I am looking for a least time-complex algorithm that would solve a variant of the perfect sum problem (initially: finding all variable size subset combinations from an array [*] of integers of size n that sum to a specific number x) where the subset combination size is of a fixed size k and return the possible combinations without direct and also indirect (when there's a combination containing the exact same elements from another in another order) duplicates.
I'm aware this problem is NP-hard, so I am not expecting a perfect general solution but something that could at least run in a reasonable time in my case, with n close to 1000 and k around 10
Things I have tried so far:
Finding a combination, then doing successive modifications on it and its modifications
Let's assume I have an array such as:
s = [1,2,3,3,4,5,6,9]
So I have n = 8, and I'd like x = 10 for k = 3
I found thanks to some obscure method (bruteforce?) a subset [3,3,4]
From this subset I'm finding other possible combinations by taking two elements out of it and replacing them with other elements that sum the same, i.e. (3, 3) can be replaced by (1, 5) since both got the same sum and the replacing numbers are not already in use. So I obtain another subset [1,5,4], then I repeat the process for all the obtained subsets... indefinitely?
The main issue as suggested here is that it's hard to determine when it's done and this method is rather chaotic. I imagined some variants of this method but they really are work in progress
Iterating through the set to list all k long combinations that sum to x
Pretty self explanatory. This is a naive method that do not work well in my case since I have a pretty large n and a k that is not small enough to avoid a catastrophically big number of combinations (the magnitude of the number of combinations is 10^27!)
I experimented several mechanism related to setting an area of research instead of stupidly iterating through all possibilities, but it's rather complicated and still work in progress
What would you suggest? (Snippets can be in any language, but I prefer C++)
[*] To clear the doubt about whether or not the base collection can contain duplicates, I used the term "array" instead of "set" to be more precise. The collection can contain duplicate integers in my case and quite much, with 70 different integers for 1000 elements (counts rounded), for example
With reasonable sum limit this problem might be solved using extension of dynamic programming approach for subset sum problem or coin change problem with predetermined number of coins. Note that we can count all variants in pseudopolynomial time O(x*n), but output size might grow exponentially, so generation of all variants might be a problem.
Make 3d array, list or vector with outer dimension x-1 for example: A[][][]. Every element A[p] of this list contains list of possible subsets with sum p.
We can walk through all elements (call current element item) of initial "set" (I noticed repeating elements in your example, so it is not true set).
Now scan A[] list from the last entry to the beginning. (This trick helps to avoid repeating usage of the same item).
If A[i - item] contains subsets with size < k, we can add all these subsets to A[i] appending item.
After full scan A[x] will contain subsets of size k and less, having sum x, and we can filter only those of size k
Example of output of my quick-made Delphi program for the next data:
Lst := [1,2,3,3,4,5,6,7];
k := 3;
sum := 10;
3 3 4
2 3 5 //distinct 3's
2 3 5
1 4 5
1 3 6
1 3 6 //distinct 3's
1 2 7
To exclude variants with distinct repeated elements (if needed), we can use non-first occurence only for subsets already containing the first occurence of item (so 3 3 4 will be valid while the second 2 3 5 won't be generated)
I literally translate my Delphi code into C++ (weird, I think :)
int main()
{
vector<vector<vector<int>>> A;
vector<int> Lst = { 1, 2, 3, 3, 4, 5, 6, 7 };
int k = 3;
int sum = 10;
A.push_back({ {0} }); //fictive array to make non-empty variant
for (int i = 0; i < sum; i++)
A.push_back({{}});
for (int item : Lst) {
for (int i = sum; i >= item; i--) {
for (int j = 0; j < A[i - item].size(); j++)
if (A[i - item][j].size() < k + 1 &&
A[i - item][j].size() > 0) {
vector<int> t = A[i - item][j];
t.push_back(item);
A[i].push_back(t); //add new variant including current item
}
}
}
//output needed variants
for (int i = 0; i < A[sum].size(); i++)
if (A[sum][i].size() == k + 1) {
for (int j = 1; j < A[sum][i].size(); j++) //excluding fictive 0
cout << A[sum][i][j] << " ";
cout << endl;
}
}
Here is a complete solution in Python. Translation to C++ is left to the reader.
