Create C++ variable length global arrays - c++

I would like to create a variable length global array so that I can use them in any functions such as main() or anything.
#include <iostream>
int g_t_step[];
int main()
{
g_t_step[1]=1;
std::cout << g_t_step[1];
}

In general, global variables are not the way to go except for logging. It's easy to loose track of which function/method will modify the content of your array and it can become hard to debug as your code base grows. If you give more details about what your are trying to achieve, it will be easier to help you.
By seeing your code sample I'm guessing you're quite new to C++, the code you wrote doesn't compile. The variable g_t_step as you've defined it here should be initialized as well, for example:
int g_t_step[] = {1, 2, 3};
However, if you want your array to be resizable, you cannot declare it this way because g_t_step will be of size 3 no matter what you try to do (in my example because there are 3 numbers on the left side). The reason for that is because g_t_step is allocated on the stack which is defined at compile time.
If you want it to be resizable, it should be allocated on the heap like so:
#include <iostream>
int* g_t_step = nullptr;
int size = 0;
int capacity = 0;
int main() {
g_t_step = new int[10]; // heap allocation
capacity = 10;
g_t_step[0] = 4 // initialize the second element of the array
size = 1;
std::cout << g_t_step[0] << '\n';
return 0;
}
This would be the way to answer your question but it is very minimal, you have to keep track of the current size of your array and the number of elements in it yourself. The easy way is to use STL's std::vector template like so:
#include <iostream>
#include <vector>
// the static part is not necessary if you only have one file
// but is usefull if you define g_t_step in another source file
// which is then linked against the main
static std::vector<int> g_t_step;
int main() {
g_t_step.push_back(1); // initialize the first value...
g_t_step.push_back(2); // second...
g_t_step.push_back(3); // and third...
std::cout
<< g_t_step.size() << ' ' // output 3 because the vector contains 3 numbers
<< g_t_step.capacity() << ' ' // output 4
<< g_t_step[0] << ' ' // output 1
<< g_t_step[1] << ' ' // output 2
<< g_t_step[2] << '\n'; // output 3
}
The class std::vector keeps track of the number of elements (size()) and the size of the array (capacity()) which is always a power of 2 greater than the number of elements (4 in this case).
You could then write something like this:
static std::vector<int> vect;
void add_element(int e) {
vect.push_back(e);
}
int main() {
add_element(4);
add_element(5);
std::cout << vect[0] << ' ' << vect[1] << '\n'; // output: 4 5
}
But again, this is considered bad practice so without more details I wouldn't recommend using that unless it's for a small script.
For more information see:
std::vector
You can also look at static variables.

The concept of variable-length array is applicable on C99 but not in C++ standard. In an enhance way, you can take the help of vectors in C++. They have the ability to resize and reallocate the required memory to use them properly.
Assume the following example code and notice the comments:
#include <iostream>
#include <vector>
int main(void) {
// Example 1: Manually resizing the vector
// ---------------------------------------
std::vector<int> myVec;
int n = 100;
myVec.resize(n); // Similar work to that of VLAs
// Example 2: Dynamically managing the size of vector
// --------------------------------------------------
std::vector<int> myVec {10, 20, 30};
std::vector<int> myVec2;
myVec.push_back(10);
myVec.push_back(20);
// After this, the size of the vector will be increased by 2
// since two elements are inserted.
// You can erase() the vector elements and the sizes will be
// automatically reduced.
.
.
return 0;
}
On the other hand, you should not consider declaring the variables globally.

You are not initizing the array size.
This will give you error at compile time
As when you write
int a
then a variable "a" gets stored in stack memory with random address with size of int (depend on processor)
but when you write
int a[]
then stack memory needs the size of the array to allocate inside the stack
for eg int a[3];
this will aqcuire the size of 3*(size of int) inside the stack memeory
As I dicussed above is static allocation of array which is directly stored inside stack
but you can also allocate the array inside heap which is called a dynamic allocation. I think you have to first try the dynamic allocation by yourself

Related

Is it possible to initialize a vector of strings from an array? If so, how?

So for example, on GeeksForGeeks.org, contributing user "Kartik" offers the following example for initializing a vector of integers:
// CPP program to initialize a vector from
// an array.
