C++ lambda doesn't deduce function overloading - c++

I'm defining a class like this:
class foo {
public:
// I define const and non-const versions of the 'visit' function
// nb. the lambda is passed by reference
virtual void visitWith(std::function<void(foo&)>&);
virtual void visitWith(std::function<void(const foo&)>&) const;
};
foo can have children so the idea is to visit a foo and all it's children recursively.
When I try to use it, eg. like this:
foo f;
f.visitWith([&](const foo&) {
// Do something here
});
I get compiler errors. The compiler can't figure out what to do.
I can make it work it by adding a typecast like this:
foo f;
f.visitWith( (std::function<void(const foo&)>) [&](const foo&) {
// Do something here
});
But that's horrible.
How can I get it to work neatly?
Edit:
This may be a problem with Visual C++, it refuses to compile the code given here:
https://ideone.com/n9bySW
The VC++ output when I try to compile it is:
Edit2: Nope, Visual C++ is correct, the code is ambiguous. See my solution below...

A lambda is a compiler-generated type, it is not an instance of std::function, but it is assignable to one.
Your visitWith() method takes a std::function by non-const reference, which means it requires a pre-existing std::function object, eg:
std::function<void(const foo&)> func = [&](const foo&) {
// Do something here
};
foo f;
f.visitWith(func);
Passing a lambda directly to visitWith() would require the compiler to create a temporary std::function object, but a non-const reference cannot bind to a temporary object. That is why your original code fails to compile.
For what you are attempting, you will have to pass the std::function either by value or by const-reference instead:
class foo {
public:
void visitWith(std::function<void(foo&)>);
void visitWith(std::function<void(const foo&)>) const;
};
Live Demo
class foo {
public:
void visitWith(const std::function<void(foo&)> &);
void visitWith(const std::function<void(const foo&)> &) const;
};
Live Demo

I reported this "bug" to Microsoft and got a reply, here:
https://developercommunity.visualstudio.com/content/problem/1201858/c-stdfunction-overloading-fails.html
Short version: Visual C++ is handling it correctly, ideone is wrong.
In the end I solved it by adding a third overload to foo which can add const-ness to an object, like this:
class foo {
public:
// Use typedefs so that all the code that comes after these two functions is neater
typedef std::function<void(Branch&)>visitor;
typedef std::function<void(const Branch&)>const_visitor;
virtual void visitWith(const visitor&);
virtual void visitWith(const const_visitor&) const;
// This is to thunk the third case that can happen when you start
// a const visit from a non-const foo.
void visitWith(const const_visitor& v) {
static_cast<const foo*>(this)->visitWith(v); // Add const-ness
}
};
Now the code works, eg.:
foo f;
f.visitWith([](const foo& f) {
std::cout << "visited a const foo!" << std::endl;
});

Related

C++ - std::bind call operator() with perfect forwarding

I have to store arguments (parameter pack), and pass the arguments to another function.
As a result, I cannot use lambda. And a good choice is std::bind.
But for this code
struct A{};
void test(A &&){}
int main()
{
A a;
test(move(a)); //work
bind(test,a)(); //compile fail; copy a to std::bind, pass a to test
}
According to standard, all variables stored in std::bind will be pass as lvalue to function. (The C++ standard doesn't say that, by I think that is what it means.)
And that means I cannot use a function (has rvalue reference in parameter) with std::bind.
One solution is to change test(A &&) to test(A &), but this only works for your project (and make it strange while you not only need to call test by std::thread but also need to call test by plain sequential call).
So, is there any ways to solve this problem?
You can create wrapper which will be convertible to the rvalue reference (like reference_wrapper/l-value references) and use it with bind:
It cal look like that:
#include <iostream>
#include <functional>
struct A{};
void test(A &&){ std::cout << "Works!\n"; }
template <typename T>
struct rvalue_holder
{
T value;
explicit rvalue_holder(T&& arg): value(arg) {}
operator T&&()
{
return std::move(value);
}
};
template <typename T>
rvalue_holder<T> rval(T && val)
{
return rvalue_holder<T>(std::move(val));
}
int main()
{
A a;
test(std::move(a)); //work
auto foo = std::bind(test, rval(std::move(a))); //works
foo();
}
http://coliru.stacked-crooked.com/a/56220bc89a32c860
Note: both rvalue_holder and especially rval need further work to ensure efficiency, robustness and desired behavior in all cases.

Simple Argument Forwarding (what should my signature be?)

