Print a string from a pointer to its member class - c++

So I'm trying to print a string, but I get no output. However the other values in the class prints just fine.
In main I have a for loop that prints the the values for the Skill class. In Skill I have a pointer to the Ability class.
class Skill {
private:
Ability* ability;
public:
Ability* GetAbility() {
return ability;
};
}
It gets assigned in the constructor like this:
Skill::Skill(Ability* ability){
this->ability = ability;
}
The Ability class contains just a Name and a score.
class Ability {
private:
string name;
float score;
public:
Ability(string name, float score) {
this->name = name;
this->score = score;
};
string Name() { return name; }
float GetScore() { return score; }
};
Now in main I create a few skills and assign an ability to it. as is a container class that initializes a few ablities in a vector and I can get an ability based on its name.
Skill s* = new Skill[2]
s[0] = Skill(&as.GetAbility("Strength"));
s[1] = Skill(&as.GetAbility("Charisma"));
And then we print
cout << s[i].GetAbility()->Name() << " " << s[i].GetAbility()->GetScore();
However the only output I get is the score. No name what so ever and I can't figure it out. I've tried a few things, but still noting is printing. I'm sure I'm missing something simple that will make me facepalm, but in my defense I haven't written C++ in over 10 years. Thanks in advance.
EDIT: as.GetAbility looks like this:
Ability AbilityScores::GetAbility(string abilityName) {
for (int i = 0; i < abilityScores.size(); i++) {
if (abilityScores[i].Name() == abilityName) {
return abilityScores[i];
}
}
return Ability();
}
abilityScores is a vector

Your AbilityScores::GetAbility() method is returning an Ability object by value, which means it returns a copy of the source Ability, and so your Skill objects will end up holding dangling pointers to temporary Ability objects that have been destroyed immediately after the Skill constructor exits. So your code has undefined behavior.
AbilityScores::GetAbility() needs to return the Ability object by reference instead:
Ability& AbilityScores::GetAbility(string abilityName) {
for (int i = 0; i < abilityScores.size(); i++) {
if (abilityScores[i].Name() == abilityName) {
return abilityScores[i];
}
}
throw ...; // there is nothing to return!
}
...
Skill s* = new Skill[2];
s[0] = Skill(&as.GetAbility("Strength"));
s[1] = Skill(&as.GetAbility("Charisma"));
...
If you want to return a default Ability when the abilityName is not found, consider using std::map instead of std::vector:
private:
std::map<std::string, Ability> abilityScores;
AbilityScores::AbilityScores() {
abilityScores["Strength"] = Ability("Strength", ...);
abilityScores["Charisma"] = Ability("Charisma", ...);
...
}
Ability& AbilityScores::GetAbility(string abilityName) {
// if you don't mind Name() returning "" for unknown abilities...
return abilityScores[abilityName];
// otherwise...
auto iter = abilityScores.find(abilityName);
if (iter == abilityScores.end()) {
iter = abilityScores.emplace(abilityName, 0.0f).first;
}
return iter->second;
}
...
Skill s* = new Skill[2];
s[0] = Skill(&as.GetAbility("Strength"));
s[1] = Skill(&as.GetAbility("Charisma"));
...
Otherwise, return the Ability object by pointer instead:
Ability* AbilityScores::GetAbility(string abilityName) {
for (int i = 0; i < abilityScores.size(); i++) {
if (abilityScores[i].Name() == abilityName) {
return &abilityScores[i];
}
}
return nullptr;
// or:
abilityScores.emplace_back(abilityName, 0.0f);
return &(abilityScores.back());
}
...
Skill s* = new Skill[2];
s[0] = Skill(as.GetAbility("Strength"));
s[1] = Skill(as.GetAbility("Charisma"));
...

Related

How to pass array of object pointers to function?

