I am working on a Qt-C++ based front-end app for a Raspberry Pi powered robot. I am using Qt version 5.9 along with libraries QSerialPort and Pigpio. In my app, when I give the run command for a command sequence to the robot, my Raspberry Pi starts a serial communication with a microcontroller in which it sends some message and then waits to receive a response. This sending and waiting causes the Mainwindow thread to freeze up. I am trying to build in a emergency stop functionality, which would stop the command execution in the middle of the run process.
Towards that effort, I tried to push my serial communication part to a separate thread(QThread). It didn't work out. Now I am trying to build the emergency stop part into a QDialog box that opens up when I give the run command, which contains a emergency stop QPushbutton. The Dialog box is being run in non-modal form. But in my current code, when I give the run command, a dialog box does open up, but the dialog box is completely blank and then closes up when the run command ends(which is intentional). I'll share some screenshots of the appearance.
Can you suggest where I might be going wrong? Or is there a better approach to this issue? Any criticism and suggestions are welcome!
Thanks!
One shouldn't block the main thread in the Qt. Everytime you call the blocking function, your GUI freezes, as well as Dialog boxes.
One solution is to use signal/slots. They blend really well into Qt. But doing a complicated request/response logic would require a huge state machine usually prone to errors.
Sometimes it is better to leave this code blocking, create a plain chain of request/response code, and put it in another non-GUI thread. Then use the signal to notify the main thread about the job result.
In order to stop the execution it is possible to use an atomic and check it between blocking steps. The biggest time delay before exiting the working function is the biggest delay of the single blocking function. You should carefully tune the timeouts. Or you can write your own function, which emulates timeout and a stop condition. It should check if incoming data is available in an infinite loop and check fro stop condition on each iteration, which must be a timeout AND a stop condition variable.
// pseudocode here
while (true) {
if (stopCondition) return; // check for emergency condition
it (currentTime - startTime > timeout) return;
if (serial->dataReady()) break;
}
auto data = serial->getData();
If a step can block forever, then this method can't be used.
There is an example with QtConcurrent framework, which demonstrates the use of QFuture and the work of a function in a separate thread without blocking the main thread. You can put all your communication logic inside it.
The code is example only!
#ifndef WORKERCLASS_H
#define WORKERCLASS_H
#include <QObject>
#include <QtConcurrent/QtConcurrent>
#include <QFuture>
class WorkerClass : public QObject
{
Q_OBJECT
public:
explicit WorkerClass(QObject *parent = nullptr) : QObject(parent) {
connect(&futureWatcher, &QFutureWatcher<void>::finished, [this] () {
emit workFinsihed();
});
}
void startWork(int value) {
atomic = 0;
future = QtConcurrent::run(this, &WorkerClass::workFunction, value);
futureWatcher.setFuture(future);
}
void stopWork() {
atomic = 1;
}
private:
QFuture<void> future;
QFutureWatcher<void> futureWatcher;
void workFunction(int value) {
for (int i = 0; i < value; ++i) {
if (atomic) return;
}
return;
};
QAtomicInt atomic{0};
signals:
void workFinsihed();
};
#endif // WORKERCLASS_H
Related
My goal is to show a brief "Please Wait..." dialog with an animated gif (spinner) in a Gtk::Dialog.
My problem is that when I do not use Gtk:Dialog::run(), the gif won't be animated, and when I do use the Gtk:Dialog::run() method it completely blocks my running code afterwards. And since I don't have any buttons in my dialog it would hang there indefinitely. Is there a way around that? I have had no success in getting the animated gif to work in a non-modal dialog, i.e without using the run() method.
I'm using gtkmm 3.0
Compile with : g++ examplewindow.cc main.cc -o main `pkg-config gtkmm-3.0 --cflags --libs`
main.cc
#include "examplewindow.h"
#include <gtkmm/application.h>
#include <iostream>
int main(int argc, char *argv[])
{
auto app = Gtk::Application::create("org.gtkmm.example");
ExampleWindow window;
//Shows the window and returns when it is closed.