As an example, say I am writing a thin wrapper for a vector's push_back method.
class Foo
{
public:
void myPushBack(Bar b); // Line in question
private:
std::vector<Bar> vec;
}
void Foo::MyPushBack(bar b)
{
vec.push_back(bar);
}
main()
{
Foo f();
f.myPushBack();
}
My question is what is the correct signature for the function myPushBack? Then my next question is what would be the correct signature for the function myPushBack if vec was of type std::vector<weak_ptr<Bar>>?
Assuming that you are using C++11, you should use the perfect forwarding idiom:
template<typename T> void Foo::MyPushBack(T &&b)
{
vec.push_back(std::forward<T>(b));
}
Since it is a template, it does not matter the actual type of the vector. It will even take into account implicit conversions, such as const char* to std::string.

How to disallow temporaries

For a class Foo, is there a way to disallow constructing it without giving it a name?
For example:
Foo("hi");
And only allow it if you give it a name, like the following?
Foo my_foo("hi");
The lifetime of the first one is just the statement, and the second one is the enclosing block. In my use case, Foo is measuring the time between constructor and destructor. Since I never refer to the local variable, I often forget to put it in, and accidentally change the lifetime. I'd like to get a compile time error instead.
Another macro-based solution:
#define Foo class Foo
The statement Foo("hi"); expands to class Foo("hi");, which is ill-formed; but Foo a("hi") expands to class Foo a("hi"), which is correct.
This has the advantage that it is both source- and binary-compatible with existing (correct) code. (This claim is not entirely correct - please see Johannes Schaub's Comment and ensuing discussion below: "How can you know that it is source compatible with existing code? His friend includes his header and has void f() { int Foo = 0; } which previously compiled fine and now miscompiles! Also, every line that defines a member function of class Foo fails: void class Foo::bar() {}")
How about a little hack
class Foo
{
public:
Foo (const char*) {}
};
void Foo (float);
int main ()
{
Foo ("hello"); // error
class Foo a("hi"); // OK
return 1;
}
Make the constructor private but give the class a create method.
This one doesn't result in a compiler error, but a runtime error. Instead of measuring a wrong time, you get an exception which may be acceptable too.
Any constructor you want to guard needs a default argument on which set(guard) is called.
struct Guard {
Guard()
:guardflagp()
{ }
~Guard() {
assert(guardflagp && "Forgot to call guard?");
*guardflagp = 0;
}
void *set(Guard const *&guardflag) {
if(guardflagp) {
*guardflagp = 0;
}
guardflagp = &guardflag;
*guardflagp = this;
}
private:
Guard const **guardflagp;
};
class Foo {
public:
Foo(const char *arg1, Guard &&g = Guard())
:guard()
{ g.set(guard); }
~Foo() {
assert(!guard && "A Foo object cannot be temporary!");
}
private:
mutable Guard const *guard;
};
The characteristics are:
Foo f() {
// OK (no temporary)
Foo f1("hello");
// may throw (may introduce a temporary on behalf of the compiler)
Foo f2 = "hello";
// may throw (introduces a temporary that may be optimized away
Foo f3 = Foo("hello");
// OK (no temporary)
Foo f4{"hello"};
// OK (no temporary)
Foo f = { "hello" };
// always throws
Foo("hello");
// OK (normal copy)
return f;
// may throw (may introduce a temporary on behalf of the compiler)
return "hello";
