CPP , creating array and i see only one parameter - c++

i create an Array with 3 numbers;
i see only one number instead 3
int *ArrayA;
ArrayA = new int[3];
ArrayA[0] = 2;
ArrayA[1] = 4;
ArrayA[2] = 6;
when i debugging and follows ArrayA i see only 2;
what could be the problem?

Your object ArrayA is of type int *. Hence it points to a single int. The fact that you have it point at an int[3] array doesn't change that fact. Your debugger can also not guess that you want it to display more than one value.
Instead of using raw c-style arrays, it is usually recommended to use an std::array.
std::array<int,3> arrayA = {2,4,6};

This is not a problem. It's as expected because ArrayA is a pointer. So pointer base address and the address of the 1st element of the array are same. Hence you always see 2 in your debugger. Not sure which debugger you are using, you can try to add ArrayA[index] or *(ArrayA + index) then you can see other values as well.

Related

Why does this pointer to pointer two dimensional array assign new int like this

Im struggling to understand something with this code:
int **p_p_tictactoe;
p_p_tictactoe = new int*[ 3 ];
for ( int i = 0; i < 3; i++ )
{
p_p_tictactoe[ i ] = new int[ 3 ];
}
on the line: p_p_tictactoe[i] = new int [3]; The square brackets dereference p_p_tictactoe once so that we are looking at the value at the address stored by p_p_ticatactoe which is another address as it is a pointer to a pointer. Then this address is assigned to a new int but shouldn't this be assigned to the value at the address rather than the address itself like this: *p_p_tictactoe[i] = new int[3]
p_p_tictactoe is an int **.
Therefore, p_p_tictactoe[i] must be an int *.
Therefore, *p_p_tictactoe[i] must be a single, lonely, int.
Assigning the result of new, which would be an int * here, to an int will not have any useful results.
Another helpful way of looking at this: *p_p_tictactoe[i] is equivalent to p_p_tictactoe[i][0]. That, obviously, is an int, a single cell, and stuffing a pointer into it, won't work.
No.
*p_p_tictactoe[i] (also spelt p_p_tictactoe[i][0]) will be one of the ints in the array that you're creating on that line.
As an aside, this is a very inefficient memory layout. Unless your array is likely to change dimensions, or is jagged, prefer a single block of ints with 2D indexing faked on top.

Difference between int * array[60] and int * array = new int(60);

int * array[60]; //creates an array of 60 pointers to an int
int * array = new int(60); //same thing?
Do these both result in the same type of array? e.g an array of pointers to integers
I know that the first one uninitialized, and the second one is initialized, but I am unsure of what exactly the second one creates.
int * array = new int(60); //same thing?
No, they're not the same thing. array is just a pointer here, and then point to an int with initialized value 60.
If you meant int * array = new int[60];, array will point to an array of 60 ints, they're still not the same thing.
Note that just as the declaration, int* array means it is a pointer, while int* array[60] means it is an array (of 60 pointers). (Array might decay to pointer, i.e. int** for int* array[60], it's not same as int*.)
Perhaps you do not realize that the second case is not an array, the following program prints 60:
#include <iostream>
int main() {
int* foo = new int(60);
std::cout << *foo << '\n';
return 0;
}
Here are two pictures that illustrate the differences between
int * array[5];
and
int * array = new int(5);
To create a pointer int array use int * array = new int[5];
code,
debug view
One of them creates an array, the other doesn't.
int * array[60]; // Creates an array of 60 integer pointers
To help understand the difference, take into account that the first line creates a 60 pointers-block in memory (in the stack if you are inside main, for example), but the second one only a pointer block.
Both are completely different types. For example, try the following:
array++;
In the first line, it does not work. In the second one, it's ok. If you try:
array[0]++;
In the first line you change the first pointer, in the second one you add 1 to the integer (change to 61).

Understand how this double becomes an array?