//return app->make_window_and_run<ExampleWindow>(argc, argv);
return app->run(window);
}
examplewindow.h
#ifndef GTKMM_EXAMPLEWINDOW_H
#define GTKMM_EXAMPLEWINDOW_H
#include <gtkmm.h>
class ExampleWindow : public Gtk::Window
{
public:
ExampleWindow();
virtual ~ExampleWindow();
protected:
//Signal handlers:
void on_button_clicked();
//Child widgets:
Gtk::Box m_VBox;
Gtk::Box m_ButtonBox;
Gtk::Button m_Button;
};
#endif //GTKMM_EXAMPLEWINDOW_H
examplewindow.cc
#include "examplewindow.h"
#include <iostream>
ExampleWindow::ExampleWindow()
: m_VBox(Gtk::Orientation::ORIENTATION_VERTICAL),
m_ButtonBox(Gtk::Orientation::ORIENTATION_VERTICAL),
m_Button("Show Dialog")
{
set_title("Test animated gif");
set_default_size(800, 600);
add(m_VBox);
m_VBox.pack_start(m_ButtonBox);
m_ButtonBox.pack_start(m_Button);
m_Button.set_hexpand(true);
m_Button.set_halign(Gtk::Align::ALIGN_CENTER);
m_Button.set_valign(Gtk::Align::ALIGN_CENTER);
m_Button.grab_focus();
m_Button.signal_clicked().connect(sigc::mem_fun(*this, &ExampleWindow::on_button_clicked));
show_all_children();
}
ExampleWindow::~ExampleWindow()
{
}
void ExampleWindow::on_button_clicked()
{
Gtk::Dialog m_Dialog;
m_Dialog.set_transient_for(*this);
m_Dialog.set_size_request(200, 200);
m_Dialog.set_decorated(false);
Gtk::Image imageLoading = Gtk::Image();
imageLoading.property_pixbuf_animation() = Gdk::PixbufAnimation::create_from_file("gtkmm_logo.gif");
m_Dialog.get_vbox()->pack_start(imageLoading);
m_Dialog.show_all();
m_Dialog.run();
/******** This, below, never gets executed as run() is blocking the program...********/
// Dummy "long" operation
for (int i = 0; i <= 2010101010; i++)
{
if (i == 2010101010)
std::cout << "Done" << std::endl;
}
m_Dialog.response(Gtk::RESPONSE_ACCEPT);
m_Dialog.hide();
}
Let us look at the original problem. You created a dialog, called show() on it, did some long-running process, then closed the dialog. The process worked, but your program froze during the processing. Why is that?
A graphical interface works by processing messages (events). Some events run off a timer, such as the ones that tell an animation to go to the next frame. Some are generated as needed, such as the ones that tell an image to draw the current frame. These events need to be both triggered and processed to be effective. You triggered the appropriate events with your call to show_all(), but you did not give your program a chance to handle those events.
You used a button click to start your long-running process. That click is an event that was handled by your main event handling loop. That loop then waited for the click to be fully handled before moving on to the next event. However, you have your long-running process in the handler. The main event loop had to wait for that process to finish before it could handle new events, such as the ones to show and animate your image. You never gave your dialog a chance to do its job before you destroyed it.
Calling the dialog's run() method partially fixed the situation by starting a new event loop for the dialog. So even though the main event loop was still blocked by your click handler, new events could be handled. The dialog's event loop received the events required to show an animation, hence your program was again responsive. Unfortunately, run() blocked your long-running process, so we're not really any better off.
The simplest fix is to no longer completely block your main event loop. You could have your long-running process periodically allow events to be processed via Gtk::Main::iteration(). This function invokes an iteration of the main event loop, allowing your program to stay responsive. Pass it a false argument so that it only processes events if there are some to process (rather than waiting for an event to occur).
for (unsigned long i = 0; i <= 2010101010; i++)
{
if (i == 2010101010)
std::cout << "Done" << std::endl;
// Periodically process events
if ( i % 10000 == 0 ) // <---- after some suitable amount of work
if ( !Gtk::Main::iteration(false) ) // <---- allow events to be processed
// Abort the work.
break;
}
The return value is supposed to tell you if you should quit or not, but I didn't get this working in my test (and the return value seemed to have the opposite meaning compared to the documentation). Maybe the dialog itself was keeping the app alive? Eh, that can be the next question, once this part is working.
Other approaches would move your long-running process out of the click handler. If you let the click handler end quickly, the main event loop can do its job without the extra prompting from you. However, this requires a few adjustments so that the Gtk::Dialog outlives the call to on_button_clicked(). That's a bit of refactoring, but it might be worth the time. I'll present two options (without code).
