azure event hub capture vs custom function - azure-eventhub

we use event hub, the intent is to able to archive the inbound event data for troubleshooting/analytic reasons, understandably event hub capture built in plays the role, however looking at the price tag my boss not happy. His question is, what benifits it compares to we simply have a function to bridge the event hub to some sort of storage e.g. blob by ourself, would that justify the cost saving in long run..
I don't know how to answer this, could you please help?

Azure Functions consumption plan is billed mainly on number of executions whereas Event Hub capture is billed on number of TUs.
Here are couple things that can help to reduce Function app execution counts:
Smaller EH partitions counts - for example, 4 partitions would deliver events in larger batches than 32 partitions would do.
Increase batchSize in function app's config.
Since you have only 3 partitions and 1 TU traffic to process, you may probably save if you run with a function rather than capture. I recommend doing some test runs and see how many executions incurred then you can compare the hourly cost of functions app to $.10 hourly fixed cost of EH capture.
I am assuming storage side billing will probably be similar or you can even try reducing it further down by increasing batching and decreasing number of storage calls.

Related

AWS X-Ray monthly trace threshold

I would like to set a monthly threshold on the number of traces collected by AWS X-Ray (mainly to avoid unexpected expenses).
It seems that sampling rules enable us to limit the trace ingestion but they use one second window.
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
But setting a limit on the number of traces per seconds might cause me to loose some important traces. Basically the one second window seems unreasonably narrow and I would rather set the limits for a whole month.
Is there any way to achieve that?
If not, does anyone know the reason why AWS does not enable that?
(Update)
Answer by Lei Wang confirms that it is not possible and speculates about the possible reasons (see the post for details).
Interestingly log analytics workspaces in azure have this functionality so it should likely not be impossible to add something similar to AWS X-Ray.
XRay right now supports 2 basic sampling behaviors:
ratio
limit the sampled per second
These 2 can be used together in or relationship to become the 3rd behavior: ratio + reservoir. For example, 1/s reservoir + 5% ration. Means sample at least 1 trace / second, then if the throughput is over 1/second, sample additional 5%.
The reason XRay does not support more sampling behavior like you mentioned limit per month I guess because technically it is not easy to implement and not sure whether it is a common user requirement. Because XRay is not able to guarantee customer would not reboot application within 1 month. Even user say his application would never reboot. XRay SDK still need communication mechanism to calculate the total traces across fleet. So, the only possible workaround is user application keeps tracking how many traces have been in XRay backend in total by periodically query.

Triggering an AWS Lambda Function based on multiple (1k-10k) schedules

We have an AWS Lambda function which queries some data for a client from our DB and sends a report to the client. Some clients want daily reports, some might need weekly or monthly reports. The number of clients can go up ~1000 and each client might have ~10 such reports.
So we are looking for a way to trigger the Lambda function with different parameters based on schedules set by each client.
For Example:
Client A wants daily report of their data to be sent to abc#clienta.com and Client B wants a weekly report of their data to be sent to xyz#clientb.com. So the Lambda function will be invoked twice on Sunday 12 AM (for both clients) and once on Monday-Saturday 12 AM (for Client A).
We found the following solutions on AWS, but both have some limitations.
Approach 1: Use CloudWatch Events
We can create a CloudWatch Events Rule for each client and each report that could trigger our Lambda function on each schedule.
Pros:
Simple setup, easy to implement.
Cons:
There is a limitation of 100 Event Rules per AWS Account. It's mentioned that we can contact AWS to get it increased, but we are not sure if it can be increased to the number we are looking for (Currently it is ~10k, but we would prefer a solution in which there is no such limit). Also, a limit of 100 per account gives an indication that this is not a suitable solution for such a use case.
Approach 2: Using Step Functions
For each client and each report, we can create one AWS State Machine. We can use the Iterator pattern in Step Functions to wait for a day/week/month and then re-invoke the Lambda Function.
Pros:
No limitations on number of State Machines, so this enables us to scale easily.
Cons:
Step Functions have a limitation that they can run for a year, at maximum. This will be a problem in our case because the users will need to get the reports for a much longer period. There is a way to overcome this in Step Functions. Just before it's about to reach the 1-year limit, we can cancel the execution and start a fresh execution. So overall, this solution looks complex.
Can someone suggest a better solution for this on AWS?
Do you really need a CloudWatch for each client? Why not do something like the following architecture.
Have cloudwatch kick off a lambda that checks schedules for all clients each day (or whatever the most frequent report schedule you allow). You don't want this to take a long time so you just have this check a database (i.e. DynamoDB) of schedules and drop metadata about any reports that need to be generated onto an SQS queue (i.e. type of report, client information, destination email). Worst case, this execute and finds nothing to schedule but this should only takes seconds so the cost is very low to just run this everyday.
Then you have a lambda that actually does the report generator and email that consumes the queue. This report generator lambda will scale and spin up as many instances it needs to handle the messages on the queue. You can set the concurrency limit for the report generator lambda to ensure it doesn't spin up too many at a time if that is a concern once you are having 1000s of clients.
The definition and deployment of all these components can easily be automated via an AWS SAM.
Hope this alternate approach gives you a few more ideas.
You can combine both approach, to get the best result.
step 1: Use stepfunction to run your lambdas.
step 2: Trigger your stepfunction from cloudwatch, based on stepfunction event(SUCCESS,FAILED ETC).
In this way when step 1 fails or completes 1 year run. Cloudwatch event can trigger it back on, based on the json input you pass.