#include <bits/stdc++.h>
using namespace std;
int main()
{
int arr[] = { 10, 20, 30 };
int n = sizeof(arr) / sizeof(arr[0]);
vector<int> vect(arr, arr + n);
for (int x : vect)
cout << x << " ";
return 0;
}
If I understand what I'm reading correctly, sizeof(arr) is some number (which I assume is the length of the array arr; i.e. 3, please correct me if I'm wrong) divided by sizeof(arr[0]) (which I assume to be 1) -- basically just being a roundabout way of saying 3/1 = 3.
At this point, vector<int> vect(arr, arr + n) appears to be a vector of size 3, with all values initialized to arr + n (which I'm assuming is a way of saying "use the 3 items from arr to instantiate; again, please correct me if I'm wrong).
Through whatever sorcery, the output is 10 20 30.
Now, regardless of whether or not any of my above rambling is coherent or even remotely correct, my main question is this: can the same technique be used to instantiate some example vector<string> stringVector such that it would iterate through strings designated by some example string stringArray[] = { "wordA", "wordB", "wordC" }? Because, as I understand it, strings have no numeric values, so I imagine it would be difficult to just say vector<string> stringVector(stringArray, stringArray + n) without encountering some funky junk. So if it is possible, how would one go about doing it?
As a rider, why, or in what type of instance, would anyone want to do this for a vector? Does instantiating it from an array (which as I understand it has constant size) defeat the purpose of the vector?
Just as a disclaimer, I'm new to C++ and a lot of the object-oriented syntax involving stuff like std::vector<_Ty, _Alloc>::vector...etc. makes absolutely no sense to me, so I may need that explained in an answer.
To whoever reads this, thank you for taking the time. I hope you're having a good day!
Clarifications:
sizeof(arr): returns the size in bytes of the array, which is 12 because it has 3 ints, and each int in most implementations has a size of 4 bytes, so 3 bytes x 4 = 12 bytes.
sizeof(arr[0]): returns the size in bytes of the first element of the array, which is 4 because it is an int array.
vector<int> vect(arr, arr + n): the vector class has multiple constructors. Here we are not using the constructor you are thinking of. We are using a constructor that takes begin and end iterators for a range of elements, making a copy of those elements. Pointers can be used as iterators, where in this case arr is the begin iterator and arr + n is the end iterator.
Note: int* + int returns int*.
Note: We should also consider that the "end" of an array is a pointer to the next space after the last item in the array, and the constructor will copy all the items except the item past the end.
Answer:
Yes, remember that here, the constructor is taking iterators, not any item of the array, so we can do it easily like this with little changes:
#include <bits/stdc++.h>
using namespace std;
int main()
{
// changed int to string and the array values
string arr[] = { "one", "two", "three" };
int n = sizeof(arr) / sizeof(arr[0]);
// changed int to string
vector<string> vect(arr, arr + n);
// changed int to string
for (string x : vect)
cout << x << " ";
return 0;
}
sizeof(arr)
sizeof gets the size of an object in bytes. The size of an object is the total number of bytes required by the object. Note that I'm using "object" in the C++ context, not the OOP context (an instance of a class).
The size of an object of a given type is always the same. A std::string containing "a" is the same size as a string containing the unabridged text of War and Peace. Any object that appears to have a variable size really contains a reference to variable length data stored elsewhere. In the case of std::string at its most basic, it is a pointer to a dynamically allocated array and an integer keeping track of how much of the dynamically allocated array is actually in use by the string. std::vector is similar, typically it's a pointer to the start of its data, a pointer to the end of its data, and a pointer to the first empty position in the data. No matter how big the vector is, sizeof(vector) will return the size of the pointers, any other book-keeping variables in the vector implementation, and any padding needed to guarantee correct memory alignment.
This means every item in an array is always the same size and thus the same distance from one another.
Through whatever sorcery...
The above means that the total size of the array divided by the size of one element in the array, sizeof(arr) / sizeof(arr[0]), will always provide the number of elements in the array. It doesn't matter what the array contains, numerical or otherwise. There are of course prettier ways like
template <class T, size_t N>
size_t getsize (const T (&array)[N])
{
return N;
}
and later
size_t n = getsize(arr);
As a rider, why, or in what type of instance, would anyone want to do this for a vector?
