I'm working on Cloud Run Anthos at GCP and host on GKE cluster.
Which I follow this qwiklabs for study the Cloud Run Anthos,
https://www.qwiklabs.com/focuses/5147?catalog_rank=%7B%22rank%22%3A6%2C%22num_filters%22%3A0%2C%22has_search%22%3Atrue%7D&parent=catalog&search_id=7054914
The example in hands-on lab. They used below command to check the service is working or not.
curl -H Host : <URL> <IP_CLUSTER>
And I wonder about reality used. No one add Host in the every request to working.
My question is, It have any possible to solve this issue? I just want to used the invoke request by browser or any application but no sure is possible?
I reach the resource document about Istio ingress, Which the example of qwiklab used it also.
It about VirtualSerivce and look like I have a Istio Ingress before to build this proxy.
Is that a correct way to trobleshooting?
https://istio.io/latest/docs/reference/config/networking/virtual-service/#HTTPRewrite
You can change the config-domain config map in the knative namespace. you can see the config like this
kubectl describe configmap config-domain --namespace knative-serving
Then you can update it like this
Create a config file in a file config-domain.yaml (for example)
apiVersion: v1
kind: ConfigMap
metadata:
name: config-domain
namespace: knative-serving
data:
gblaquiere.dev: ""
Apply the configuration
kubectl apply -f config-domain.yaml
more detail here
With the new domain name, configure your DNS registrar to match your domain name to the load balancer external IP and you website will present the correct host on each request.
The curl -H Host... is a cheat to lie to the Istio controller and say to it "Yes I come from there". If you really come from there (your own domain name) no need to cheat!
Related
NOTE: I tried to include screenshots but stackoverflow does not allow me to add images with preview so I included them as links.
I deployed a web app on AWS using kOps.
I have two nodes and set up a Network Load Balancer.
The target group of the NLB has two nodes (each node is an instance made from the same template).
Load balancer actually seems to be working after checking ingress-nginx-controller logs.
The requests are being distributed over pods correctly. And I can access the service via ingress external address.
But when I go to AWS Console / Target Group, one of the two nodes is marked as and I am concerned with that.
Nodes are running correctly.
I tried to execute sh into nginx-controller and tried curl to both nodes with their internal IP address.
For the healthy node, I get nginx response and for the unhealthy node, it times out.
I do not know how nginx was installed on one of the nodes and not on the other one.
Could anybody let me know the possible reasons?
I had exactly the same problem before and this should be documented somewhere on AWS or Kubernetes. The answer is copied from AWS Premium Support
Short description
The NGINX Ingress Controller sets the spec.externalTrafficPolicy option to Local to preserve the client IP. Also, requests aren't routed to unhealthy worker nodes. The following troubleshooting implies that you don't need to maintain the cluster IP address or preserve the client IP address.
Resolution
If you check the ingress controller service you will see the External Traffic Policy field set to Local.
$ kubectl -n ingress-nginx describe svc ingress-nginx-controller
Output:
Name: ingress-nginx-controller
Namespace: ingress-nginx
...
External Traffic Policy: Local
...
This Local setting drops packets that are sent to Kubernetes nodes that aren't running instances of the NGINX Ingress Controller. Assign NGINX pods (from the Kubernetes website) to the nodes that you want to schedule the NGINX Ingress Controller on.
Update the pec.externalTrafficPolicy option to Cluster
$ kubectl -n ingress-nginx patch service ingress-nginx-controller -p '{"spec":{"externalTrafficPolicy":"Cluster"}}'
Output:
service/ingress-nginx-controller patched
By default, NodePort services perform source address translation (from the Kubernetes website). For NGINX, this means that the source IP of an HTTP request is always the IP address of the Kubernetes node that received the request. If you set a NodePort to the value of the externalTrafficPolicy field in the ingress-nginx service specification to Cluster, then you can't maintain the source IP address.
I am trying to deploy the jpetstore app to EKS and have come across this variable that needs to be filled in. (https://github.com/IBM-Cloud/jpetstore-kubernetes/blob/master/jpetstore/jpetstore.yaml)
In the documentation it states that i can it using the commands:
Edit jpetstore/jpetstore.yaml and jpetstore/jpetstore-mmssearch.yaml and replace all instances of:
<CLUSTER DOMAIN> with your Ingress Subdomain (ibmcloud ks cluster get --cluster CLUSTER_NAME)
(https://github.com/IBM-Cloud/jpetstore-kubernetes)
but this is for ibm cloud and i need it for EKS.
Where can i get this <CLUSTER DOMAIN> value from?