Like the usual subset sum, generation of the doubly linked summary of the solutions is pseudo-polynomial. It is O(count_values * distinct_sums * depths_of_sums). However actually iterating through them can be exponential. But using generators the way I did avoids using a lot of memory to generate that list, even if it can take a long time to run.
from collections import namedtuple
# This is a doubly linked list.
# (value, tail) will be one group of solutions. (next_answer) is another.
SumPath = namedtuple('SumPath', 'value tail next_answer')
def fixed_sum_paths (array, target, count):
# First find counts of values to handle duplications.
value_repeats = {}
for value in array:
if value in value_repeats:
value_repeats[value] += 1
else:
value_repeats[value] = 1
# paths[depth][x] will be all subsets of size depth that sum to x.
paths = [{} for i in range(count+1)]
# First we add the empty set.
paths[0][0] = SumPath(value=None, tail=None, next_answer=None)
# Now we start adding values to it.
for value, repeats in value_repeats.items():
# Reversed depth avoids seeing paths we will find using this value.
for depth in reversed(range(len(paths))):
for result, path in paths[depth].items():
for i in range(1, repeats+1):
if count < i + depth:
# Do not fill in too deep.
break
result += value
if result in paths[depth+i]:
path = SumPath(
value=value,
tail=path,
next_answer=paths[depth+i][result]
)
else:
path = SumPath(
value=value,
tail=path,
next_answer=None
)
paths[depth+i][result] = path
# Subtle bug fix, a path for value, value
# should not lead to value, other_value because
# we already inserted that first.
path = SumPath(
value=value,
tail=path.tail,
next_answer=None
)
return paths[count][target]
def path_iter(paths):
if paths.value is None:
# We are the tail
yield []
else:
while paths is not None:
value = paths.value
for answer in path_iter(paths.tail):
answer.append(value)
yield answer
paths = paths.next_answer
def fixed_sums (array, target, count):
paths = fixed_sum_paths(array, target, count)
return path_iter(paths)
for path in fixed_sums([1,2,3,3,4,5,6,9], 10, 3):
print(path)
Incidentally for your example, here are the solutions:
[1, 3, 6]
[1, 4, 5]
[2, 3, 5]
[3, 3, 4]
You should first sort the so called array. Secondly, you should determine if the problem is actually solvable, to save time... So what you do is you take the last k elements and see if the sum of those is larger or equal to the x value, if it is smaller, you are done it is not possible to do something like that.... If it is actually equal yes you are also done there is no other permutations.... O(n) feels nice doesn't it?? If it is larger, than you got a lot of work to do..... You need to store all the permutations in an seperate array.... Then you go ahead and replace the smallest of the k numbers with the smallest element in the array.... If this is still larger than x then you do it for the second and third and so on until you get something smaller than x. Once you reach a point where you have the sum smaller than x, you can go ahead and start to increase the value of the last position you stopped at until you hit x.... Once you hit x that is your combination.... Then you can go ahead and get the previous element so if you had 1,1,5, 6 in your thingy, you can go ahead and grab the 1 as well, add it to your smallest element, 5 to get 6, next you check, can you write this number 6 as a combination of two values, you stop once you hit the value.... Then you can repeat for the others as well.... You problem can be solved in O(n!) time in the worst case.... I would not suggest that you 10^27 combinations, meaning you have more than 10^27 elements, mhmmm bad idea do you even have that much space??? That's like 3bits for the header and 8 bits for each integer you would need 9.8765*10^25 terabytes just to store that clossal array, more memory than a supercomputer, you should worry about whether your computer can even store this monster rather than if you can solve the problem, that many combinations even if you find a quadratic solution it would crash your computer, and you know what quadratic is a long way off from O(n!)...
A brute force method using recursion might look like this...