So I'm currently reading and learning a code from the internet (related to artificial neural network) and I found a part of the code that I don't understand why it works.
double* inputNeurons;
double* hiddenNeurons;
double* outputNeurons;
This is how it was declared. Then in this next code, it was changed and used as an array?
inputNeurons = new( double[in + 1] );
for ( int i=0; i < in; i++ ) inputNeurons[i] = 0;
inputNeurons[in] = -1; // 'in' is declared in the function as an int
So, I want to understand why and how it works. Did it become an array of "doubles"? If so, in what way can I also use this? Can this be used for struct or even class?
Every array can be treated as a pointer. But that does not mean every pointer is an array. Do not mix this up!
Assuming we have an array int test[..], the variable name also represents the address where the array is stored in the memory. So you could write
int * p = test;
At that moment my pointer p "becomes" an array, where "becomes" means 'points to an array'. Your example is similar - the only difference is that the memory is allocated dynamically (heap) and not on the stack (as in my example).
So how are the elements accessed?
Let's say, we want to get the first element (index 0).
We could say
int i = test[0];
or we could say
int i = *p;
Now we want to get the element at index 1:
int i = test[1];
Or - by using pointer arithmetics we could write
int i = *(p + 1);
In C++ (and C) pointers support indexing operator [] which basically adjusts the value of the pointer by the amount specified times the size of the type pointed.
So basically
inputNeurons[5] = 0;
is equivalent to
*(inputNeurons+5) = 0
Now this doesn't give you any guarantee about the fact that inputNeurons points to an address which is correctly allocated to store at least 6 double values but syntactically it is correct and well defined.
You are just adjusting an address to point to the i-th element of a given type starting from the specified address.
This means that
double x;
double* px = &x;
px[5] = 0;
Is syntactically correct although it is wrong, since px+5 is an address which points to memory which has not been reserved correctly to hold that value.
The pointer of type double (double* inputNeurons;) just gets assigned to point to the beginning of an dynamically allocated array (new( double[in + 1])) of the same type. It does not become an array.
You can do this with any other pointer and regular array of the same type. As a matter of fact an array is a pointer to specific address (to its beginning, i.e. to the element with index: 0).
When you increment the pointer by + 1, that one means 1 * type_size (i.e 1 * size_of_double)
In your case: inputNeurons points to the address of the first element of the array. If you dereference it: *inputNeurons, you will get the value stored at that address (if inputNeurons was an array, it would be equivalent to: inputNeurons[0] ). To access the next element just increment by one (*inputNeurons + 1).

How does array declaration work in C++? [duplicate]

