Modern way to access struct fields by name in C++ - c++

I wanted to check if there's an intuitive and easy way to access struct fields by name in modern C++.
I am aware that similar questions have been asked and answered, and C++ reflection is a well investigated subject.
I've came across libraries like:
boost-hana
boost-reflect
visit_struct
magic_get:
But the common point in all these approaches is that, they only allow you to get the total number of fields within the struct or do a certain operation in for_each manner for all the fields of the struct.
Yes, I can obviously check for the specific "name" of the field I'm looking for, by using the for_each functionality provided by these libraries. But I just wanted to check if there is any other trivial/well-know library that already does this.
I would like to be able to deal with arbitrary number of nested structs, which is why I'm looking for something out of the box.
As Louis Go indicated, it would be great to have an accessor like:
auto field = namespace::getField<mystruct>("fieldname");

You can access class members by name using the member access operator. Example:
struct foo {
int bar;
} instance;
instance.bar = 42; // access by name
If you mean to access a member based on a string variable rather than by compile time identifier, then no. C++ still as of C++20 does not have reflection features necessary to achieve this.
Quite often when programmers want this, what they actually need is an associative container such as std::map.

Related

UML representation for C/C++ function pointers

What would be the best representation of a C/C++ function pointer (fp) in an UML structural diagram?
I'm thinking about using an interface element, may be even if 'degenerate' with the constraint of having at most a single operation declared.
I found some proposal in this document: C and UML Synchronization User Guide, Section 5.7.4. But this sounds quite cumbersome and not very useful in practice. Even if right from a very low level of semantic view. Here's a diagram showing their concept briefly:
IMHO in C and C++ function pointers are used as such a narrowed view of an interface which only provides a single function and it's signature. In C fp's would be used also to implement more complex interfaces declaring a struct containing a set of function pointers.
I think I can even manage to get my particular UML tool (Enterprise Architect) to forward generate the correct code, and synchronizing with code changes without harm.
My questions are:
Would declaration of fp's as part of interface elements in UML proivde a correct semantic view?
What kind of stereotype should be used for single fp declaration? At least I need to provide a typedef in code so this would be my guts choice.(I found this stereotype is proprietary for Enterprise Architect) and I need to define an appropriate stereotype to get the code generation adapted. Actually I have chosen the stereotype name 'delegate', does this have any implications or semantic collisions?
As for C++, would be nesting a 'delegate' sterotyped interface with in a class element enough to express a class member function pointer correctly?
Here's a sample diagram of my thoughts for C language representation:
This is the C code that should be generated from the above model:
struct Interface1;
typedef int (*CallbackFunc)(struct Interface1*);
typedef struct Interface1
{
typedef void (*func1Ptr)(struct Interface1*, int, char*);
typedef int (*func2Ptr)(struct Interface1*, char*);
typedef int (*func3Ptr)(struct Interface1*, CallbackFunc);
func1Ptr func1;
func2Ptr func2;
func3Ptr func3;
void* instance;
};
/* The following extern declarations are only dummies to satisfy code
* reverse engineering, and never should be called.
*/
extern void func1(struct Interface1* self, int p1, char* p2) = 0;
extern int func2(struct Interface1* self, char*) = 0;
extern int func3(struct Interface1* self, CallbackFunc p1) = 0;
EDIT:
The whole problem boils down what would be the best way with the UML tool at hand and its specific code engineering capabilities. Thus I have added the enterprise-architect tag.
EA's help file has the following to say on the subject of function pointers:
When importing C++ source code, Enterprise Architect ignores function pointer declarations. To import them into your model you could create a typedef to define a function pointer type, then declare function pointers using that type. Function pointers declared in this way are imported as attributes of the function pointer type.
Note "could." This is from the C++ section, the C section doesn't mention function pointers at all. So they're not well supported, which in turn is of course due to the gap between the modelling and programming communities: non-trivial language concepts are simply not supported in UML, so any solution will by necessity be tool-specific.
My suggestion is a bit involved and it's a little bit hacky, but I think it should work pretty well.
Because in UML operations are not first-class and cannot be used as data types, my response is to create first-class entities for them - in other words, define function pointer types as classes.
These classes will serve two purposes: the class name will reflect the function's type signature so as to make it look familiar to the programmer in the diagrams, while a set of tagged values will represent the actual parameter and return types for use in code generation.
0) You may want to set up an MDG Technology for steps 1-4.
1) Define a tagged value type "retval" with the Detail "Type=RefGUID;Values=Class;"
2) Define a further set of tagged value types with the same Detail named "par1", "par2" and so on.
3) Define a profile with a Class stereotype "funptr" containing a "retval" tagged value (but no "par" tags).