I am having trouble passing an array of object pointers from main() to a function from different class.
I created an array of object pointers listPin main() and I want to modify the array with a function editProduct in class Manager such as adding new or edit object.
Furthermore, I want to pass the whole listP array instead of listP[index]. How to achieve this or is there any better way? Sorry, I am very new to c++.
#include <iostream>
using namespace std;
class Product
{
protected:
string id, name;
float price;
public:
Product()
{
id = "";
name = "";
price = 0;
}
Product(string _id, string _name, float _price)
{
id = _id;
name = _name;
price = _price;
}
};
class Manager
{
protected:
string id, pass;
public:
Manager(string _id, string _pass)
{
id = _id;
pass = _pass;
}
string getId() const { return id; }
string getPass() const { return pass; }
void editProduct(/*array of listP*/ )
{
//i can edit array of listP here without copying
}
};
int main()
{
int numProduct = 5;
int numManager = 2;
Product* listP[numProduct];
Manager* listM[numManager] = { new Manager("1","alex"), new Manager("2", "Felix") };
bool exist = false;
int index = 0;
for (int i = 0; i < numProduct; i++) { //initialize to default value
listP[i] = new Product();
}
string ID, PASS;
cin >> ID;
cin >> PASS;
for (int i = 0; i < numManager; i++)
{
if (listM[i]->getId() == ID && listM[i]->getPass() == PASS) {
exist = true;
index = i;
}
}
if (exist == true)
listM[index]->editProduct(/*array of listP */);
return 0;
}
Since the listP is a pointer to an array of Product, you have the following two option to pass it to the function.
The editProduct can be changed to accept the pointer to an array of size N, where N is the size of the passed pointer to the array, which is known at compile time:
template<std::size_t N>
void editProduct(Product* (&listP)[N])
{
// Now the listP can be edited, here without copying
}
or it must accept a pointer to an object, so that it can refer the array
void editProduct(Product** listP)
{
// find the array size for iterating through the elements
}
In above both cases, you will call the function as
listM[index]->editProduct(listP);
That been said, your code has a few issues.
First, the array sizes numProduct and numManager must be compiled time constants, so that you don't end up creating a non-standard variable length array.
Memory leak at the end of main as you have not deleted what you have newed.
Also be aware Why is "using namespace std;" considered bad practice?
You could have simply used std::array, or std::vector depending on where the object should be allocated in memory. By which, you would have avoided all these issues of memory leak as well as pointer syntaxes.
For example, using std::vector, you could do simply
#include <vector>
// in Manager class
void editProduct(std::vector<Product>& listP)
{
// listP.size() for size of the array.
// pass by reference and edit the listP!
}
in main()
// 5 Product objects, and initialize to default value
std::vector<Product> listP(5);
std::vector<Manager> listM{ {"1","alex"}, {"2", "Felix"} };
// ... other codes
for (const Manager& mgr : listM)
{
if (mgr.getId() == ID && mgr.getPass() == PASS)
{
// ... code
}
}
if (exist == true) {
listM[index]->editProduct(listP);
}
You cannot have arrays as parameters in C++, you can only have pointers. Since your array is an array of pointers you can use a double pointer to access the array.
void editProduct(Product** listP){
and
listM[index]->editProduct(listP);
Of course none of these arrays of pointers are necessary. You could simplify your code a lot if you just used regular arrays.
Product listP[numProduct];
Manager listM[numManager] = { Manager("1","alex"), Manager("2", "Felix")};
...
for(int i = 0; i < numManager; i++ ){
if(listM[i].getId() == ID && listM[i].getPass() == PASS) {
exist = true;
index = i;
}
}
if(exist == true){
listM[index].editProduct(listP);
}

How to return an array in method decleration using C++?