This question already has answers here:
How do I use arrays in C++?
(5 answers)
Closed 7 years ago.
I'm trying to understand the different ways of declaring an array (of one or two dimensions) in C++ and what exactly they return (pointers, pointers to pointers, etc.)
Here are some examples:
int A[2][2] = {0,1,2,3};
int A[2][2] = {{0,1},{2,3}};
int **A = new int*[2];
int *A = new int[2][2];
In each case, what exactly is A? Is it a pointer, double pointer? What happens when I do A+1? Are these all valid ways of declaring matrices?
Also, why does the first option not need the second set of curly braces to define "columns"?
Looks like you got a plethora of answers while I was writing mine, but I might as well post my answer anyway so I don't feel like it was all for nothing...
(all sizeof results taken from VC2012 - 32 bit build, pointer sizes would, of course, double with a 64 bit build)
size_t f0(int* I);
size_t f1(int I[]);
size_t f2(int I[2]);
int main(int argc, char** argv)
{
// A0, A1, and A2 are local (on the stack) two-by-two integer arrays
// (they are technically not pointers)
// nested braces not needed because the array dimensions are explicit [2][2]
int A0[2][2] = {0,1,2,3};
// nested braces needed because the array dimensions are not explicit,
//so the braces let the compiler deduce that the missing dimension is 2
int A1[][2] = {{0,1},{2,3}};
// this still works, of course. Very explicit.
int A2[2][2] = {{0,1},{2,3}};
// A3 is a pointer to an integer pointer. New constructs an array of two
// integer pointers (on the heap) and returns a pointer to the first one.
int **A3 = new int*[2];
// if you wanted to access A3 with a double subscript, you would have to
// make the 2 int pointers in the array point to something valid as well
A3[0] = new int[2];
A3[1] = new int[2];
A3[0][0] = 7;
// this one doesn't compile because new doesn't return "pointer to int"
// when it is called like this
int *A4_1 = new int[2][2];
// this edit of the above works but can be confusing
int (*A4_2)[2] = new int[2][2];
// it allocates a two-by-two array of integers and returns a pointer to
// where the first integer is, however the type of the pointer that it
// returns is "pointer to integer array"
// now it works like the 2by2 arrays from earlier,
// but A4_2 is a pointer to the **heap**
A4_2[0][0] = 6;
A4_2[0][1] = 7;
A4_2[1][0] = 8;
A4_2[1][1] = 9;
// looking at the sizes can shed some light on subtle differences here
// between pointers and arrays
A0[0][0] = sizeof(A0); // 16 // typeof(A0) is int[2][2] (2by2 int array, 4 ints total, 16 bytes)
A0[0][1] = sizeof(A0[0]); // 8 // typeof(A0[0]) is int[2] (array of 2 ints)
A1[0][0] = sizeof(A1); // 16 // typeof(A1) is int[2][2]
A1[0][1] = sizeof(A1[0]); // 8 // typeof(A1[0]) is int[2]
A2[0][0] = sizeof(A2); // 16 // typeof(A2) is int[2][2]
A2[0][1] = sizeof(A2[0]); // 8 // typeof(A1[0]) is int[2]
A3[0][0] = sizeof(A3); // 4 // typeof(A3) is int**
A3[0][1] = sizeof(A3[0]); // 4 // typeof(A3[0]) is int*
A4_2[0][0] = sizeof(A4_2); // 4 // typeof(A4_2) is int(*)[2] (pointer to array of 2 ints)
A4_2[0][1] = sizeof(A4_2[0]); // 8 // typeof(A4_2[0]) is int[2] (the first array of 2 ints)
A4_2[1][0] = sizeof(A4_2[1]); // 8 // typeof(A4_2[1]) is int[2] (the second array of 2 ints)
A4_2[1][1] = sizeof(*A4_2); // 8 // typeof(*A4_2) is int[2] (different way to reference the first array of 2 ints)
// confusion between pointers and arrays often arises from the common practice of
// allowing arrays to transparently decay (implicitly convert) to pointers
A0[1][0] = f0(A0[0]); // f0 returns 4.
// Not surprising because declaration of f0 demands int*
A0[1][1] = f1(A0[0]); // f1 returns 4.
// Still not too surprising because declaration of f1 doesn't
// explicitly specify array size
A2[1][0] = f2(A2[0]); // f2 returns 4.
// Much more surprising because declaration of f2 explicitly says
// it takes "int I[2]"
int B0[25];
B0[0] = sizeof(B0); // 100 == (sizeof(int)*25)
B0[1] = f2(B0); // also compiles and returns 4.
// Don't do this! just be aware that this kind of thing can
// happen when arrays decay.
return 0;
}
// these are always returning 4 above because, when compiled,
// all of these functions actually take int* as an argument
size_t f0(int* I)
{
return sizeof(I);
}
size_t f1(int I[])
{
return sizeof(I);
}
size_t f2(int I[2])
{
return sizeof(I);
}
// indeed, if I try to overload f0 like this, it will not compile.
// it will complain that, "function 'size_t f0(int *)' already has a body"
size_t f0(int I[2])
{
return sizeof(I);
}
yes, this sample has tons of signed/unsigned int mismatch, but that part isn't relevant to the question. Also, don't forget to delete everything created with new and delete[] everything created with new[]
EDIT:
"What happens when I do A+1?" -- I missed this earlier.