How to efficiently aggregate data in billions of individual records in AWS?

At a high / theoretical level I know exactly the type of architecture I want to build and how it would work, but I'm attempting to construct this as cheaply as possible using AWS services and my lack of familiarity with the offerings of AWS has me running in circles.
The Data
We run a video streaming platform. On busy nights we have about 100 simultaneous live streams going with upwards of 30,000 viewers. We expect this number to rise to 100,000 in the next few years. A live stream lasts, on average, 2 hours.
We send a heartbeat from our player every 10 seconds with information about the viewer -- how much data they've viewed, how much data they've buffered, what quality they're streaming, etc.
These heartbeats are sent directly to an AWS Kinesis endpoint.
Finally, we want to retain all past messages for at least 5 years (hopefully longer) so that we can look at historic analytics.
Some back of the envelope calculations suggest we will have 0.1 * 60 * 60 * 2 * 100000 * 365 * 5 = 131 billion heartbeat messages five years from now.
Our Old Pipeline
Our old system had a single Kinesis consumer. Aggregate data was stored in DynamoDB. Whenever a message arrived we would read the record from DynamoDB, update the record, then write the new record back. This read-update-write loop limited the speed at which we could process messages and made it so that each message coming in was dependent on the messages before it, so they could not be processed in parallel.
Part of the reason for this setup is that our message schema was not well designed from the outset. We send the timestamp at which the message was sent, but we do not send "amount of video watched since last heartbeat". As a result in order to compute the total viewer time we need to look up the last heartbeat message sent by this player, subtract the timestamps, and add that value. Similar issues exist with many other metrics.
Our New Pipeline
We've begun to run into scaling issues. During our peak hours analytics can be delayed by as much as four hours while waiting for a backlog of messages to be processed. If this backlog reaches 24 hours Kinesis will start deleting data. So we need to fix our pipeline to remove this dependency on past messages so we can process them in parallel.
The first part of this was updating the messages sent by our players. Our new specification includes only metrics that can be trivially sum'd with no subtraction. So we can just keep adding to the "time viewed" metric, for instance, without any regard to past messages.
The second part of this was ensuring that Kinesis never backs up. We dump the raw messages to S3 as quickly as they arrive with no processing (Kinesis Data Fire Hose) so that we can crunch analytics on them at our leisure.
Finally, we now want to actually extract information from these analytics as quickly as possible. This is where I've hit a snag.
The Questions We Want to Answer
As this is an analytics pipeline, our questions mostly revolve around filtering these messages and then aggregating fields for the remaining messages (possibly, in fact likely, with grouping). For instance:
How many Android users watched last night's stream in HD? (FILTER by stream and OS)
What's the average bandwidth usage among all users? (SUM and COUNT, with later division of the final aggregates which could be done on the dashboard side)
What percent of users last year were on any Apple device (iOS, tvOS, etc)? (COUNT, grouped by OS)
What's the average time spent buffering among Android users for streams in the past year? (a mix of all of the above)
Options
AWS Athena would allow us to query the data in S3 directly as if it were an ANSI SQL table. However reading up on Athena, unless the data is properly formatted it can be incredibly slow. Some benchmarks I've seen show that processing 1.1 billion rows of CSV data can take up to 2 minutes. I'm looking at processing 100x that much data
AWS EMR and AWS Redshift sound like they are built for this purpose, but are complicated to set up and have a high base cost to run (requiring an EC2 cluster to remain active at all times). AWS Redshift also requires data be loaded into it, which sounds like it might be a very slow process, delaying our access to analytics
AWS Glue sounds like it may be able to take the raw messages as they arrive in S3 and convert them to Parquet files for more rapid querying via Athena
We could run a job to regularly batch messages to reduce the total number that must be processed. While a stream is live we'll receive one message every 10 seconds, but we really only care about the totals for a given viewer. This means that when a 2-hour stream concludes we can combine the 720 messages we've received from that player into a single "summary" message about the viewer's experience during the whole stream. This would massively reduce the amount of data we need to process, but exactly how and when to trigger this process isn't clear to me
The Ideal Architecture
This is a Big Data problem. The generic solution to Big Data problems is "don't take your data to your query, take your query to your data". If these messages were spread across 100 small storage nodes then each node could filter, sum, and count the subset of data they hold and pass these aggregates back to a central node which sums the sums and sums the counts. If each node is only operating on 1/100th of the data set then this kind of processing could theoretically be incredibly fast.
My Confusion
While I have a theoretical understanding of the "ideal" architecture, it's not clear to me if AWS works this way or how to construct a system that will function well like this.