I am trying to write C++ code suitable for object oriented programming.
I have two classes, namely, Student and Course. In the Student class, I have quiz_scores which is a 1-D array of 4 integers. I need both set and get methods, both are used in natural common way.
In the following, I implement setQuizScores method:
void Student :: setQuizScores(int* quizscores){
for(int i = 0; i<4; i++){
quiz_scores[i] = quizscores[i];
}
Where quizscores are my private members.
Now, next thing is that I want to return this quiz_scores array in the getQuizScores for each students of Student class.
However, the problem is that C++ does not allow us to return arrays directly. Instead, I want the structure of my code as following:
int Student :: getQuizScores(){
Do something;
return the elements of quiz_scores;
}
How can I do that efficiently?
I prefer not to use the Standard Template Library (STL), so I need to create my own arrays and access them according to the explanation above.
There are a few ways how you could return an array:
Pass in an array to copy to
void Student::getQuizScores(int* out) {
for(int i = 0; i < 4; i++)
out[i] = quiz_scores[i];
}
Student student;
int scores[4];
student.getQuizScores(scores);
// use scores[0], etc...
return a struct containing the array
struct Scores {
int values[4];
};
Scores Student::getQuizScores() {
Scores s;
for(int i = 0; i < 4; i++)
s.values[i] = quiz_scores[i];
return s;
}
Student student;
Scores s = student.getQuizScores();
// use s.values[0], etc...
return a reference to the quiz_scores array inside the class
using Scores = int[4];
Scores const& Student::getQuizScores() const {
return quiz_scores;
}
Student student;
Scores const& scores = student.getQuizScores();
// use scores[0], etc...
Just as setQuizScores() is able to take a pointer to an array, so too can getQuizScores() return a pointer to the quiz_scores member array, eg:
const int* Student::getQuizScores() const {
// do something...
return quiz_scores;
}
The caller can then access the array elements as needed, eg:
Student s;
...
const int *scores = s.getQuizScores();
for(int i = 0; i < 4; ++i){
cout << scores[i] << ' ';
}
Alternatively, since the array is fixed size, you can return a reference to the array instead, eg:
typedef int scoresArr[4];
scoresArr quiz_scores;
...
const scoresArr& Student::getQuizScores() const {
// do something...
return quiz_scores;
}
Student s;
...
const scoresArr &scores = s.getQuizScores();
for(int i = 0; i < 4; ++i){
cout << scores[i] << ' ';
}
You can return a pointer to the quiz_scores array through getQuizScores method as shown below:
Version 1: Using trailing return type
auto getQuizScores() -> int(*)[4]
{
//Do something;
return &quiz_scores;//NOTE THE & INFRONT OF quiz_scores
}
Now you can use this returned pointer to initialize other arrays. One possible example would be:
#include <iostream>
struct Student
{
int quiz_scores[4]= {1,2,3,4};
//getQuizScores returns a pointer to an array of size 4 with element of type int
auto getQuizScores() -> int(*)[4]
{
//Do something;
return &quiz_scores;//NOTE THE & INFRONT OF quiz_scores
}
void setQuizScores(int* quizscores)
{
for(int i = 0; i<4; i++)
{
quiz_scores[i] = quizscores[i];
}
}
};
int main()
{
Student s;
int arr[4];
for(int i = 0; i< 4; ++i)
{
arr[i] = (*s.getQuizScores())[i];
std::cout<<arr[i]<<std::endl;
}
return 0;
}
Version 2: Without using trailing return type
int (*getQuizScores())[4]
{
//Do something;
return &quiz_scores;//NOTE THE & INFRONT OF quiz_scores
}
Version 2 is the same as version 1 except that this time the getQuizScores method does not uses trialing return type.
There are other possibilities also like returning a reference to the quiz_scores array.

Changing a private value of a class in method not returning the changes to main()