For example, given variables set, x, k, the following pseudo code might work:
setSumStructure find(int[] set, int x, int k, int setIdx)
{
int sz = set.length - setIdx;
if (sz < x) return null;
if (sz == x) check sum of set[setIdx] -> set[set.size] == k. if it does, return the set together with the sum, else return null;
for (int i = setIdx; i < set.size - (k - 1); i++)
filter(find (set, x - set[i], k - 1, i + 1));
return filteredSets;
}
Related
Given an array A with size N. Value of a subset of Array A is defined as product of all numbers in that subset. We have to return the product of values of all possible non-empty subsets of array A %(10^9+7).
E.G. array A {3,5}
` Value{3} = 3,
Value{5} = 5,
Value{3,5} = 5*3 = 15
answer = 3*5*15 %(10^9+7).
Can someone explain the mathematics behind the problem. I am thinking of solving it by combination to solve it efficiently.
I have tried using brute force it gives correct answer but it is way too slow.
Next approach is using combination. Now i think that if we take all the sets and multiply all the numbers in those set then we will get the correct answer. Thus i have to find out how many times a number is coming in calculation of answer. In the example 5 and 3 both come 2 times. If we look closely, each number in a will come same number of times.
You're heading in the right direction.
Let x be an element of the given array A. In our final answer, x appears p number of times, where p is equivalent to the number of subsets of A possible that include x.
How to calculate p? Once we have decided that we will definitely include x in our subset, we have two choices for the rest N-1 elements: either include them in set or do not. So, we conclude p = 2^(N-1).
So, each element of A appears exactly 2^(N-1) times in the final product. All remains is to calculate the answer: (a1 * a2 * ... * an)^p. Since the exponent is very large, you can use binary exponentiation for fast calculation.
As Matt Timmermans suggested in comments below, we can obtain our answer without actually calculating p = 2^(N-1). We first calculate the product a1 * a2 * ... * an. Then, we simply square this product n-1 times.
The corresponding code in C++:
int func(vector<int> &a) {
int n = a.size();
int m = 1e9+7;
if(n==0) return 0;
if(n==1) return (m + a[0]%m)%m;
long long ans = 1;
//first calculate ans = (a1*a2*...*an)%m
for(int x:a){
//negative sign does not matter since we're squaring
if(x<0) x *= -1;
x %= m;
ans *= x;
ans %= m;
}
//now calculate ans = [ ans^(2^(n-1)) ]%m
//we do this by squaring ans n-1 times
for(int i=1; i<n; i++){
ans = ans*ans;
ans %= m;
}
return (int)ans;
}
Let,
A={a,b,c}
All possible subset of A is ={{},{a},{b},{c},{a,b},{b,c},{c,a},{a,b,c,d}}
Here number of occurrence of each of the element are 4 times.
So if A={a,b,c,d}, then numbers of occurrence of each of the element will be 2^3.
So if the size of A is n, number of occurrence of eachof the element will be 2^(n-1)
So final result will be = a1^p*a2^pa3^p....*an^p
where p is 2^(n-1)
We need to solve x^2^(n-1) % mod.
We can write x^2^(n-1) % mod as x^(2^(n-1) % phi(mod)) %mod . link
As mod is a prime then phi(mod)=mod-1.
So at first find p= 2^(n-1) %(mod-1).
Then find Ai^p % mod for each of the number and multiply with the final result.
I read the previous answers and I was understanding the process of making sets. So here I am trying to put it in as simple as possible for people so that they can apply it to similar problems.
Let i be an element of array A. Following the approach given in the question, i appears p number of times in final answer.
Now, how do we make different sets. We take sets containing only one element, then sets containing group of two, then group of 3 ..... group of n elements.
Now we want to know for every time when we are making set of certain numbers say group of 3 elements, how many of these sets contain i?
There are n elements so for sets of 3 elements which always contains i, combinations are (n-1)C(3-1) because from n-1 elements we can chose 3-1 elements.
if we do this for every group, p = [ (n-1)C(x-1) ] , m going from 1 to n. Thus, p= 2^(n-1).