S3 is a black box. It's not clear if Athena queries are run on individual nodes and aggregates are further reduced elsewhere, or if there's a system reading all of the data and aggregating it in a central location
Redshift requires the data by copied into a Redshift database. This doesn't sound fast, nor distributed
It's unclear to me how EMR works or if it will suit my purpose. Still researching
AWS Glue seems like it may need to be triggered by some event?
Parquet files seems to be like CSVs, where multiple records reside in a single file. Meanwhile I'm dumping one record per file. But perhaps there's a way to fix that? e.g. batching files every minute or every 5 minutes?
RDS or a similar service might be really good for this (indexing and whatnot) but would require a guaranteed schema (or necessitate migrating if our message schema changed) which is a concern. Migrating terabytes of data if we change our message schema sounds out of the question
Finally, along with wanting to get analytics results in as "real time" as possible (ideally we want to know within 1 minute when someone joins or leaves a stream), we want the dashboards to load quickly. Waiting 30 seconds to see the count of live viewers is horrendous. Dashboards should load in 2 seconds or less (ideally)
The plan is to use QuickSight to create dashboards (our old system had a hack-y Django app that read from our DynamoDB aggregates table, but I'd like to avoid creating more code for people to maintain)
I expect you are going to get a lot of different answers and opinions from the broad set of experts you have pinged with this. There is likely no single best answer to this as there are a lot of variables. Let me give you my best advice based on my experience in the field.
Kinesis to S3 is a good start and not moving data more than needed is the right philosophy.
You didn't mention Kinesis Data Analytics and this could be a solution for SOME of your needs. It is best for questions about what is happening in the data feed right now. The longer timeframe questions are better suited for the tools you mention. If you aren't too interested in what is happening in the past 10 minutes (or so) it could be good to omit.
S3 organization will be key to performing any analytic directly on the data there. You mention parquet formatting which is good but partitioning is far more powerful. Organizing the S3 data into "days" or "hours" of data and setting up the partitioning based on this can greatly speed up any query that is limited in the amount of time that is needed (don't read what you don't need).
Important safety note on S3 - S3 is an object store and as such there is overhead for each object you reference. Having many small objects (10,000+) treated as a single set of data is going to be slow no matter what solution you go with. You need to fix this before you go forward with any solution. You see it takes upwards of .5 sec to look up an object in S3 but if the file is small the transfer time is next to nothing. Now multiply .5 sec times all the objects you have and see how long it will take to read them. This is not a function of the downstream tool you choose but of the S3 organization you have. S3 objects as part of a Big Data solution should be at least 100M in size to not suffer greatly from the object lookup time. The choice of parquet or CSV files is mute without addressing object size and partitioning first.
Athena is good for occasional queries especially if the date ranges are limited. Is this the query pattern you expect? As you say "move the compute to the data" but if you use Athena to do large cross-sectional analytics where a large percentage of the data needs to be used, you are just moving the data to Athena every time you execute this query. Don't stop thinking about data movement at the point it is stored - think about the data movements to do the analytics also.
So a big question is how much data is needed and how often to support your analytics workloads and BI functions? This is the end result you are looking for. If a high percentage of the data is needed frequently then a warehouse solution like Redshift with the data loaded to disk is the right answer. The data load time to Redshift is quite fast as it parallel loads the data from S3 (you see S3 is a cluster and Redshift is a cluster and parallel loads can be done). If loading all your data into Redshift is what you need then the load time is not your main concern - the cost is. Big powerful tool with a price tag to match. The new RA3 instance type bends this curve down significantly for large data size clusters so could be a possibility.
Another tool you haven't mentioned is Redshift Spectrum. This brings several powerful technologies together that could be important to you. First is the power of Redshift with the ability to choose smaller cluster sizes that normally would be used for your data size. S3 filtering and aggregation technology allows Spectrum to perform actions on the data in S3 (yes initial compute actions of the query are performed inside of S3 potentially greatly reducing the data moved to Redshift). If your query patterns support this data reduction in S3 then the data movement will be small and the Redshift cluster can be small (cheap) too. This can be a powerful compromise point for IoT solutions like yours since complex data models and joining are not needed.
You bring up Glue and conversion to parquet. These can be good to do but as I mentioned before partitioning of the data in S3 is usually far more powerful. The value of parquet will increase as the width of your data increases. Parquet is a columnar format so it is advantaged if only a subset of "columns" are needed. The downside is the conversion time/cost and the loss of easy human readability (which can be huge during debug).