In the old days one could not directly construct a vector pre-loaded with data. No one wants to write some arbitrary number of lines of push_back to pound all the values in manually, It's boring as hell, a programmer almost always has better things to do, and the odds of injecting an error are too high. But you could nicely and easily format an array and feed the array into the vector, if you needed a vector at all. A lot of the time you could live off the array by itself because the contents were unchanging or at worst would only be shuffled around.
But if the number of contents could change, it could be time for a vector. If you're going to add items and you don't know the upper limit, it's time for vector. If you're calling into an API that requires a vector, it's time for a vector.
I can't speak for everybody, but I'm going to assume that like me a lot of people would have loved to have that easy-peasy array-style initialization for vectors, lists, maps, and the rest of the usual gang.
We were forced to write programs that generated the appropriate code to fill up the vector or define an array and copy the array into the vector much like the above example.
In C++11 we got our wish with std::initialzer_list and a variety of new initialization options1 that allowed
vector<string> vect{"abc","def","ghi"};
eliminating most cases where you would find yourself copying an array into a library container. And the masses rejoiced.
This coincided with a number of tools like std::size, std::begin and std::end to make converting an array into a vector a cakewalk. Assuming you don't pass the array into a function first.
1 Unfortunately the list of initialization options can get a lil' bewildering
Yes, you can do so - you just need to define something that the constructor for String will take (which is a 'const char')
const char * arr[] = { "abc","def","ghi" };
int n = sizeof(arr) / sizeof(arr[0]);
vector<string> vect(arr, arr + n);
for (string &x : vect)
cout << x << " ";
What this is effectively doing is creating the vector from two iterators (a pointer is, loosely, an iterator):
https://en.cppreference.com/w/cpp/container/vector/vector
Constructs the container with the contents of the range [first, last).
This constructor has the same effect as vector(static_cast<size_type>(first), static_cast<value_type>(last), a) if InputIt is an integral type.
And as #MartinYork pointed out, it's much more readable to use the C++ syntax:
const char * arr[] = { "abc","def","ghi" };
vector<string> vect(std::begin(arr), std::end(arr));
So if it is possible, how would one go about doing it?
Simply use vector constructor number 5, which accepts iterators to start and end of range
Constructs the container with the contents of the range [first,
last).
#include <iostream>
#include <vector>
#include <string>
int main()
{
std::string arr[] = { "wordA", "wordB", "wordC" };
std::vector<std::string> v {std::begin(arr), std::end(arr)};
for (auto& str : v)
std::cout << str << "\n";
return 0;
}
Here's how you'd do it. Note that it's a tad awkward to get the length of the array, but that's just because arrays don't carry that information around with them (use a vector!).
#include<string>
#include<vector>
#include<iterator>
#include<iostream>
int main()
{
std::string arr[] = {"abc", "def", "ghi"};
std::vector<std::string> tmp;
std::copy(arr, arr + sizeof(arr)/sizeof(arr[0]), std::back_inserter(tmp));
for(auto str : tmp) {
std::cout<<str<<"\n";
}
}
Update: Yes good point about using std::begin and std::end for the array.

Pass array to function without so it would not change original array no matter what

I have a function that performs some magic on the array that I am passing. But the original array should be intact. Unfortunately it is changing its content based on what is happening in the array.
Can you help me, please?
Function:
void test(int* array) {
array[0] = 1; // EDIT: Added missing line
std::cout << "Inside: " << array[0] << endl;
}
int main() {
int *testArray = new int[1];
testArray[0] = 0;
std::cout<<testArray[0]<<endl;
test(testArray);
std::cout << "Outside: " << testArray[0] << endl;
}
Current result is:
0
Inside: 1
Outside: 1
Result I would want to have:
0
Inside: 1
Outside: 0
Is this possible?
It sounds like you want to pass array by value not by reference. You are passing pointer to a first element here. So, any changes which you perform to that array inside that function will be reflected to original array.
The other problem is you haven't posted fair amount of code regarding the problem you want to solve. I am assuming you want functionality like this.
See live demo here.