4) Modify the code generation scripts Attribute Declaration and Parameter to retrieve the "retval" (always) and "par1" - "parN" (where defined) and generate correct syntax for them. This will be the tricky bit and I haven't actually done this. I think it can be done without too much effort, but you'll have to try it. You should also make sure that no code is generated for "funptr" class definitions as they represent anonymous types, not typedefs.
5) In your target project, define a set of classes to represent the primitive C types.
With this, you can define a function pointer type as a «funptr» class with a name like "long(*)(char)" for a function that takes a char and returns a long.
In the "retval" tag, select the "long" class you defined in step 4.
Add the "par1" tag manually, and select the "char" class as above.
You can now use this class as the type of an attribute or parameter, or anywhere else where EA allows a class reference (such as in the "par1" tag of a different «funptr» class; this allows you to easily create pointer types for functions where one of the parameters is itself of a function pointer type).
The hackiest bit here is the numbered "par1" - "parN" tags. While it is possible in EA to define several tags with the same name (you may have to change the tagged value window options to see them), I don't think you could retrieve the different values in the code generation script (and even if you could I don't think the order would necessarily be preserved, and parameter order is important in C). So you'd need to decide the maximum number of parameters beforehand. Not a huge problem in practice; setting up say 20 parameters should be plenty.
This method is of no help for reverse engineering, as EA 9 does not allow you to customize the reverse-engineering process. However, the upcoming EA 10 (currently in RC 1) will allow this, although I haven't looked at it myself so I don't know what form this will take.
Defining of function pointers is out of scope of UML specification. What is more, it is language-specific feature that is not supported by many UML modeling software. So I think that the general answer to your first question suggests avoiding of this feature. Tricks you provided are relevant to Enterprise Architect only and are not compatible with other UML modeling tools. Here is how function pointers is supported in some other UML software:
MagicDraw UML uses <<C++FunctionPtr>> stereotypes for FP class members and <<C++FunctionSignature>> for function prototype.
Sample of code (taken from official site -- see "Modeling typedef and function pointer for C++ code generation" viewlet):
class Pointer
{
void (f*) ( int i );
}
Corresponding UML model:
Objecteering defines FP attributes with corresponding C++ TypeExpr note.
Rational Software Architect from IBM doesn't support function pointers. User might add them to generated code in user-defined sections that are leaved untouched during code->UML and UML->code transformations.
Seems correct to me. I'm not sure you should dive into the low-level details of descripting the type and relation of your single function pointer. I usually find that description an interface is enough detalization without the need to decompose the internal elements of it.
I think you could virtually wrap the function pointer with a class. I think UML has not to be blueprint level to the code, documenting the concept is more important.
My feeling is that you desire to map UML interfaces to the struct-with-function-pointers C idiom.
Interface1 is the important element in your model. Declaring function pointer object types all over the place will make your diagrams illegible.
Enterprise Architect allows you to specify your own code generators. Look for the Code Template Framework. You should be able to modify the preexisting code generator for C with the aid of a new stereotype or two.
I have been able to get something sort of working with Enterprise Architect. Its a bit of a hacky solution, but it meets my needs. What I did:
Create a new class stereotype named FuncPtr. I followed the guide here: http://www.sparxsystems.com/enterprise_architect_user_guide/10/extending_uml_models/addingelementsandmetaclass.html
When I did this I made a new view for the profile. So I can keep it contained outside of my main project.
Modified the Class code templates. Basically selecting the C language and start with the Class Template and hit the 'Add New Stereotype Override' and add in FuncPtr as a new override.
Add in the following code to that new template:
%PI="\n"%
%ClassNotes%
typedef %classTag:"returnType"% (*%className%)(
%list="Attribute" #separator=",\n" #indent=" "%
);
Modified the Attribute Declaration code template. Same way as before, adding in a new Stereotype
Add in the following code to the new template:
%PI=""% %attConst=="T" ? "const" : ""%
%attType%
%attContainment=="By Reference" ? "*" : ""%
%attName%
That's all that I had to do to get function pointers in place in Enterprise Architect. When I want to define a function pointer I just:
Create a regular class
Add in the tag 'returnType' with the type of return I want
Add in attributes for the parameters.
This way it'll create a new type that can be included as attributes or parameters in other classes (structures), and operators. I didn't make it an operator itself because then it wouldn't have been referenced inside the tool as a type you can select.
So its a bit hacky, using special stereotyped classes as typedefs to function pointers.
Like your first example I would use a Classifier but hide it away in a profile. I think they've included it for clarity of the explaining the concept; but in practice the whole idea of stereotypes is abstract away details into profiles to avoid the 'noise' problem. EA is pretty good for handling Profiles.
Where I differ from your first example is that I would Classify the Primitive Type Stereotype not the Data Type stereotype. Data Type is a Domain scope object, while Primitive Type is an atomic element with semantics defined out side the scope of UML. That is not to say you cannot add notes, especially in the profile or give it a very clear stereotype name like functionPointer.