EMR is another choice you mention but I generally advise clients against going with EMR unless they need the flexibility it brings to the analytics and they have the skills to use it well. Without these EMR tends to be an unneeded costs sink.
If this is really going to be a Big Data solution then RDS (and Aurora) not good choices. They are designed for transactional workloads, not analytics. The data size and analytics will not fit well or be cost effective.
Another tool in the space is S3 Select. Not likely what you are looking for but something to remember exists and can be a tool in the toolbox.
Hybrid solutions are common in this space if there are variable needs based on some factor. A common one "is time of day" - no one is running extensive reports at 3am so the needed performance is much less. Another is user group - some groups need simple analytics while others need much more power. Another factor is timeliness of data - does everyone need "up to the second" information or is daily information sufficient? Trying to have one tool that does everything for everybody, all the time is often a path to an expensive, oversized solution.
Since Redshift Spectrum and Athena can point at the same S3 data (well organized since both will benefit) both tools can coexist on the same data. Also, Redshift is ideal for sifting through huge mounds of data, it is ideal for producing summary tables and then writing them (in partitioned parquet) to S3 for tools like Athena to use. All these cloud services can be run on schedules and this includes Redshift and EMR (Athena is query on demand) so they don't need to run all the time. Redshift with Spectrum can run a few hours a day to perform deep analytics and summarize data for writing to S3. Your data scientist can also use Redshift for their hardcore work while Athena supports dashboards using the daily summary data and Kinesis Data Analytics as source.
Lastly you bring up a 2 sec requirement for dashboards. This is definitely possible with Quicksight backed up by Redshift or Athena but won't be met for arbitrarily complex / data intensive queries. To meet this you will need the engine to have enough horsepower to produce the data in question. Redshift with local data storage is likely the fastest (Redshift Spectrum with some data pruning done in S3 wins in some cases) and Athena is the weakest / slowest. But the power doesn't matter if the work is small - see your query workload will be a huge deciding factor. The fastest will be to load the needed data into Quicksight storage (SPICE) but this is another localized / summarized version of the data so timeliness is again a factor (how often is this updated).
Based on designing similar systems and a bunch of guesses as to what you need I'd recommend that you:
Fix your object size (Kineses can be configured to do this)
Partition your data by day
Set up a small Redshift cluster (4 X dc2.large) and use Spectrum source address the data
Connect Quicksight to Redshift
Measure the performance (and cost) and compare to requirements (there will likely be gaps)
Adjust to solution (summary tables to S3, Athena, SPICE etc.) to meet goals
The alternative is to hire someone who has set up such systems before and have them review the requirements in detail and make a less "guess-based" recommendation.
I would look into Druid. Not an AWS offering, but easily runs on AWS, with good integration with S3 and Kinesis.
Capable of reading from Kinesis, at high speeds, and make the data available for querying right away. Can also flatten and transform the data as it reads it.
Capable of doing rollups/aggregation/compaction during ingestion (and further reduce data in an async manner). From what you wrote, it seems to me that it could easily reduce the number of rows in the DB by a very large factor.
Capable of fast queries, using standard SQL.
Smart partitioning of the data to scan only the relevant dates.
The down-side is that you will need to keep a cluster up and running for ingestion and for querying. It is pretty scalable, so you can start small.
On the up-side - you're not using 10 different technologies (Athena/Glue/EMR/etc.)
You might want to consider contacting Imply, which can ease the deployment.
A usual approach a lot of companies take is they do heavy weight lifting in athena or bigquery (or some other distributed sql environment) -> aggregate intermediate results into multiple indexed+partitioned postgres/mysql/redshift/clickhouse tables and then connect their APIs to read on those tables. Of course, this works fine except the fact that with an increased amount of intermediate-aggregated data, table indices grow and problems like cumulative sum or sorting become less and less efficient.
With your problem in hand, I think you can get a lot of help with AWS Lambda. AWS Lambda provides a very feasible serverless approach towards solving large granular data problems (if used correctly). For instance, assume that your pipelines partitions incoming stream by YYYYMMMDDHHMM and stores it into some S3 path which has a Lambda listening to it (as a trigger function) then your data ingest + aggregation becomes pretty much simultaneous processes. As soon as a minute is up, a new instance of the same Lambda function will be taking care of data landing into partition YYYYMMMDDHHMM+1. So, this way, you can run thousands of simultaneous processes with a good bunch of Lambda functions doing the same thing in parallel. Of course, this is a rough picture, but I think it can greatly help.