Similarly for every element i, p will be same. Thus we get
final answer= A[0]^p *A[1]^p...... A[n]^p
From a given array (call it numbers[]), i want another array (results[]) which contains all sum possibilities between elements of the first array.
For example, if I have numbers[] = {1,3,5}, results[] will be {1,3,5,4,8,6,9,0}.
there are 2^n possibilities.
It doesn't matter if a number appears two times because results[] will be a set
I did it for sum of pairs or triplet, and it's very easy. But I don't understand how it works when we sum 0, 1, 2 or n numbers.
This is what I did for pairs :
std::unordered_set<int> pairPossibilities(std::vector<int> &numbers) {
std::unordered_set<int> results;
for(int i=0;i<numbers.size()-1;i++) {
for(int j=i+1;j<numbers.size();j++) {
results.insert(numbers.at(i)+numbers.at(j));
}
}
return results;
}
Also, assuming that the numbers[] is sorted, is there any possibility to sort results[] while we fill it ?
Thanks!
This can be done with Dynamic Programming (DP) in O(n*W) where W = sum{numbers}.
This is basically the same solution of Subset Sum Problem, exploiting the fact that the problem has optimal substructure.
DP[i, 0] = true
DP[-1, w] = false w != 0
DP[i, w] = DP[i-1, w] OR DP[i-1, w - numbers[i]]
Start by following the above solution to find DP[n, sum{numbers}].
As a result, you will get:
DP[n , w] = true if and only if w can be constructed from numbers
Following on from the Dynamic Programming answer, You could go with a recursive solution, and then use memoization to cache the results, top-down approach in contrast to Amit's bottom-up.
vector<int> subsetSum(vector<int>& nums)
{
vector<int> ans;
generateSubsetSum(ans,0,nums,0);
return ans;
}
void generateSubsetSum(vector<int>& ans, int sum, vector<int>& nums, int i)
{
if(i == nums.size() )
{
ans.push_back(sum);
return;
}
generateSubsetSum(ans,sum + nums[i],nums,i + 1);
generateSubsetSum(ans,sum,nums,i + 1);
}
Result is : {9 4 6 1 8 3 5 0} for the set {1,3,5}
This simply picks the first number at the first index i adds it to the sum and recurses. Once it returns, the second branch follows, sum, without the nums[i] added. To memoize this you would have a cache to store sum at i.
I would do something like this (seems easier) [I wanted to put this in comment but can't write the shifting and removing an elem at a time - you might need a linked list]
1 3 5
3 5
-----
4 8
1 3 5
5
-----
6
1 3 5
3 5
5
------
9
Add 0 to the list in the end.
Another way to solve this is create a subset arrays of vector of elements then sum up each array's vector's data.
e.g
1 3 5 = {1, 3} + {1,5} + {3,5} + {1,3,5} after removing sets of single element.
Keep in mind that it is always easier said than done. A single tiny mistake along the implemented algorithm would take a lot of time in debug to find it out. =]]
There has to be a binary chop version, as well. This one is a bit heavy-handed and relies on that set of answers you mention to filter repeated results:
Split the list into 2,
and generate the list of sums for each half
by recursion:
the minimum state is either
2 entries, with 1 result,
or 3 entries with 3 results
alternatively, take it down to 1 entry with 0 results, if you insist
Then combine the 2 halves:
All the returned entries from both halves are legitimate results
There are 4 additional result sets to add to the output result by combining:
The first half inputs vs the second half inputs
The first half outputs vs the second half inputs
The first half inputs vs the second half outputs
The first half outputs vs the second half outputs
Note that the outputs of the two halves may have some elements in common, but they should be treated separately for these combines.
The inputs can be scrubbed from the returned outputs of each recursion if the inputs are legitimate final results. If they are they can either be added back in at the top-level stage or returned by the bottom level stage and not considered again in the combining.