// OK (initialized temporary lives longer than its initializers)
return { "hello" };
}
int main() {
// OK (it's f that created the temporary in its body)
f();
// OK (normal copy)
Foo g1(f());
// OK (normal copy)
Foo g2 = f();
}
The case of f2, f3 and the return of "hello" may not be wanted. To prevent throwing, you can allow the source of a copy to be a temporary, by resetting the guard to now guard us instead of the source of the copy. Now you also see why we used the pointers above - it allows us to be flexible.
class Foo {
public:
Foo(const char *arg1, Guard &&g = Guard())
:guard()
{ g.set(guard); }
Foo(Foo &&other)
:guard(other.guard)
{
if(guard) {
guard->set(guard);
}
}
Foo(const Foo& other)
:guard(other.guard)
{
if(guard) {
guard->set(guard);
}
}
~Foo() {
assert(!guard && "A Foo object cannot be temporary!");
}
private:
mutable Guard const *guard;
};
The characteristics for f2, f3 and for return "hello" are now always // OK.
A few years ago I wrote a patch for the GNU C++ compiler which adds a new warning option for that situation. This is tracked in a Bugzilla item.
Unfortunately, GCC Bugzilla is a burial ground where well-considered patch-included feature suggestions go to die. :)
This was motivated by the desire to catch exactly the sort of bugs that are the subject of this question in code which uses local objects as gadgets for locking and unlocking, measuring execution time and so forth.
As is, with your implementation, you cannot do this, but you can use this rule to your advantage:
Temporary objects cannot be bound to non-const references
You can move the code from the class to an freestanding function which takes a non-const reference parameter. If you do so, You will get a compiler error if an temporary tries to bind to the non-const reference.
Code Sample
class Foo
{
public:
Foo(const char* ){}
friend void InitMethod(Foo& obj);
};
void InitMethod(Foo& obj){}
int main()
{
Foo myVar("InitMe");
InitMethod(myVar); //Works
InitMethod("InitMe"); //Does not work
return 0;
}
Output
prog.cpp: In function ‘int main()’:
prog.cpp:13: error: invalid initialization of non-const reference of type ‘Foo&’ from a temporary of type ‘const char*’
prog.cpp:7: error: in passing argument 1 of ‘void InitMethod(Foo&)’
Simply don't have a default constructor, and do require a reference to an instance in every constructor.
#include <iostream>
using namespace std;
enum SelfRef { selfRef };
struct S
{
S( SelfRef, S const & ) {}
};
int main()
{
S a( selfRef, a );
}
No, I'm afraid this isn't possible. But you could get the same effect by creating a macro.
#define FOO(x) Foo _foo(x)
With this in place, you can just write FOO(x) instead of Foo my_foo(x).
Since the primary goal is to prevent bugs, consider this:
struct Foo
{
Foo( const char* ) { /* ... */ }
};
enum { Foo };
int main()
{
struct Foo foo( "hi" ); // OK
struct Foo( "hi" ); // fail
Foo foo( "hi" ); // fail
Foo( "hi" ); // fail
}
That way you can't forget to name the variable and you can't forget to write struct. Verbose, but safe.
Declare one-parametric constructor as explicit and nobody will ever create an object of that class unintentionally.
For example
class Foo
{
public:
explicit Foo(const char*);
};
void fun(const Foo&);
can only be used this way
void g() {
Foo a("text");
fun(a);
}
but never this way (through a temporary on the stack)
void g() {
fun("text");
}
See also: Alexandrescu, C++ Coding Standards, Item 40.

