeline (yuk), in which case you can just use gluLookAt(), or build and use the matrix above in whatever fashion is appropriate in your own code.
Personally I think the answer of JasonD is enough. But here is some info of the calculation involved.
Mathematically speaking this is a rather simple problem, What you have is a 2 known vectors. You know the position vector and the spheres normal vector. Since the square can be rotated arbitrarily along around the vector from center of your sphere you need to define one more vector, the up vector. Without defining up vector it becomes a impossible solution.
Once you define a up vector vector, the problem becomes simple. Assuming your square is on the XY-plane as JasonD suggest above. Then your matrix becomes:
up_dot_n_dot_n.X up_dot_n_dot_n.Y up_dot_n_dot_n.Z 0
n.X n.y n.z 0
up_dot_n.x up_dot_n.x up_dot_n.z 0
p.x p.y p.z 1
Where n is the normal unit vector of p - center of sphere (which is trivial if sphere is in the center of the coordinate system), up is a arbitrary unit vector vector. The p follows form definition and is the position.
The solution has a bit of a singularity at the up direction of the sphere. An alternate solution is to rotate first 360 around up, the 180 around rotated axis dot up. Produces same thing different approach no singularity problem.