#include <iostream>
void test(const int* array) {
array[0]=1;
std::cout << "Inside: " << array[0] << std::endl;
}
int main() {
int *testArray = new int[1];
testArray[0] = 0;
std::cout<<testArray[0]<<std::endl;
test(testArray);
std::cout << "Outside: " << testArray[0] << std::endl;
delete[] testArray;
}
Compiler will give you following errors:
Error(s):
source_file.cpp:4:13: error: read-only variable is not assignable
array[0]=1;
~~~~~~~~^
1 error generated.
You should not use new[] to allocate dynamic arrays in C++. 99% of the time you should be using std::vector If you want dynamic array in C++.
Avoid using C compatibility features...
void test( std::array<int, 1> a )
{
a[0] = 1; // fine
std::cout << "Inside: " << a[0] << endl;
};
int main()
{
std::array<int, 1> testArray;
testArray[0] = 0;
std::cout<<testArray[0]<<endl;
test(testArray);
std::cout << "Outside: " << testArray[0] << endl;
}
If you need the size determined at runtime, use std::vector instead of std::array.
EDIT: As others have pointed out, it seems like you want to either pass the array by value instead of by reference, thus copying the elements of the array and modifying only the copy, or you want to avoid modifying any part of the array altogether. I'll elaborate on both parts a bit more:
In C++, there is near to no distinction between arrays and pointers. Note that both your variable testArray and your parameter array are pointers to the beginning of an array. If you use array to modify any part of the underlying array, what you actually do is modify the memory are that is described by both testArray and array. If you don't want to modify any part of the array at all, it would be helpful to use the const qualifier, as Destructor already wrote in his answer. If you however want to keep the original array but still want to make some modifications inside the function, the following still applies:
To keep the array from being modified, the only general way that works is to copy all of its elements by creating a new array of the same size, copying all elements from the input array to the copy and then working only on the copy, which should be deleted after the function has finished.
My personal answer:
I would recommend that you look into some of C++'s data structures, especially std::vector. If you pass it by value (not by reference), vector takes care of all the necessary copy operations I just described and in all cases, you can use it in the same way as an array, while it provides lots of additional features (i.e. dynamic size, deletion and insertion of elements, simplified iteration, ...).

Can I determine the size/length of an array in C++ without having to hardcode it?

I am basically looking for some sort of "dynamic" way of passing the size/length of an array to a function.
I have tried:
void printArray(int arrayName[])
{
for(int i = 0 ; i < sizeof(arrayName); ++i)
{
cout << arrayName[i] << ' ';
}
}
But I realized it only considers its bytesize and not how many elements are on the array.
And also:
void printArray(int *arrayName)
{
while (*arrayName)
{
cout << *arrayName << ' ';
*arrayName++;
}
}
This has at least printed me everything but more than what I expected, so it doesn't actually work how I want it to.
I reckon it is because I don't exactly tell it how big I need it to be so it plays it "safe" and throws me some big size and eventually starts printing me very odd integers after my last element in the array.
So I finally got this work around, yet I believe there is something better out there!:
void printArray(int *arrayName)
{
while (*arrayName)
{
if (*arrayName == -858993460)
{
break;
}
cout << *arrayName << ' ';
*arrayName++;
}
cout << '\n';
}
After running the program a few times I realized the value after the last element of the array that I have input is always: -858993460, so I made it break the while loop once this value is encountered.
include <iostream>
include <conio.h>
using namespace std;
// functions prototypes
void printArray (int arrayName[], int lengthArray);
// global variables
//main
int main ()
{
int firstArray[] = {5, 10, 15};
int secondArray[] = {2, 4, 6, 8, 10};
printArray (firstArray,3);
printArray (secondArray,5);
// end of program
_getch();
return 0;
}
// functions definitions
void printArray(int arrayName[], int lengthArray)
{
for (int i=0; i<lengthArray; i++)
{
cout << arrayName[i] << " ";
}
cout << "\n";
}
Thank you very much.
TL;DR answer: use std::vector.
But I realized it [sizeof()] only considers its bytesize and not how many elements are on the array.
That wouldn't be a problem in itself: you could still get the size of the array using sizeof(array) / sizeof(array[0]), but the problem is that when passed to a function, arrays decay into a pointer to their first element, so all you can get is sizeof(T *) (T being the type of an element in the array).