Operations like this would be called "pointer arithmetic" (even though I called out toward the top of my answer that some of these are not pointers, but they can turn into pointers).
If I have a pointer P to an array of someType, then subscript access P[n] is exactly the same as using this syntax *(P + n). The compiler will take into account the size of the type being pointed to in both cases. So, the resulting opcode will actually do something like this for you *(P + n*sizeof(someType)) or equivalently *(P + n*sizeof(*P)) because the physical cpu doesn't know or care about all our made up "types". In the end, all pointer offsets have to be a byte count. For consistency, using array names like pointers works the same here.
Turning back to the samples above: A0, A1, A2, and A4_2 all behave the same with pointer arithmetic.
A0[0] is the same as *(A0+0), which references the first int[2] of A0
similarly:
A0[1] is the same as *(A0+1) which offsets the "pointer" by sizeof(A0[0]) (i.e. 8, see above) and it ends up referencing the second int[2] of A0
A3 acts slightly differently. This is because A3 is the only one that doesn't store all 4 ints of the 2 by 2 array contiguously. In my example, A3 points to an array of 2 int pointers, each of these point to completely separate arrays of two ints. Using A3[1] or *(A3+1) would still end up directing you to the second of the two int arrays, but it would do it by offsetting only 4bytes from the beginning of A3 (using 32 bit pointers for my purposes) which gives you a pointer that tells you where to find the second two-int array. I hope that makes sense.
For the array declaration, the first specified dimension is the outermost one, an array that contains other arrays.
For the pointer declarations, each * adds another level of indirection.
The syntax was designed, for C, to let declarations mimic the use. Both the C creators and the C++ creator (Bjarne Stroustrup) have described the syntax as a failed experiment. The main problem is that it doesn't follow the usual rules of substitution in mathematics.
In C++11 you can use std::array instead of the square brackets declaration.
Also you can define a similar ptr type builder e.g.
template< class T >
using ptr = T*;
and then write
ptr<int> p;
ptr<ptr<int>> q;
int A[2][2] = {0,1,2,3};
int A[2][2] = {{0,1},{2,3}};
These declare A as array of size 2 of array of size 2 of int. The declarations are absolutely identical.
int **A = new int*[2];
This declares a pointer to pointer to int initialized with an array of two pointers. You should allocate memory for these two pointers as well if you want to use it as two-dimensional array.
int *A = new int[2][2];
And this doesn't compile because the type of right part is pointer to array of size 2 of int which cannot be converted to pointer to int.
In all valid cases A + 1 is the same as &A[1], that means it points to the second element of the array, that is, in case of int A[2][2] to the second array of two ints, and in case of int **A to the second pointer in the array.
The other answers have covered the other declarations but I will explain why you don't need the braces in the first two initializations. The reason why these two initializations are identical:
int A[2][2] = {0,1,2,3};
int A[2][2] = {{0,1},{2,3}};
is because it's covered by aggregate initialization. Braces are allowed to be "elided" (omitted) in this instance.
The C++ standard provides an example in § 8.5.1:
[...]
float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },
};
[...]
In the following example, braces in the initializer-list are elided;
however the initializer-list has the same effect as the
completely-braced initializer-list of the above example,
float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7
};
The initializer for y begins with a left brace, but the one for y[0]
does not, therefore three elements from the list are used. Likewise
the next three are taken successively for y[1] and y[2].
Ok I will try it to explain it to you:
This is a initialization. You create a two dimensional array with the values:
A[0][0] -> 0
A[0][1] -> 1
A[1][0] -> 2
A[1][1] -> 3
This is the exactly the same like above, but here you use braces. Do it always like this its better for reading.
int **A means you have a pointer to a pointer of ints. When you do new int*[2] you will reserve memory for 2 Pointer of integer.
This doesn't will be compiled.
int A[2][2] = {0,1,2,3};
int A[2][2] = {{0,1},{2,3}};
These two are equivalent.
Both mean: "I declare a two dimentional array of integers. The array is of size 2 by 2".
Memory however is not two dimensional, it is not laid out in grids, but (conceptionaly) in one long line. In a multi-dimensional array, each row is just allocated in memory right after the previous one.
Because of this, we can go to the memory address pointed to by A and either store two lines of length 2, or one line of length 4, and the end result in memory will be the same.