Can I avoid accidental construction of a temporary? [duplicate]

For a class Foo, is there a way to disallow constructing it without giving it a name?
For example:
Foo("hi");
And only allow it if you give it a name, like the following?
Foo my_foo("hi");
The lifetime of the first one is just the statement, and the second one is the enclosing block. In my use case, Foo is measuring the time between constructor and destructor. Since I never refer to the local variable, I often forget to put it in, and accidentally change the lifetime. I'd like to get a compile time error instead.
Another macro-based solution:
#define Foo class Foo
The statement Foo("hi"); expands to class Foo("hi");, which is ill-formed; but Foo a("hi") expands to class Foo a("hi"), which is correct.
This has the advantage that it is both source- and binary-compatible with existing (correct) code. (This claim is not entirely correct - please see Johannes Schaub's Comment and ensuing discussion below: "How can you know that it is source compatible with existing code? His friend includes his header and has void f() { int Foo = 0; } which previously compiled fine and now miscompiles! Also, every line that defines a member function of class Foo fails: void class Foo::bar() {}")
How about a little hack
class Foo
{
public:
Foo (const char*) {}
};
void Foo (float);
int main ()
{
Foo ("hello"); // error
class Foo a("hi"); // OK
return 1;
}
Make the constructor private but give the class a create method.
This one doesn't result in a compiler error, but a runtime error. Instead of measuring a wrong time, you get an exception which may be acceptable too.
Any constructor you want to guard needs a default argument on which set(guard) is called.
struct Guard {
Guard()
:guardflagp()
{ }
~Guard() {
assert(guardflagp && "Forgot to call guard?");
*guardflagp = 0;
}
void *set(Guard const *&guardflag) {
if(guardflagp) {
*guardflagp = 0;
}
guardflagp = &guardflag;
*guardflagp = this;
}
private:
Guard const **guardflagp;
};
class Foo {
public:
Foo(const char *arg1, Guard &&g = Guard())
:guard()
{ g.set(guard); }
~Foo() {
assert(!guard && "A Foo object cannot be temporary!");
}
private:
mutable Guard const *guard;
};
The characteristics are:
Foo f() {
// OK (no temporary)
Foo f1("hello");
// may throw (may introduce a temporary on behalf of the compiler)
Foo f2 = "hello";
// may throw (introduces a temporary that may be optimized away
Foo f3 = Foo("hello");
// OK (no temporary)
Foo f4{"hello"};
// OK (no temporary)
Foo f = { "hello" };
// always throws
Foo("hello");
// OK (normal copy)
return f;
// may throw (may introduce a temporary on behalf of the compiler)
return "hello";
// OK (initialized temporary lives longer than its initializers)
return { "hello" };
}
int main() {
// OK (it's f that created the temporary in its body)
f();
// OK (normal copy)
Foo g1(f());
// OK (normal copy)
Foo g2 = f();
}
The case of f2, f3 and the return of "hello" may not be wanted. To prevent throwing, you can allow the source of a copy to be a temporary, by resetting the guard to now guard us instead of the source of the copy. Now you also see why we used the pointers above - it allows us to be flexible.
class Foo {
public:
Foo(const char *arg1, Guard &&g = Guard())
:guard()
{ g.set(guard); }
Foo(Foo &&other)
:guard(other.guard)
{
if(guard) {
guard->set(guard);
}
}
Foo(const Foo& other)
:guard(other.guard)
{
if(guard) {
guard->set(guard);
}
}
~Foo() {
assert(!guard && "A Foo object cannot be temporary!");
}
private:
mutable Guard const *guard;
};
The characteristics for f2, f3 and for return "hello" are now always // OK.
A few years ago I wrote a patch for the GNU C++ compiler which adds a new warning option for that situation. This is tracked in a Bugzilla item.
Unfortunately, GCC Bugzilla is a burial ground where well-considered patch-included feature suggestions go to die. :)
This was motivated by the desire to catch exactly the sort of bugs that are the subject of this question in code which uses local objects as gadgets for locking and unlocking, measuring execution time and so forth.
As is, with your implementation, you cannot do this, but you can use this rule to your advantage:
Temporary objects cannot be bound to non-const references
You can move the code from the class to an freestanding function which takes a non-const reference parameter. If you do so, You will get a compiler error if an temporary tries to bind to the non-const reference.
Code Sample
class Foo
{
public:
Foo(const char* ){}
friend void InitMethod(Foo& obj);
};
void InitMethod(Foo& obj){}
int main()
{
Foo myVar("InitMe");
InitMethod(myVar); //Works
InitMethod("InitMe"); //Does not work
return 0;
}
Output
prog.cpp: In function ‘int main()’:
prog.cpp:13: error: invalid initialization of non-const reference of type ‘Foo&’ from a temporary of type ‘const char*’
prog.cpp:7: error: in passing argument 1 of ‘void InitMethod(Foo&)’
Simply don't have a default constructor, and do require a reference to an instance in every constructor.
#include <iostream>
using namespace std;
enum SelfRef { selfRef };
struct S
{
S( SelfRef, S const & ) {}
};
int main()
{
S a( selfRef, a );
}
No, I'm afraid this isn't possible. But you could get the same effect by creating a macro.
#define FOO(x) Foo _foo(x)
With this in place, you can just write FOO(x) instead of Foo my_foo(x).
Since the primary goal is to prevent bugs, consider this:
struct Foo
{
Foo( const char* ) { /* ... */ }
};
enum { Foo };
int main()
{
struct Foo foo( "hi" ); // OK
struct Foo( "hi" ); // fail
Foo foo( "hi" ); // fail
Foo( "hi" ); // fail
}
That way you can't forget to name the variable and you can't forget to write struct. Verbose, but safe.
Declare one-parametric constructor as explicit and nobody will ever create an object of that class unintentionally.
For example
class Foo
{
public:
explicit Foo(const char*);
};
void fun(const Foo&);
can only be used this way
void g() {
Foo a("text");
fun(a);
}
but never this way (through a temporary on the stack)
void g() {
fun("text");
}
See also: Alexandrescu, C++ Coding Standards, Item 40.

What are the use cases for having a function return by const value for non-builtin type?