You could have your work operate on multiple timeout signals. Divide your long-running process into smaller chunks, each chunk suitably sized for a callback. (How big is that? Not sure. For now, let's say at most a few milliseconds.) Have the button click event start the first timeout signal with a priority that allows the GUI to update. (As I recall, PRIORITY_DEFAULT_IDLE should work.) For the interval, I would try 0 if that does not overly confuse Gtk+. (I have not tried it, but it seems plausible.) If the 0-interval works, it might be wise to use connect_once() instead of connect(), and have each chunk schedule the next with another timeout. The final chunk would be responsible for closing the dialog.
You could move your long-running process to another thread. Multi-threaded programming has its own set of problems and sometimes a lot of setup, but this is something it is well-suited for. If your long-running process is in a different thread than your main event loop, the operating system becomes responsible for making sure each thread gets some CPU time. Your long-running process can chug away, and the main event loop would simultaneously be able to process events with no special intervention from you.
Final notes:
If your dialog is for one-way communication to the user, it seems more like a monologue than a dialogue. Excuse me, more like an ordinary window than a dialog. Also, I'll make sure you are aware of Gtk::ProgressBar, which "is typically used to display the progress of a long running operation." Just an option; preferring your image is understandable.
I am working on a Qt application which involves serial communication with one or multiple devices. There are different procedures that can be executed simulteanously and each procedure may send one or unknown number of commands to a device and may receive data in response. To make it more clear, here is a graphical illustration of the scenario:
Clicking on a button triggers the execution of the corresponding procedure. So two or more different procedures may be running at the same time when the user clicks on two or more buttons in a short interval. Actually the only thing that may be shared between them is the serial communication with a single device; otherwise they are mostly independent of one another. And here are two pseudo-code examples of what a procedure may look like:
Procedure A:
begin
write command a1 on serial port
wait for one second
perform some computations
write command a2 on serial port
wait for one second
end
Procedure B:
begin
while true:
write command b1 on serial port
read the response from serial port
perform some computations
if a condition holds return, otherwise continue
end
My solution and its issue:
To simplify the situation consider that there is only one device which we need to communicate with. Since procedures can be executed simulteanously (and only one of them can communicate with the device through serial port at a time) I have created one thread and one worker class for each of the procedures and have moved the workers to their corresponding threads. To synchronize procedures when accessing the serial port I have created one mutex:
MainWindow.h
class MainWindow : public QMainWindow {
public:
//...
QSerialPort* serial_;
QMutex serial_mutex_;
private:
//...
ProcAWorker* proca_worker;
ProcBWorker* procb_worker;
ProcCWorker* procc_worker;
ProcDWorker* procd_worker;
QThread proca_thread;
QThread procb_thread;
QThread procc_thread;
QThread procd_thread;
}
MainWindow.cpp
void MainWindow::onConnectButtonClicked()
{
serial_ = new QSerialPort();
// configure serial port settings
serial_->open(QIODevice::ReadWrite);
}
void MainWindow::onButtonAClicked()
{
proca_worker = new ProcAWorker(0, this); // pass a pointer to this class to be able to access its methods and members
proca_worker->moveToThread(&proca_thread);
// setup worker-thread connections: started, quit, finished, etc.
proca_thread.start(); // triggers `proccess` slot in proca_worker
}
// same thing for other buttons and procedures
ProcAWorker.cpp
void ProcAWorker::ProcAWorker(QObject *parent, QMainWindow *wnd) :
QObject(parent), wnd_(wnd)
{
}
void ProcAWorker::process()
{
wnd_->serial_mutex_->lock();
wnd_->serial_->write('Command a1'); // Warning occurs in this line
bool write_ok = client_->serial_->waitForBytesWritten(SERIAL_WRITE_TIMEOUT);
wnd_->serial_mutex_->unlock();
QThread::sleep(1);
// perform some computations
wnd_->serial_mutex_->lock();
wnd_->serial_->write('Command a2');
bool write_ok = client_->serial_->waitForBytesWritten(SERIAL_WRITE_TIMEOUT);
wnd_->serial_mutex_->unlock();
if (write_ok) {
// signal successful to main window
emit success();
}
}
However, when the write operation is performed on the serial port (i.e. wnd_->serial_->write('Command a1');) the following warning is shown:
QObject: Cannot create children for a parent that is in a different
thread. (Parent is QSerialPort(0x18907d0), parent's thread is
QThread(0x13cbc50), current thread is QThread(0x17d8d08)
My questions:
1) I have already looked at other questions on Stackoverflow regarding this warning, but their answers have only mentioned that signal/slot should be used. I am familiar with using signal/slot to communicate with worker threads. However, I can't figure out how to implement my specific scenario (simultaneous running procedures with shared resources like serial port) using signal/slot or how can I modify my current solution to resolve this issue? Note that the procedures should be allowed to run in parallel (unless in those moments when they want to communicate with the device). Obviously one can run the procedures sequentially (i.e. one after another) but I am not looking for such solutions.