You can define your own name in the ingress spec, example host: jpetstore.example.com. You need to install AWS LB Controller; which will handle your ingress request and create an ALB based on your ingress spec. You then access like: curl -H 'HOST: jpetstore.example.com' http://<your new alb endpoint>
I'm trying to install kubernetes dashboard on AWS Linux image but I'm getting JSON output on the browser. I have run the dashboard commands and given token but it did not work.
Kubernetes 1.14+
1) Open terminal on your workstation: (standard ssh tunnel to port 8002)
$ ssh -i "aws.pem" -L 8002:localhost:8002 ec2-user#ec2-50-50-50-50.eu-west-1.compute.amazonaws.com
2) When you are connected type:
$ kubectl proxy -p 8002
3) Open the following link with a web browser to access the dashboard endpoint: http://localhost:8002/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
Try this:
$ kubectl proxy
Open the following link with a web browser to access the dashboard endpoint:
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
More info
I had similar issue with reaching the dashboard following your linked tutorial.
One way of approaching your issue is to change the type of the service to LoadBalancer:
Exposes the service externally using a cloud provider’s load balancer.
NodePort and ClusterIP services, to which the external load balancer
will route, are automatically created.
For that use:
kubectl get services --all-namespaces
kubectl edit service kubernetes-dashboard -n kube-system -o yaml
and change the type to LoadBalancer.
Wait till the the ELB gets spawned(takes couple of minutes) and then run
kubectl get services --all-namespaces again and you will see the address of your dashboard service and you will be able to reach it under the “External Address”.
As for the tutorial you have posted it is from 2016, and it turns out something went wrong with the /ui in the address url, you can read more about it in this github issue. There is a claim that you should use /ui after authentication, but it also does not work.
For the default settings of ClusterIP you will be able to reach the dashboard on this address:
‘YOURHOSTNAME’/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login
Another option is to delete the old dashboard:
Kubectl delete -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml
Install the official one:
kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml
Run kubectl proxy and reach it on localhost using:
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/overview
We have set up OpenShift Origin on AWS using this handy guide. Our eventual
hope is to have some pods running REST or similar services that we can access
for development purposes. Thus, we don't need DNS or anything like that at this
point, just a public IP with open ports that points to one of our running pods.
Our first proof of concept is trying to get a jenkins (or even just httpd!) pod
that's running inside OpenShift to be exposed via an allocated Elastic IP.
I'm not a network engineer by any stretch, but I was able to successuflly get
an Elastic IP connected to one of my OpenShift "worker" instances, which I
tested by sshing to the public IP allocated to the Elastic IP. At this point
we're struggling to figure out how to make a pod visible that allocated Elastic IP,
owever. We've tried a kubernetes LoadBalancer service, a kubernetes Ingress,
and configuring an AWS Network Load Balancer, all without being able to
successfully connect to 18.2XX.YYY.ZZZ:8080 (my public IP).
The most promising success was using oc port-forward seemed to get at least part way
through, but frustratingly hangs without returning:
$ oc port-forward --loglevel=7 jenkins-2-c1hq2 8080 -n my-project
I0222 19:20:47.708145 73184 loader.go:354] Config loaded from file /home/username/.kube/config
I0222 19:20:47.708979 73184 round_trippers.go:383] GET https://ec2-18-2AA-BBB-CCC.us-east-2.compute.amazonaws.com:8443/api/v1/namespaces/my-project/pods/jenkins-2-c1hq2
....
I0222 19:20:47.758306 73184 round_trippers.go:390] Request Headers:
I0222 19:20:47.758311 73184 round_trippers.go:393] X-Stream-Protocol-Version: portforward.k8s.io
I0222 19:20:47.758316 73184 round_trippers.go:393] User-Agent: oc/v1.6.1+5115d708d7 (linux/amd64) kubernetes/fff65cf
I0222 19:20:47.758321 73184 round_trippers.go:393] Authorization: Bearer Pqg7xP_sawaeqB2ub17MyuWyFnwdFZC5Ny1f122iKh8
I0222 19:20:47.800941 73184 round_trippers.go:408] Response Status: 101 Switching Protocols in 42 milliseconds
I0222 19:20:47.800963 73184 round_trippers.go:408] Response Status: 101 Switching Protocols in 42 milliseconds
Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080
( oc port-forward hangs at this point and never returns)
We've found a lot of information about how to get this working under GKE, but
nothing that's really helpful for getting this working for OpenShift Origin on
AWS. Any ideas?