Structs and Classes [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
What are the differences between struct and class in C++
In C++ is there any reason to use a Struct inside of a Class outside of making your own linked list or b-tree?
I've taken a few programming courses in college, but haven't really thought about this until now. It seems like there wouldn't be any benefit from using a struct inside of a class, but I don't have enough experience to know what situations really require certain things. I'm hoping that you experienced programmers can shed some light on this for me.
Yes. When you want to model a complicated object which contains subobjects that are internal to the implementation of the parent object is one excellent case.
There are also many design patterns that can be implemented using such a technique (such as Observer and Delegate).
Structs and classes are the same thing.
In C++ is there any reason to use a Struct inside of a Class outside of making your own linked list or b-tree?
It's a silly question. Of course there is. Inner types are a tool, when you have a problem that requires it, you use it. Iterators, for example, are usually made to be inner types (not that they have to be, but it keeps the type implementation in one place).
Here is a complex scenario: records of sub-records.
struct Title_Record
{
unsigned int id_title;
std::string title_text; // std::string is actually a struct / class.
};
struct Category_Record
{
unsigned int id_category;
std::string category_text;
};
// A record of [id_ingredient, id_title, id_category],
class Ingredient_Entry
{
unsigned int id_ingredient;
Title_Record title; // Use ID field only for storing in database (foreign key).
// But also contain the record for local access.
Category_Record category; // Use ID field only for storing in database (foreign key).
.
};
Every ingredient entry has a title and a category. The title and categories are separate records so that ingredients can share common titles and categories.
Usage:
Title_Record title_table[30]; // Database table of 30 titles.
Category_Record category_table[30]; // Database table of 30 categories.
Remember that the keywords struct and class only differ in their default accessibility.
There are an infinite number of things you can do in C++, so yes, some of them would be best implemented using a struct inside a class.
One reason people use structs is to build an array of them, which makes keeping track of related variables very easy. So one example would be a class that can perform operations on a list of related variables. You are correct that making a linked list is one example where this would be useful.
Another example would be a simple address book or transaction list, where you want to keep separate books that can perform operations on their members.

Getting name and type of a struct field from its object

For example, I have a struct which is something like this:
struct Test
{
int i;
float f;
char ch[10];
};
And I have an object of this struct such as:
Test obj;
Now, I want to programmatically get the field names and type of obj. Is it possible?
This is C++ BTW.
You are asking for Reflection in C++.
I'm afraid you cannot get the field names, but you can get the type of obj using Boost.Typeof:
#include <boost/typeof/typeof.hpp>
typedef BOOST_TYPEOF(obj) ObjType;
No its not possible without writing your own "struct" system. You can get the sizeof of a member but you need to know its name. C++ does not allow you, to my knowledge, to enumerate at compile or run-time the members of a given object. You could put a couple of functions such as "GetNumMembers()" and "GetMemberSize( index )" etc to get the info you are after ...
You may also want to search the web for "C++ serialization", especially the Boost libraries. I'd also search Stack Overflow for "C++ serialization".
Many C++ newbies would like to create object instances from a class name or fill in class fields based on names. This is where Serialization or Deserialization comes in handy.
My experience needing class and member names comes from printing debug information. Class and field names would be useful when handling exceptions, especially generating them.