I'm having a problem that I haven't found an answer for in a week now. I have a dynamic array class and it has a method to add string values to it. It's supposed to represent an inventory you can add items to. However, I find that the changes made in the method to the private values of the class element aren't "updated" when I try to call for a print-method for the class element "backpack" later in the main(). I think this might be a problem due to referencing issues, but I've seen this work when a class hasn't been in a different module.
My "backpack" module print and add methods:
const int INITIAL_SIZE = 5;
Inventory::Inventory():
array_(new string[INITIAL_SIZE]),
max_space_(INITIAL_SIZE),
used_space_(0) {}
void Inventory::add(string item){
if ( size() == max_space_ ) {
string* new_array = new string[2 * max_space_];
for ( int i = 0; i < size(); ++i ) {
new_array[i] = array_[i];
}
delete [] array_;
array_ = new_array;
max_space_ = 2 * max_space_;
}
array_[used_space_] = item;
++used_space_;
}
void Inventory::print() {
for ( int i = 0; i < size(); ++i ) {
cout << array_[i] << endl;
}
}
The main():
Inventory inv;
string input;
while (cout << "input> "
and getline(cin,input)){
add_to_bag(input,inv);
So the point is you reset the inventory when you give it new contents. The function add_to_bag(); is:
void add_to_bag(string input, Inventory inv){
const string WHITESPACE1_REGEX = "[[:space:]]*";
const string WHITESPACE2_REGEX = "[[:space:]]+";
const string WORD_REGEX = "[[:alpha:]_]+";
const string LINE_REGEX =
WHITESPACE1_REGEX +
WORD_REGEX +
"(" +
WHITESPACE2_REGEX +
WORD_REGEX +
")*" +
WHITESPACE1_REGEX;
regex line_reg(LINE_REGEX);
regex word_regex(WORD_REGEX);
string line = input;
if ( regex_match(line, line_reg) ) {
sregex_iterator iter(line.begin(), line.end(), word_regex);
sregex_iterator end;
while ( iter != end ) {
inv.add(iter->str());
++iter;
}
} else {
cout << "Error: unknown inventory contents." << endl;
}
}
Your problem is:
void add_to_bag(string input, Inventory inv);
You pass a copy of the Inventory object to add_to_bag. You modify that copy ... and then it gets thrown away. The fix is to pass by reference:
void add_to_bag(string input, Inventory &inv);
Incidentally, in real-life code, I would strongly advise the use of std::vector<std::string> rather than "roll your own". There are a number of tricky exception handling issues you have got wrong here - and unless Inventory doesn't have a destructor (implying a memory leak), or does have a correct copy constructor I would have expected you to run into "double free" issues. (Read about "The Rule of Three".)
A simple way to design your class would be as follows:
class Inventory {
private:
std::vector<std::string> items_;
public:
Inventory(){}
~Inventory(){}
void addItem( const std::string& item ) {
items_.push_back( item );
}
void printInventory() const {
int idx = 0;
for (; idx < items_.size(); ++idx ) {
std::cout << items_[idx] << std::endl;
}
}
void clearInventory() {
items_.clear();
}
};
And as for your problem Martin Bonner had already answered it with the modifying of the copy and the removal of it afterwards and the other issues with the memory management.

How do I return a Null Pointer in a function C++

I am currently working on a bit of code that will search within a vector of type Person (which I have defined in the code and will show if needed). If it finds the person, it returns their name. This is currently working, but if it does not find the person, it is supposed to return a Null pointer. The problem is, I cannot figure out how to make it return a Null pointer! It just keeps either crashing the program every time.
Code:
Person* lookForName(vector<Person*> names, string input)
{
string searchName = input;
string foundName;
for (int i = 0; i < names.size(); i++) {
Person* p = names[i];
if (p->getName() == input) {
p->getName();
return p; //This works fine. No problems here
break;
} else {
//Not working Person* p = NULL; <---Here is where the error is happening
return p;
}
}
}
You could use std::find_if algorithm:
Person * lookForName(vector<Person*> &names, const std::string& input)
{
auto it = std::find_if(names.begin(), names.end(),
[&input](Person* p){ return p->getName() == input; });
return it != names.end() ? *it : nullptr; // if iterator reaches names.end(), it's not found
}
For C++03 version:
struct isSameName
{
explicit isSameName(const std::string& name)
: name_(name)
{
}
bool operator()(Person* p)
{
return p->getName() == name_;
}
std::string name_;
};
Person * lookForName(vector<Person*> &names, const std::string& input)
{
vector<Person*>::iterator it = std::find_if(names.begin(), names.end(),
isSameName(input));
return it != names.end() ? *it : NULL;
}
If the name you are searching for is not at the first element, then you are not searching in the rest of the elements.
You need to do something like -
for (int i = 0; i<names.size(); i++){
Person* p = names[i];
if (p->getName() == input) {
return p;
// Placing break statement here has no meaning as it won't be executed.
}
}
// Flow reaches here if the name is not found in the vector. So, just return NULL
return NULL;
As Chris suggested, try using std::find_if algorithm.
Looks like you just have to return Null, nullptr, or 0.
codeproject
Just use following code:
return NULL;