How Could I Monitor Lambda Concurrent Executions on a Second-by-Second Basis (or Find a Better Solution to Limit Lambda ConcurrentExecutions)?

I am working on a massive distributive computing platform built within AWS Lambda. The platform is extremely spiky, so most of the time the number of ConcurrentExecutions is below 50, but we can hit maximum (1000 currently) for up to an hour or more if a large batch job hits the system (it is an event-driven system). This is a problem as we will have customer-facing APIs that will lag terribly. Finally, I am not an architect, so I have minimal control over how the system was designed, but I have been asked to devise a clever Concurrent Execution limiting solution
I'm not new to AWS, so I know about the standard ways to handle this problem. #1 is reserve concurrency on the user-facing lambdas. I'm not allowed to do that for the sake of this exercise (though I'll go tell my boss thats whats necessary if it truly is). I'm thinking of a system where we designate high-priority (for UI) and low priority functions (for batch processing), and the low-priority functions will check a stored (DynamoDB) value output from Cloudwatch on the current number of ConcurrentExecutions. If a low priority function finds that we are in danger of using all the ConcurrentExecutions, it will post to a queue with exponential backoff in place. This all should work, save the problem that ConcurrentExecutions are only monitored in one-minute increments, which is too slow, as many of our Lambdas run for around 500ms.
So my questions are as follows:
Is there a way to set up a custom ConcurrentExecutions metric that has second-by-second data points, and if so, how would you do it?
Is there a better way to implement a counter than Cloudwatch?
Am I just missing something here and someone has a clever way to manage Lambda ConcurrentExecutions
I don't think it's necessary to create a monitor or throttling solution at all. You will need to to build test and maintain something additional to your core solution. Instead, two suggestions:
Sounds like the current design has one lambda function doing too much. Decompose the Lambdas further, so you can split the Lambdas into a Ui/public lambda, and one or more dedicated to the batch processes. This way you can spread the concurrent execution limit across more Lambdas. The limit is per Lambda function.
Second, request a service quota/limit increase
To raise the limit above 1,000 concurrent function executions, submit a request to the AWS Support Center by following the steps in our documentation. This feature is available in all regions where Lambda is available.
See AWS Lambda Raises Default Concurrent Execution Limits.
https://aws.amazon.com/about-aws/whats-new/2017/05/aws-lambda-raises-default-concurrent-execution-limit/
The limit management team is very flexible when asking for a limit to be raped they were generally raise it to any reasonable number that our solution requires.
To request a limit increase, see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

bigstore increasing almost linearly Google Cloud

I use many api's from Google Cloud. Recently I noticed that the bigstore is gradually increasing on a daily basis. I am worried that if this continues I wont be able to pay the bill.
I do not know however how to check where this increase is coming from. Is there a way to see which cloud functions are causing this increased traffic?
The reason I am surprised about the increase in the traffic of bigstore is because I have cron jobs that are running multiple times per day to store the data in BigQuery. I have not changed these settings, so I would assume that this traffic should not increase as shown on the chart.
One other explanation I can think of is that the amount of data that I am storing has increased, which is indeed true on a daily basis. But why does this increase the traffic?
What is the way to check this?
There are two main data sources you should use:
GCP-wide billing export. This will tell you an exact breakdown of your costs. This is important to make sure you target your effort where the cost is largest to you. It also provides some level of detail about what the usage is.
Enable access & storage logging. The access log will give you an exact accounting of incoming requests down to the number of bytes transferred. The storage logs give you similar granularity into the cost of storage itself.
In addition, if you have a snapshot of your bigstore, as time goes on and you replace or even rename files, your storage charges will increase because where once you had 2 views of the same storage, as the files change each file forks in 2 copies (one is the current view of your storage, one is the snapshot.)