Structs vs classes in C++ [duplicate]

This question already has answers here:
Closed 14 years ago.
When should someone use structs instead of classes or vice versa in C++? I find myself using structs when a full-blown class managing some information seems like overkill but want to indicate the information being contained are all related. I was wondering what are some good guidelines to be able to tell when one is more appropriate than the other?
Edit:
Found these links while reading the material Stack Overflow indicated was related after the question was submitted:
When should you use a class vs a struct in C++?
What are the differences between struct and class in C++?
Technically, the only difference between the two is that structs are public: by default and classes are private:
Other than that, there is no technical difference.
struct vs class then becomes a purely expressive nuance of the language.
Usually, you avoid putting complicated methods in a struct, and most of the time structs data members will stay public. In a class you want to enforce strong encapsulation.
struct = data is public, with very simple helper methods
class = strongly encapsulated, data is modified / accessed only through methods
I use structs for simple containers of types that provide no constructors or operators.
Classes for everything else.
Use a struct when you simply need a "bucket of stuff" that doesn't have logical invariants that you need to keep. Use a class for anything else.
See also what the C++ FAQ says on the subject.
Use a class if you have methods, a struct if not.
A class should hide all its internals only exposing methods or properties. A struct tends to expose all its internals and has no accessor methods.
Where only one bit of code is accessing some (related) data, a struct may be perfectly reasonable. Where multiple bits of code need to modify the data or if it's anything slightly complicated, a class would be a better bet.
The difference between Classes and Structs are that structs are groups of variables and classes represent objects. Objects have attributes AND methods and be part of a hierarchy.
If you're using C++ to take advantage of the OO capabilities it's best to use classes / objects which are more natural.
I always use class, even for just containers, for consistency. Its purely a choice of style since the difference between the two is negligible.
If you need to control access to the data, you should use classes. If you don't care who is accessing what, and what they're storing in there, then a struct is probably more appropriate.
Also, a class is more appropriate if you need to do any checks on the integrity of the data itself.
See existing questions:
What are the differences between struct and class in C++
When should you use a class vs a struct in C++?
Personally, I use structs when all I need is a container for data (no member functions).
Otherwise, I use classes.
The only time I make an exception to that rule is if I need a simple functor: e.g.
struct compare { bool operator() { ... } };
sort(v.begin(), v.end(), compare());
The need for a public: label would just clutter up the code unnecessarity.
structs in C++ are classes with a default access method of public, so technically other than that default there is no difference and you can use both equivalently.
Yet there are some expectations and natural tendencies, in part because structs in C++ come from C.
My approach: If it has any private data, a constructor/destructor, or any complex member functions (which do more than just conversion upon set/get, etc.), use class.

Best way to take a snapshot of an object to a file

What's the best way to output the public contents of an object to a human-readable file? I'm looking for a way to do this that would not require me to know of all the members of the class, but rather use the compiler to tell me what members exist, and what their names are. There have to be macros or something like that, right?
Contrived example:
class Container
{
public:
Container::Container() {/*initialize members*/};
int stuff;
int otherStuff;
};
Container myCollection;
I would like to be able to do something to see output along the lines of "myCollection: stuff = value, otherStuff = value".
But then if another member is added to Container,
class Container
{
public:
Container::Container() {/*initialize members*/};
int stuff;
string evenMoreStuff;
int otherStuff;
};
Container myCollection;
This time, the output of this snapshot would be "myCollection: stuff = value, evenMoreStuff=value, otherStuff = value"
Is there a macro that would help me accomplish this? Is this even possible? (Also, I can't modify the Container class.)
Another note: I'm most interested about a potential macros in VS, but other solutions are welcome too.
What you're looking for is "[reflection](http://en.wikipedia.org/wiki/Reflection_(computer_science)#C.2B.2B)".
I found two promising links with a Google search for "C++ reflection":
http://www.garret.ru/cppreflection/docs/reflect.html
http://seal-reflex.web.cern.ch/seal-reflex/index.html
Boost has a serialization library that can serialize into text files. You will, however, not be able to get around with now knowing what members the class contains. You would need reflection, which C++ does not have.
Take a look at this library .
What you need is object serialization or object marshalling. A recurrent thema in stackoverflow.
I'd highly recommend taking a look at Google's Protocol Buffers.
There's unfortunately no macro that can do this for you. What you're looking for is a reflective type library. These can vary from fairly simple to home-rolled monstrosities that have no place in a work environment.
There's no real simple way of doing this, and though you may be tempted to simply dump the memory at an address like so:
char *buffer = new char[sizeof(Container)];
memcpy(buffer, containerInstance, sizeof(Container));
I'd really suggest against it unless all you have are simple types.
If you want something really simple but not complete, I'd suggest writing your own
printOn(ostream &) member method.
XDR is one way to do this in a platform independent way.