strlen() not working

Basically, I'm passing a pointer to a character string into my constructor, which in turn initializes its base constructor when passing the string value in. For some reason strlen() is not working, so it does not go into the right if statement. I have checked to make sure that there is a value in the variable and there is.
Here is my code, I've taken out all the irrelevant parts:
Label class contents:
Label(int row, int column, const char *s, int length = 0) : LField(row, column, length, s, false)
{
}
Label (const Label &obj) : LField(obj)\
{
}
~Label()
{
}
Field *clone() const
{
return new Label(*this);
}
LField class contents:
LField(int rowNumVal, int colNumVal, int widthVal, const char *valVal = "", bool canEditVal = true)
{
if(strlen(valVal) > 0)
{
}
else
{
//This is where it jumps to, even though the value in
//valVal is 'SFields:'
val = NULL;
}
}
Field *clone() const
{
return new LField(*this);
}
LField(const LField &clone) {
delete[] val;
val = new char[strlen(clone.val) + 1];
strcpy(val, clone.val);
rowNum = clone.rowNum;
colNum = clone.colNum;
width = clone.width;
canEdit = clone.canEdit;
index = clone.index;
}
Screen class contents:
class Screen {
Field *fields[50];
int numOfFields;
int currentField;
public:
Screen()
{
numOfFields = 0;
currentField = 0;
for(int i = 0; i < 50; i++)
fields[i] = NULL;
}
~Screen()
{
for (int i = 0; i < 50; i++)
delete[] fields[i];
}
int add(const Field &obj)
{
int returnVal = 0;
if (currentField < 50)
{
delete[] fields[currentField];
fields[currentField] = obj.clone();
numOfFields += 1;
currentField += 1;
returnVal = numOfFields;
}
return returnVal;
}
Screen& operator+=(const Field &obj)
{
int temp = 0;
temp = add(obj);
return *this;
}
};
Main:
int main () {
Screen s1;
s1 += Label(3, 3, "SFields:");
}
Hopefully someone is able to see if I am doing something wrong.
<LANGUAGE FEATURE XXXX IS BROKEN>! ... No, it isn't.
Just before measuring the string, write in a puts(valVal), to ensure you are not mistaken about the contents of that variable.
Marcin at this point the problem will come down to debugging, I copied your code with some minor omissions and got the correct result.
Now it needs to be said, you should be using more C++ idiomatic code. For instance you should be using std::string instead of const char* and std::vector instead of your raw arrays.
Here is an example of what the LField constructor would look like with std::string:
#include <string> // header for string
LField(int rowNumVal,
int colNumVal,
int widthVal,
const std::string& valVal = "",
bool canEditVal = true)
{
std::cout << valVal;
if(valVal.length() > 0)
{
}
else
{
//This is where it jumps to, even though the value in
//valVal is 'SFields:'
//val = NULL;
}
}
Using these types will make your life considerably easier and if you make the change it may just fix your problem too.
PREVIOUS:
So you can be CERTAIN that the string is not being passed in correctly add a printline just before the strlen call. Once you do this work backward with printlines until you find where the string is not being set. This is a basic debugging technique.
Label(int row,
int column,
const char *s,
int length = 0) :
LField(row, column, length, s, false) {
}
LField(int rowNumVal,
int colNumVal,
int widthVal,
const char *valVal = "",
bool canEditVal = true)
{
std::cout << valVal << std::endl;
if(strlen(valVal) > 0)
{
}
else {
//This is where it jumps to, even though the value in
//valVal is 'SFields:'
val = NULL;
}
}
Whenever there is strange behavior like this, memory getting screwed up is almost always the culprit. Never mix new with delete[] OR new[] with delete. The latter is slightly worse than the former but they are both bad news. delete[] should only be used in conjunction with new[]. Mixing these allocation/deallocation notations will result in undefined behavior. Since you are never using new[], replace all of your delete[] calls with delete. It is also good practice and good manners to set your pointers to NULL after you delete them. It is highly unlikely that you will be the only one debugging this code and it would be extremely annoying to debug your pointers thinking that there is valid memory there, when in fact there isn't.
Mixing these notations inevitably lead to exploits and memory leaks.
There is a problem here:
LField(const LField &clone) {
delete[] val;
val = new char[strlen(clone.val) + 1];
val is uninitialized when the constructor is called, and you are deleting it.