Recently I have read that it makes sense when returning by value from a function to qualify the return type const for non-builtin types, e.g.:
const Result operation() {
//..do something..
return Result(..);
}
I am struggling to understand the benefits of this, once the object has been returned surely it's the callers choice to decide if the returned object should be const?
Basically, there's a slight language problem here.
std::string func() {
return "hai";
}
func().push_back('c'); // Perfectly valid, yet non-sensical
Returning const rvalues is an attempt to prevent such behaviour. However, in reality, it does way more harm than good, because now that rvalue references are here, you're just going to prevent move semantics, which sucks, and the above behaviour will probably be prevented by the judicious use of rvalue and lvalue *this overloading. Plus, you'd have to be a bit of a moron to do this anyway.
It is occasionally useful. See this example:
class I
{
public:
I(int i) : value(i) {}
void set(int i) { value = i; }
I operator+(const I& rhs) { return I(value + rhs.value); }
I& operator=(const I& rhs) { value = rhs.value; return *this; }
private:
int value;
};
int main()
{
I a(2), b(3);
(a + b) = 2; // ???
return 0;
}
Note that the value returned by operator+ would normally be considered a temporary. But it's clearly being modified. That's not exactly desired.
If you declare the return type of operator+ as const I, this will fail to compile.
There is no benefit when returning by value. It doesn't make sense.
The only difference is that it prevents people from using it as an lvalue:
class Foo
{
void bar();
};
const Foo foo();
int main()
{
foo().bar(); // Invalid
}
Last year I've discovered another surprising usecase while working on a two-way C++-to-JavaScript bindings.
It requires a combination of following conditions:
You have a copyable and movable class Base.
You have a non-copyable non-movable class Derived deriving from Base.
You really, really do not want an instance of Base inside Derived to be movable as well.
You, however, really want slicing to work for whatever reason.
All classes are actually templates and you want to use template type deduction, so you cannot really use Derived::operator const Base&() or similar tricks instead of public inheritance.
#include <cassert>
#include <iostream>
#include <string>
#include <utility>
// Simple class which can be copied and moved.
template<typename T>
struct Base {
std::string data;
};
template<typename T>
struct Derived : Base<T> {
// Complex class which derives from Base<T> so that type deduction works
// in function calls below. This class also wants to be non-copyable
// and non-movable, so we disable copy and move.
Derived() : Base<T>{"Hello World"} {}
~Derived() {
// As no move is permitted, `data` should be left untouched, right?
assert(this->data == "Hello World");
}
Derived(const Derived&) = delete;
Derived(Derived&&) = delete;
Derived& operator=(const Derived&) = delete;
Derived& operator=(Derived&&) = delete;
};
// assertion fails when the `const` below is commented, wow!
/*const*/ auto create_derived() { return Derived<int>{}; }
// Next two functions hold reference to Base<T>/Derived<T>, so there
// are definitely no copies or moves when they get `create_derived()`
// as a parameter. Temporary materializations only.
template<typename T>
void good_use_1(const Base<T> &) { std::cout << "good_use_1 runs" << std::endl; }
template<typename T>
void good_use_2(const Derived<T> &) { std::cout << "good_use_2 runs" << std::endl; }
// This function actually takes ownership of its argument. If the argument
// was a temporary Derived<T>(), move-slicing happens: Base<T>(Base<T>&&) is invoked,
// modifying Derived<T>::data.
template<typename T>
void oops_use(Base<T>) { std::cout << "bad_use runs" << std::endl; }
int main() {
good_use_1(create_derived());
good_use_2(create_derived());
oops_use(create_derived());
}
The fact that I did not specify the type argument for oops_use<> means that the compiler should be able to deduce it from argument's type, hence the requirement that Base<T> is actually a real base of Derived<T>.
An implicit conversion should happen when calling oops_use(Base<T>). For that, create_derived()'s result is materialized into a temporary Derived<T> value, which is then moved into oops_use's argument by Base<T>(Base<T>&&) move constructor. Hence, the materialized temporary is now moved-from, and the assertion fails.
We cannot delete that move constructor, because it will make Base<T> non-movable. And we cannot really prevent Base<T>&& from binding to Derived<T>&& (unless we explicitly delete Base<T>(Derived<T>&&), which should be done for all derived classes).
So, the only resolution without Base modification here is to make create_derived() return const Derived<T>, so that oops_use's argument's constructor cannot move from the materialized temporary.
I like this example because not only it compiles both with and without const without any undefined behaviour, it behaves differently with and without const, and the correct behavior actually happens with const only.