int **A = new int*[2];
Declares a pointer to a pointer called A.
A stores the address of a pointer to an array of size 2 containing ints. This array is allocated on the heap.
int *A = new int[2][2];
A is a pointer to an int.
That int is the beginning of a 2x2 int array allocated in the heap.
Aparrently this is invalid:
prog.cpp:5:23: error: cannot convert ‘int (*)[2]’ to ‘int*’ in initialization
int *A = new int[2][2];
But due to what we saw with the first two, this will work (and is 100% equivalent):
int *A new int[4];
int A[2][2] = {0,1,2,3};
A is an array of 4 ints. For the coder's convenience, he has decided to declare it as a 2 dimensional array so compiler will allow coder to access it as a two dimensional array. Coder has initialized all elements linearly as they are laid in memory. As usual, since A is an array, A is itself the address of the array so A + 1 (after application of pointer math) offset A by the size of 2 int pointers. Since the address of an array points to the first element of that array, A will point to first element of the second row of the array, value 2.
Edit: Accessing a two dimensional array using a single array operator will operate along the first dimension treating the second as 0. So A[1] is equivalent to A[1][0]. A + 1 results in equivalent pointer addition.
int A[2][2] = {{0,1},{2,3}};
A is an array of 4 ints. For the coder's convenience, he has decided to declare it as a 2 dimensional array so compiler will allow coder to access it as a two dimensional array. Coder has initialized elements by rows. For the same reasons above, A + 1 points to value 2.
int **A = new int*[2];
A is pointer to int pointer that has been initialized to point to an array of 2 pointers to int pointers. Since A is a pointer, A + 1 takes the value of A, which is the address of the pointer array (and thus, first element of the array) and adds 1 (pointer math), where it will now point to the second element of the array. As the array was not initialized, actually doing something with A + 1 (like reading it or writing to it) will be dangerous (who knows what value is there and what that would actually point to, if it's even a valid address).
int *A = new int[2][2];
Edit: as Jarod42 has pointed out, this is invalid. I think this may be closer to what you meant. If not, we can clarify in the comments.
int *A = new int[4];
A is a pointer to int that has been initialized to point to an anonymous array of 4 ints. Since A is a pointer, A + 1 takes the value of A, which is the address of the pointer array (and thus, first element of the array) and adds 1 (pointer math), where it will now point to the second element of the array.
Some takeaways:
In the first two cases, A is the address of an array while in the last two, A is the value of the pointer which happened to be initialized to the address of an array.
In the first two, A cannot be changed once initialized. In the latter two, A can be changed after initialization and point to some other memory.
That said, you need to be careful with how you might use pointers with an array element. Consider the following:
int *a = new int(5);
int *b = new int(6);
int c[2] = {*a, *b};
int *d = a;
c+1 is not the same as d+1. In fact, accessing d+1 is very dangerous. Why? Because c is an array of int that has been initialized by dereferencing a and b. that means that c, is the address of a chunk of memory, where at that memory location is value which has been set to the value pointed to by tovariable a, and at the next memory location that is a value pinned to by variable b. On the other hand d is just the address of a. So you can see, c != d therefore, there is no reason that c + 1 == d + 1.

Confused: Pointers to Dynamic Arrays Syntax

int* p_bob = new int;
*p_bob = 78;
The above code makes sense to me. I use the de-reference operation to allocation new memory and assign a value of 78.
int* p_dynint = new int[10];
*p_dynint[2] = 12;
This however doesn't make sense. If I try to use the de-reference operator on p_dynint[] I get an error. Why would an array be any different?
*p_bob = 78; this assigns the value 78 to the memory pointed to by p_bob (which represents an int).
p_dynint[2] = 12; simply accesses the 3rd element.
p_dynint[2] is actually equivalent to *(p_dynint+2).
p_dynint[2] is equivalent to *(p_dynint + 2). The derefencing is implied in the [] operator.
It is no real problem to do this:
int* p_dynint=new int[10];
//write first element
*p_dynint=10;
//write second element
*(p_dynint+1)=20;
//write three elements to std::cout
std::cout<<p_dynint[0]<<p_dynint[1]<<p_dynint[10]<<std::endl;
This example also highlights a problem with arrays. You can read and write anything. The output generated by p_dynint[10] is an int but its value is just the next few bytes converted to an int.
Use containers if possible (for further reasoning read this)