About *arrayName++:
This has at least printed me everything but more than what I expected
I don't even understand what inspired you to calculate the size of the array in this way. All that this code does is incrementing the first object in the array until it's zero.
After running the program a few times I realized the value after the last element of the array that I have input is always: -858993460
That's a terrible assumption and it also relies on undefined behavior. You can't really be sure what's in the memory after the first element of your array, you should not even be accessing it.
Basically, in C++, if you want to know the size of a raw array from within a function, then you have to keep track of it manually (e. g. adding an extra size_t size argument), because of the way arrays are passed to functions (remember, they "decay into" a pointer). If you want something more flexible, consider using std::vector<int> (or whatever type of objects you want to store) from the C++ standard library -- it has a size() method, which does exactly what you want.
1st try
When arrays are passed into functions they decay to pointers. Normally, using sizeof on an array would give you its size in bytes which you could then divide by the size in bytes of each element and get the number of elements. But now, since you have a pointer instead of an array, calling sizeof just gives you the size of the pointer (usually 4 or 8 bytes), not the array itself and that's why this fails.
2nd try
The while loop in this example assumes that your array ends with a zero and that's very bad (unless you really did use a zero as a terminator like null-terminated strings for example do). If your array doesn't end with a zero you might be accessing memory that isn't yours and therefore invoking undefined behavior. Another thing that could happen is that your array has a zero element in the middle which would then only print the first few elements.
3rd try
This special value you found lurking at the end of your array can change any time. This value just happened to be there at this point and it might be different another time so hardcoding it like this is very dangerous because again, you could end up accessing memory that isn't yours.
Your final code
This code is correct and passing the length of the array along with the array itself is something commonly done (especially in APIs written in C). This code shouldn't cause any problems as long as you don't pass a length that's actually bigger than the real length of the array and this can happen sometimes so it is also error prone.
Another solution
Another solution would be to use std::vector, a container which along with keeping track of its size, also allows you to add as many elements as you want, i.e. the size doesn't need to be known at runtime. So you could do something like this:
#include <iostream>
#include <vector>
#include <cstddef>
void print_vec(const std::vector<int>& v)
{
std::size_t len = v.size();
for (std::size_t i = 0; i < len; ++i)
{
std::cout << v[i] << std::endl;
}
}
int main()
{
std::vector<int> elements;
elements.push_back(5);
elements.push_back(4);
elements.push_back(3);
elements.push_back(2);
elements.push_back(1);
print_vec(elements);
return 0;
}
Useful links worth checking out
Undefined behavior: Undefined, unspecified and implementation-defined behavior
Array decay: What is array decaying?
std::vector: http://en.cppreference.com/w/cpp/container/vector
As all the other answers say, you should use std::vector or, as you already did, pass the number of elements of the array to the printing function.
Another way to do is is by putting a sentinel element (a value you are sure it won't be inside the array) at the end of the array. In the printing function you then cycle through the elements and when you find the sentinel you stop.
A possible solution: you can use a template to deduce the array length:
template <typename T, int N>
int array_length(T (&array)[N]) {
return N;
}
Note that you have to do this before the array decays to a pointer, but you can use the technique directly or in a wrapper.
For example, if you don't mind rolling your own array wrapper:
template <typename T>
struct array {
T *a_;
int n_;
template <int N> array(T (&a)[N]) : a_(a), n_(N) {}
};
You can do this:
void printArray(array<int> a)
{
for (int i = 0 ; i < a.n_; ++i)
cout << a.a_[i] << ' ';
}
and call it like
int firstArray[] = {5, 10, 15};
int secondArray[] = {2, 4, 6, 8, 10};
printArray (firstArray);
printArray (secondArray);
The key is that the templated constructor isn't explicit so your array can be converted to an instance, capturing the size, before decaying to a pointer.
NB. The wrapper shown isn't suitable for owning dynamically-sized arrays, only for handling statically-sized arrays conveniently. It's also missing various operators and a default constructor, for brevity. In general, prefer std::vector or std::array instead for general use.
... OP's own attempts are completely addressed elsewhere ...
Using the -858993460 value is highly unreliable and, in fact, incorrect.