Update:
So we realized that sysdig.com's blog post on deploying OpenShift Origin on AWS was missing some key AWS setup information, so based on OpenShift Origin's Configuring AWS page, we set the following env variables and re-ran the ansible playbook:
$ export AWS_ACCESS_KEY_ID='AKIASTUFF'
$ export AWS_SECRET_ACCESS_KEY='STUFF'
$ export ec2_vpc_subnet='my_vpc_subnet'
$ ansible-playbook -c paramiko -i hosts openshift-ansible/playbooks/byo/config.yml --key-file ~/.ssh/my-aws-stack
I think this gets us closer, but creating a load-balancer service now gives us an always-pending IP:
$ oc get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
jenkins-lb 172.30.XX.YYY <pending> 8080:31338/TCP 12h
The section on AWS Applying Configuration Changes seems to imply I need to use AWS Instance IDs rather than hostnames to identify my nodes, but I tried this and OpenShift Origin fails to start if I use that method. Still at a loss.
It may not satisfy the "Elastic IP" part but how about using AWS cloud provider ELB to expose the IP/port to the pod via a service to the pod with LoadBalancer option?
Make sure to configure the AWS cloud provider for the cluster (References)
Create a svc to the pod(s) with type LoadBalancer.
For instance to expose a Dashboard via AWS ELB.
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kube-system
spec:
type: LoadBalancer <-----
ports:
- port: 443
targetPort: 8443
selector:
k8s-app: kubernetes-dashboard
Then the svc will be exposed as an ELB and the pod can be accessed via the ELB public DNS name a53e5811bf08011e7bae306bb783bb15-953748093.us-west-1.elb.amazonaws.com.
$ kubectl (oc) get svc kubernetes-dashboard -n kube-system -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
kubernetes-dashboard LoadBalancer 10.100.96.203 a53e5811bf08011e7bae306bb783bb15-953748093.us-west-1.elb.amazonaws.com 443:31636/TCP 16m k8s-app=kubernetes-dashboard
References
K8S AWS Cloud Provider Notes
Reference Architecture OpenShift Container Platform on Amazon Web Services
DEPLOYING OPENSHIFT CONTAINER PLATFORM 3.5 ON AMAZON WEB SERVICES
Configuring for AWS
Check this guide out: https://github.com/dwmkerr/terraform-aws-openshift
It's got some significant advantages vs. the one you referring to in your post. Additionally, it has a clear terraform spec that you can modify and reset to using an Elastic IP (haven't tried myself but should work).
Another way to "lock" your access to the installation is to re-code the assignment of the Public URL to the master instance in the terraform script, e.g., to a domain that you own (the default script sets it to an external IP-based value with "xip.io" added - works great for testing), then set up a basic ALB that forwards https 443 and 8443 to the master instance that the install creates (you can do it manually after the install is completed, also need a second dummy Subnet; dummy-up the healthcheck as well) and link the ALB to your domain via Route53. You can even use free Route53 wildcard certs with this approach.
I have setup a kubernetes(1.9) cluster on two ec-2 servers(ubuntu 16.04) and have installed a dashboard, the cluster is working fine and i get output when i do curl localhost:8001 on the master machine, but im not able to access the ui for the kubernetes dashboard on my laptops browser with masternode_public_ip:8001, master-machine-output
this is what my security group looks like security group which contains my machine ip.
Both the master and slave node are in ready state.
I know there are a lot of other ways to deploy an application on kubernetes cluster, however i want to explore this particular option for POC purpose.
I need to access the dashboard of the kubernetes UI and the nginx application which is deployed on this cluster.
So, my question: is it something else i need to add in my security group
or its because i need to do some more things on my master machine?
Also, it would be great if someone could throw some light on private and public IP and which one could be used to access the application and how does these are related
Here is the screenshot of deployment details describe deployment [2b][2c]4
This is an extensive topic ranging from Kubernetes Services (NodePort or LoadBalancer for this case) to Ingress Controllers and such. But there is a simple, quick and clean way to access your dashboard without all that.
Use either kubectl proxy or kubectl port-forward to access dashboard via embeded Kube apiserver proxy or directly forward from localhost to POD it self.
Found out the answer
Sorry for the delayed reply
I was trying to access the web application through its container's port but in kubernetes there is a concept of NodePort. so, if your container is running at port 8080 it will redirect it to a port between somewhere 30001 to 35000
all you need to do is add details to your deployment file
and expose the service
apiVersion: v1
kind: Service
metadata:
name: hello-svc
labels:
app: hello-world
spec:
type: NodePort
ports:
- port: 8080
nodePort: 30001