You could use a bitfield instead of a set to filter out the duplicates. There are reasonably efficient ways of stepping through a bitfield to find all the set bits. The max size of the bitfield is the sum of all the inputs.
There is no intelligence here, but lots of opportunity for parallel processing within the recursion and combine steps.
Say I have a set of numbers from [0, ....., 499]. Combinations are currently being generated sequentially using the C++ std::next_permutation. For reference, the size of each tuple I am pulling out is 3, so I am returning sequential results such as [0,1,2], [0,1,3], [0,1,4], ... [497,498,499].
Now, I want to parallelize the code that this is sitting in, so a sequential generation of these combinations will no longer work. Are there any existing algorithms for computing the ith combination of 3 from 500 numbers?
I want to make sure that each thread, regardless of the iterations of the loop it gets, can compute a standalone combination based on the i it is iterating with. So if I want the combination for i=38 in thread 1, I can compute [1,2,5] while simultaneously computing i=0 in thread 2 as [0,1,2].
EDIT Below statement is irrelevant, I mixed myself up
I've looked at algorithms that utilize factorials to narrow down each individual element from left to right, but I can't use these as 500! sure won't fit into memory. Any suggestions?
Here is my shot:
int k = 527; //The kth combination is calculated
int N=500; //Number of Elements you have
int a=0,b=1,c=2; //a,b,c are the numbers you get out
while(k >= (N-a-1)*(N-a-2)/2){
k -= (N-a-1)*(N-a-2)/2;
a++;
}
b= a+1;
while(k >= N-1-b){
k -= N-1-b;
b++;
}
c = b+1+k;
cout << "["<<a<<","<<b<<","<<c<<"]"<<endl; //The result
Got this thinking about how many combinations there are until the next number is increased. However it only works for three elements. I can't guarantee that it is correct. Would be cool if you compare it to your results and give some feedback.
If you are looking for a way to obtain the lexicographic index or rank of a unique combination instead of a permutation, then your problem falls under the binomial coefficient. The binomial coefficient handles problems of choosing unique combinations in groups of K with a total of N items.
I have written a class in C# to handle common functions for working with the binomial coefficient. It performs the following tasks:
Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters.
Converts the K-indexes to the proper lexicographic index or rank of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration. It does this by using a mathematical property inherent in Pascal's Triangle and is very efficient compared to iterating over the set.
Converts the index in a sorted binomial coefficient table to the corresponding K-indexes. I believe it is also faster than older iterative solutions.
Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers.
The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to use the 4 above methods. Accessor methods are provided to access the table.
There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.
To read about this class and download the code, see Tablizing The Binomial Coeffieicent.
The following tested code will iterate through each unique combinations:
public void Test10Choose5()
{
String S;
int Loop;
int N = 500; // Total number of elements in the set.
int K = 3; // Total number of elements in each group.
// Create the bin coeff object required to get all
// the combos for this N choose K combination.
BinCoeff<int> BC = new BinCoeff<int>(N, K, false);
int NumCombos = BinCoeff<int>.GetBinCoeff(N, K);
// The Kindexes array specifies the indexes for a lexigraphic element.
int[] KIndexes = new int[K];
StringBuilder SB = new StringBuilder();
// Loop thru all the combinations for this N choose K case.
for (int Combo = 0; Combo < NumCombos; Combo++)
{
// Get the k-indexes for this combination.
BC.GetKIndexes(Combo, KIndexes);
// Verify that the Kindexes returned can be used to retrive the
// rank or lexigraphic order of the KIndexes in the table.
int Val = BC.GetIndex(true, KIndexes);
if (Val != Combo)
{
S = "Val of " + Val.ToString() + " != Combo Value of " + Combo.ToString();
Console.WriteLine(S);
}
SB.Remove(0, SB.Length);
for (Loop = 0; Loop < K; Loop++)
{
SB.Append(KIndexes[Loop].ToString());
if (Loop < K - 1)
SB.Append(" ");
}
S = "KIndexes = " + SB.ToString();
Console.WriteLine(S);
}
}
You should be able to port this class over fairly easily to C++. You probably will not have to port over the generic part of the class to accomplish your goals. Your test case of 500 choose 3 yields 20,708,500 unique combinations, which will fit in a 4 byte int. If 500 choose 3 is simply an example case and you need to choose combinations greater than 3, then you will have to use longs or perhaps fixed point int.