You can pass a length of array in two ways: pass an additional parameter (say size_t length) to your function, or put a special value to the end of array. The first way is preferred, but the second is used, for example, for passing strings by char*.
In C/C++ it's not possible to know the size of an array at runtime. You might consider using an std::vector class if you need that, and it has other advantages as well.
When you pass the length of the array to printArray, you can use sizeof(array) / sizeof(array[0]), which is to say the size in bytes of the whole array divided by the size in bytes of a single element gives you the size in elements of the array itself.
More to the point, in C++ you may find it to your advantage to learn about std::vector and std::array and prefer these over raw arrays—unless of course you’re doing a homework assignment that requires you to learn about raw arrays. The size() member function will give you the number of elements in a vector.
In C/C++, native arrays degrade to pointers as soon as they are passed to functions. As such, the "length" parameter has to be passed as a parameter for the function.
C++ offers the std::vector collection class. Make sure when you pass it to a function, you pass it by reference or by pointer (to avoid making a copy of the array as it's passed).
#include <vector>
#include <string>
void printArray(std::vector<std::string> &arrayName)
{
size_t length = arrayName.size();
for(size_t i = 0 ; i < length; ++i)
{
cout << arrayName[i] << ' ';
}
}
int main()
{
std::vector<std::string> arrayOfNames;
arrayOfNames.push_back(std::string("Stack"));
arrayOfNames.push_back(std::string("Overflow"));
printArray(arrayOfNames);
...
}

Why do I Get Different Results Using Array?

I've made a simple program that counts matrices, here's the code:
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
int result[3] = {0,0,0};
int matrixc[3][6] = {
{0,0,0,0,0,1},
{0,0,0,1,1,1},
{1,0,1,0,0,1}
};
for(int x=0;x <3;x++)
{
for(int y=0;y < 6;y++)
{
result[x] += (matrixc[x][y] * pow(2,6-y));
}
cout << result[x] << endl;
}
}
The output is what I wanted, it is: 2,14,and 82.
But, when I delete the initialization in the integer array of result:
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
int result[3]; //deleted initialization
int matrixc[3][6] = {
{0,0,0,0,0,1},
{0,0,0,1,1,1},
{1,0,1,0,0,1}
};
for(int x=0;x <3;x++)
{
for(int y=0;y < 6;y++)
{
result[x] += (matrixc[x][y] * pow(2,6-y));
}
cout << result[x] << endl;
}
}
I got odd outputs: 1335484418,32618, and 65617.
Would you like to explain me why would the output be different between an array with and without an initialization?
Actually, I don't want to initialize all result array, because I have a huge data of matrices.
Is it possible if I use std::vector without initializing all of the result array?
Would you like to explain me why would the output be different between an array with and without an initialization?
Without initialisation, automatic variables aren't initialised. They will have an indeterminate value, depending on what happened to be in the memory they occupy.
Actually, I don't want to initialize all "result" array, because I have a huge data of matrices.
You can zero-initialise the whole array, even if it's huge, like this:
int result[huge] = {};
although, if it is huge, then it shouldn't be an automatic variable. These are typically kept on the stack, which is typically not huge and liable to overflow if you put too much stuff on it.
Is it possible if I use std::vector without initializing all of the "result" array?
Yes, a vector will zero-initialise its elements by default.
Without the initialization, the result array contains undetermined values, i.e. values that could be anything that fits into an int.
As I mentioned in my comment if you do not initialize result it will have undetermined values. Later on your are then adding a value to an unknown value which will still be an unknown value. In this situation you need to initialize your data, can zero initialize like so:
int result[3] = {} ;
Would you like to explain me why would the output be different between an array with and without an initialization?
Seriously? If you don't initialize the array elements they are not initialized!
That means they contains junk data, so when you do result[x] += xxx; you are adding to junk, so you get more junk.
Actually, I don't want to initialize all "result" array, because I have a huge data of matrices.
Then you shouldn't rely on their initial value being zero.
You can do this:
int result[3] = { }; // initialize all elements to zero
Is it possible if I use std::vector without initializing all of the "result" array?
std::vector always initializes its members.
When you delete the initialization of the result array, those locations are initially set to unspecified, arbitrary values. You then add to this arbitrary value within the for loop, and end up those unexpected results. The results may be completely different the next time you run your program.
Also, since result[x] += ... reads from an uninitialized variable, deleting the initialization results in your code having undefined behavior.
If you switch over to using a vector you can zero initialize it as
std::vector<int> result(count); // zero initialized with `count` elements
or
std::vector<int> result; // contains zero elements
result.resize(count); // now it contains `count` elements, all set to 0

Assign a pointer to an array

I am trying to create an array that generates random values, then assign a pointer to that array in order to use it in other functions.
Question 1: Is this the right approach?
Question 2: When I run the code below, my pointer function generates values inconsistent with what the actual array's value is. What am I doing wrong?
int size = 100;
int theray[size];
for(int i=0; i<size; i++)
{
theray[i] = (rand()%100);
}
//Output array
cout<<"The array: ";
for(int j=0; j<size; j++)
{
cout<<theray[j]<<" ";
}
cout<<endl;
int (*parray)[100] = &theray;
cout<<"The array pointer: ";
for(int k=0; k<size; k++)
{
cout<<*parray[k]<<" ";
}
Question 1: is this the right approach?
No. The right approach is to use std::vector<int> if size is not known at compile time1, and std::array<int, size> if it is2. There is no need for pointers here.
void foo(const std::vector<int>& v)
{
// do stuff with v
}
...
std::vector<int> v(size); // vector with size elements
// do something with v
// pass v to a function
foo(v);
Question 2: when I run the code below, my pointer function generates values inconsistent with what the actual array's value is. What am I doing wrong?
If you use C++ idioms you won't even encounter this problem, so I consider the question moot. However, in your case you have a problem of operator precedence: be explicit about applying de-reference * before access []:
cout<< (*parray)[k] << " ";
1 As shown in the example, you can use an std::vector as a fixed size array, where the size need not be known at runtime. Just bear in mind that it is possible to change it's size after construction.
2In your example, size is not a compile time constant so you cannot use std::array. However, if you had declared it as const int size = 100; then it would be considered a compile time constant.
Your code is a bit off in three ways. First, there is no need to use &theray. Array names already reference a memory address. You can simply assign the pointer to theray. Second, you're declaring an array of 100 pointers. Based on your description, it sounds like you just want one pointer that points to the array. Your declaration should just be int *parray instead of int *parray [100]. Finally, once you have a pointer to the array, you can access elements of the array the same way you would with the original array, only with the name of the pointer, instead of the name of the array. Try changing your last block of code (starting with the pointer declaration to this:
int *parray;
parray = theray;
cout<<"The array pointer: ";
for(int k=0; k<size; k++)
{
cout<<parray[k]<<" ";
}
Question 1
Is this the right approach?
Usually not. It depends on what you are trying to achieve.
For high level semantics you'd in most cases use std::vector<int> or, if the size is fixed and you are using C++11, std::array<int, size>. If you actually have to go down to the pointer level, you'd usually write it like this:
int *parray = theray;
cout<<"The array pointer: ";
for(int k=0; k<size; k++)
{
cout<<parray[k]<<" ";
}
This works because arrays will degrade to pointers, and the […] subscripts work on these pointers just like they work on the original arrays.
Question 2
When I run the code below, my pointer function generates values inconsistent with what the actual array's value is, what am I doing wrong?
*parray[k] gets interpreted as *(parray[k]) while you intend to use it as (*parray)[k].
Question 1: is this the right approach?
No. Use std::vector<> for arrays whose size can change dynamically (at run-time). Prefer avoiding pointers and manual memory management.
Question 2: when I run the code below, my pointer function generates values inconsistent with what the actual array's value is. What am I doing wrong?
First of all, the fact of creating pointers so you can pass the array to a function. This is not necessary. Here is how I would use classes from the C++ Standard Library to write that program (in C++11):
#include <vector>
#include <algorithm>
#include <iostream>
#include <iterator>
// Sample function that prints the vectors's content
void foo(std::vector<int> const& v)
{
copy(begin(v), end(v), std::ostream_iterator<int>(std::cout, " "));
}
int main()
{
// Populate the vector...
size_t sz = 10;
std::vector<int> v(sz);
generate(begin(v), end(v), [] () { return rand() % 100; });
// Pass it to a function...
foo(v);
}