You can describe a particular selection of 3 out of 500 objects as a triple (i, j, k), where i is a number from 0 to 499 (the index of the first number), j ranges from 0 to 498 (the index of the second, skipping over whichever number was first), and k ranges from 0 to 497 (index of the last, skipping both previously-selected numbers). Given that, it's actually pretty easy to enumerate all the possible selections: starting with (0,0,0), increment k until it gets to its maximum value, then increment j and reset k to 0 and so on, until j gets to its maximum value, and so on, until j gets to its own maximum value; then increment i and reset both j and k and continue.
If this description sounds familiar, it's because it's exactly the same way that incrementing a base-10 number works, except that the base is much funkier, and in fact the base varies from digit to digit. You can use this insight to implement a very compact version of the idea: for any integer n from 0 to 500*499*498, you can get:
struct {
int i, j, k;
} triple;
triple AsTriple(int n) {
triple result;
result.k = n % 498;
n = n / 498;
result.j = n % 499;
n = n / 499;
result.i = n % 500; // unnecessary, any legal n will already be between 0 and 499
return result;
}
void PrintSelections(triple t) {
int i, j, k;
i = t.i;
j = t.j + (i <= j ? 1 : 0);
k = t.k + (i <= k ? 1 : 0) + (j <= k ? 1 : 0);
std::cout << "[" << i << "," << j << "," << k << "]" << std::endl;
}
void PrintRange(int start, int end) {
for (int i = start; i < end; ++i) {
PrintSelections(AsTriple(i));
}
}
Now to shard, you can just take the numbers from 0 to 500*499*498, divide them into subranges in any way you'd like, and have each shard compute the permutation for each value in its subrange.
This trick is very handy for any problem in which you need to enumerate subsets.
I've been trying to solve a problem in combinations. I have a matrix 6X6 i'm trying to find all combinations of length 8 in the matrix.
I have to move from neighbor to neighbor form each row,column position and i wrote a recursive program which generates the combination but the problem is it generates a lot of duplicates as well and hence is inefficient. I would like to know how could i eliminate calculating duplicates and save time.
int a={{1,2,3,4,5,6},
{8,9,1,2,3,4},
{5,6,7,8,9,1},
{2,3,4,5,6,7},
{8,9,1,2,3,4},
{5,6,7,8,9,1},
}
void genSeq(int row,int col,int length,int combi)
{
if(length==8)
{
printf("%d\n",combi);
return;
}
combi = (combi * 10) + a[row][col];
if((row-1)>=0)
genSeq(row-1,col,length+1,combi);
if((col-1)>=0)
genSeq(row,col-1,length+1,combi);
if((row+1)<6)
genSeq(row+1,col,length+1,combi);
if((col+1)<6)
genSeq(row,col+1,length+1,combi);
if((row+1)<6&&(col+1)<6)
genSeq(row+1,col+1,length+1,combi);
if((row-1)>=0&&(col+1)<6)
genSeq(row-1,col+1,length+1,combi);
if((row+1)<6&&(row-1)>=0)
genSeq(row+1,col-1,length+1,combi);
if((row-1)>=0&&(col-1)>=0)
genSeq(row-1,col-1,length+1,combi);
}
I was also thinking of writing a dynamic program basically recursion with memorization. Is it a better choice?? if yes than I'm not clear how to implement it in recursion. Have i really hit a dead end with approach???
Thankyou
Edit
Eg result
12121212,12121218,12121219,12121211,12121213.
the restrictions are that you have to move to your neighbor from any point, you have to start for each position in the matrix i.e each row,col. you can move one step at a time, i.e right, left, up, down and the both diagonal positions. Check the if conditions.
i.e
if your in (0,0) you can move to either (1,0) or (1,1) or (0,1) i.e three neighbors.
if your in (2,2) you can move to eight neighbors.
so on...
To eliminate duplicates you can covert 8 digit sequences into 8-digit integers and put them in a hashtable.
Memoization might be a good idea. You can memoize for each cell in the matrix all possible combinations of length 2-7 that can be achieved from it. Going backwards: first generate for each cell all sequences of 2 digits. Then based on that of 3 digits etc.
UPDATE: code in Python
# original matrix
lst = [
[1,2,3,4,5,6],
[8,9,1,2,3,4],
[5,6,7,8,9,1],
[2,3,4,5,6,7],
[8,9,1,2,3,4],
[5,6,7,8,9,1]]
# working matrtix; wrk[i][j] contains a set of all possible paths of length k which can end in lst[i][j]
wrk = [[set() for i in range(6)] for j in range(6)]
# for the first (0rh) iteration initialize with single step paths
for i in range(0, 6):
for j in range(0, 6):
wrk[i][j].add(lst[i][j])
# run iterations 1 through 7
for k in range(1,8):
# create new emtpy wrk matrix for the next iteration
nw = [[set() for i in range(6)] for j in range(6)]
for i in range(0, 6):
for j in range(0, 6):
# the next gen. wrk[i][j] is going to be based on the current wrk paths of its neighbors
ns = set()
if i > 0:
for p in wrk[i-1][j]:
ns.add(10**k * lst[i][j] + p)
if i < 5:
for p in wrk[i+1][j]:
ns.add(10**k * lst[i][j] + p)
if j > 0:
for p in wrk[i][j-1]:
ns.add(10**k * lst[i][j] + p)
if j < 5:
for p in wrk[i][j+1]:
ns.add(10**k * lst[i][j] + p)
nw[i][j] = ns
wrk = nw
# now build final set to eliminate duplicates
result = set()
for i in range(0, 6):
for j in range(0, 6):
result |= wrk[i][j]
print len(result)
print result
There are LOTS of ways to do this. Going through every combination is a perfectly reasonable first approach. It all depends on your requirements. If your matrix is small, and this operation isn't time sensitive, then there's no problem.
I'm not really an algorithms guy, but I'm sure there are really clever ways of doing this that someone will post after me.
Also, in Java when using CamelCase, method names should start with a lowercase character.
int a={{1,2,3,4,5,6},
{8,9,1,2,3,4},
{5,6,7,8,9,1},
{2,3,4,5,6,7},
{8,9,1,2,3,4},
{5,6,7,8,9,1},
}
By length you mean summation of combination of matrix elements resulting 8. i.e., elements to sum up 8 with in row itself and with the other row elements. From row 1 = { {2,6}, {3,5}, } and now row 1 elements with row 2 and so on. Is that what you are expecting ?
You can think about your matrix like it is one-dimension array - no matter here ("place" the rows one by one). For one-dimension array you can write a function like (assuming you should print the combinations)
f(i, n) prints all combinations of length n using elements a[i] ... a[last].
It should skip some elements from a[i] to a[i + k] (for all possible k), print a[k] and make a recursive call f(i + k + 1, n - 1).
An algorithm which will take two positive numbers N and K and calculate the biggest possible number we can get by transforming N into another number via removing K digits from N.
For ex, let say we have N=12345 and K=3 so the biggest possible number we can get by removing 3 digits from N is 45 (other transformations would be 12, 15, 35 but 45 is the biggest). Also you cannot change the order of the digits in N (so 54 is NOT a solution). Another example would be N=66621542 and K=3 so the solution will be 66654.
I know this is a dynamic programming related problem and I can't get any idea about solving it. I need to solve this for 2 days, so any help is appreciated. If you don't want to solve this for me you don't have to but please point me to the trick or at least some materials where i can read up more about some similar issues.
Thank you in advance.
This can be solved in O(L) where L = number of digits. Why use complicated DP formulas when we can use a stack to do this:
For: 66621542
Add a digit on the stack while there are less than or equal to L - K digits on the stack:
66621. Now, remove digits from the stack while they are less than the currently read digit and put the current digit on the stack:
read 5: 5 > 2, pop 1 off the stack. 5 > 2, pop 2 also. put 5: 6665
read 4: stack isnt full, put 4: 66654
read 2: 2 < 4, do nothing.
You need one more condition: be sure not to pop off more items from the stack than there are digits left in your number, otherwise your solution will be incomplete!
Another example: 12345
L = 5, K = 3
put L - K = 2 digits on the stack: 12
read 3, 3 > 2, pop 2, 3 > 1, pop 1, put 3. stack: 3
read 4, 4 > 3, pop 3, put 4: 4
read 5: 5 > 4, but we can't pop 4, otherwise we won't have enough digits left. so push 5: 45.
Well, to solve any dynamic programming problem, you need to break it down into recurring subsolutions.
Say we define your problem as A(n, k), which returns the largest number possible by removing k digits from n.
We can define a simple recursive algorithm from this.
Using your example, A(12345, 3) = max { A(2345, 2), A(1345, 2), A(1245, 2), A(1234, 2) }
More generally, A(n, k) = max { A(n with 1 digit removed, k - 1) }
And you base case is A(n, 0) = n.
Using this approach, you can create a table that caches the values of n and k.
int A(int n, int k)
{
typedef std::pair<int, int> input;
static std::map<input, int> cache;
if (k == 0) return n;
input i(n, k);
if (cache.find(i) != cache.end())
return cache[i];
cache[i] = /* ... as above ... */
return cache[i];
}
Now, that's the straight forward solution, but there is a better solution that works with a very small one-dimensional cache. Consider rephrasing the question like this: "Given a string n and integer k, find the lexicographically greatest subsequence in n of length k". This is essentially what your problem is, and the solution is much more simple.
We can now define a different function B(i, j), which gives the largest lexicographical sequence of length (i - j), using only the first i digits of n (in other words, having removed j digits from the first i digits of n).
Using your example again, we would have:
B(1, 0) = 1
B(2, 0) = 12
B(3, 0) = 123
B(3, 1) = 23
B(3, 2) = 3
etc.
With a little bit of thinking, we can find the recurrence relation:
B(i, j) = max( 10B(i-1, j) + ni , B(i-1, j-1) )
or, if j = i then B(i, j) = B(i-1, j-1)
and B(0, 0) = 0
And you can code that up in a very similar way to the above.
The trick to solving a dynamic programming problem is usually to figuring out what the structure of a solution looks like, and more specifically if it exhibits optimal substructure.
In this case, it seems to me that the optimal solution with N=12345 and K=3 would have an optimal solution to N=12345 and K=2 as part of the solution. If you can convince yourself that this holds, then you should be able to express a solution to the problem recursively. Then either implement this with memoisation or bottom-up.
The two most important elements of any dynamic programming solution are:
Defining the right subproblems
Defining a recurrence relation between the answer to a sub-problem and the answer to smaller sub-problems
Finding base cases, the smallest sub-problems whose answer does not depend on any other answers
Figuring out the scan order in which you must solve the sub-problems (so that you never use the recurrence relation based on uninitialized data)
You'll know that you have the right subproblems defined when
The problem you need the answer to is one of them
The base cases really are trivial
The recurrence is easy to evaluate
The scan order is straightforward
In your case, it is straightforward to specify the subproblems. Since this is probably homework, I will just give you the hint that you might wish that N had fewer digits to start off with.
Here's what i think:
Consider the first k + 1 digits from the left. Look for the biggest one, find it and remove the numbers to the left. If there exists two of the same biggest number, find the leftmost one and remove the numbers to the left of that. store the number of removed digits ( name it j ).
Do the same thing with the new number as N and k+1-j as K. Do this until k+1 -j equals to 1 (hopefully, it will, if i'm not mistaken).
The number you end up with will be the number you're looking for.