2) Actually there is also a "Halt" button that stops all the running procedures and sends a halt command to the device. But I could not figure out to implement this functionality as well (set a flag, send a quit signal, etc.). Could you please give me some hints in this regards as well?
First of all, you don't need explicit multithreading (it's optional), second of all you don't need any manually managed synchronization primitives.
Then, model each procedure using a state machine. Hopefully the communication protocol allows each procedure recognize the responses to its own commands, so that even though you'd be replicating the incoming data to all of the procedures, they'd ignore the data irrelevant to them.
This answer has a sketch of a solution that does exactly what you want, sans multiplexing. Multiplexing a QIODevice is trivial when you expose it via local pipes: everything incoming from the port is written to one end of one or more local pipes. Everything incoming from the pipes is written to the port. The pipes will maintain the integrity of the packets as long as you open their procedure end in Unbuffered mode. That way each write will arrive at the serial port as a contiguous block of bytes, and will be written to the port in the same manner.
How would you multiplex? Like so:
class IODeviceMux : public QObject {
Q_OBJECT
QVector<QPointer<AppPipe>> m_portPipes;
QVector<QPointer<AppPipe>> m_userPipes;
QPointer<QSerialPort> m_port;
public:
IODeviceMux(QObject *parent = {}) : QObject(parent) {}
void setPort(QIODevice *port) {
if (m_port) {
disconnect(m_port.get(), 0, this, 0);
m_userPipes.removeAll({});
for (auto pipe : qAsConst(m_userPipes))
disconnect(m_port.get(), 0, pipe.get(), 0);
}
m_port = port;
connect(m_port.get(), &QIODevice::readyRead, this, &IODeviceMux::onPortRead);
}
AppPipe *getPipe() {
QScopedPointer<AppPipe> user(new AppPipe(QIODevice::ReadWrite | QIODevice::Unbuffered));
auto *port = new AppPipe(QIODevice::ReadWrite | QIODevice::Unbuffered, this);
user->addOther(port);
connect(port, &QIODevice::readyRead, this, &IODeviceMux::onPipeRead);
connect(m_port.get(), &QIODevice::bytesWritten, user.get(), &QIODevice::bytesWritten);
connect(user, &QObject::destroyed, port, &QObject::deleteLater);
m_userPipes.push_back(user.get());
m_portPipes.push_back(port);
return user.take();
}
private:
void onPortRead() {
if (!m_port) return;
auto data = m_port->readAll();
m_portPipes.removeAll({});
for (auto pipe : qAsConst(m_portPipes))
pipe->write(data);
}
void onPipeRead() {
auto *pipe = qobject_cast<AppPipe*>(sender());
QByteArray data;
if (pipe) data = pipe->readAll();
if (m_port) m_port->write(data);
}
};
The procedures would each getPipe() and treat the pipe as if it was a serial port device. Each write into a pipe gets faithfully executed on the port. Each readyRead on the port is faithfully forwarded, with same data amounts available immediately to read. Even the port's bytesWritten is forwarded. But bytesToWrite doesn't work - it always returns zero. This could be fixed by adding an option to AppPipe to query this value.
That's about all you need to get it to work, I'd think.
I'm coding a Qt Gui and I'm trying to implement a new feature, I now the precise result I want to arrive at but not how to code it.
I'm trying to add a checkable button that when checked would run a function that would only stop when the button is unchecked, but every second a PaintArea I have on the window would be updated (letting me see how the multiple executions of my function are changing my data). It seem that I'll need to use some QThread objects, but just the part dealing with the button is already counter intuitive to me, I've been trying to play with the autoRepeatDelay and autoRepeatInterval without getting my hand on what they do and how they could be useful to me.
I guess that what I'm trying to code is not really original, would have an idea of the steps to implement it, or an example of a code?
Edit:
According to the first answers (thank you for them by the way) my question may not be clear. Putting on the side the thread thing, I'd like to implement an infinite loop that only starts when a pressbutton goes to pressed position (it's a checkable button) and stops only when leaving it. The first version I tried to do (with a while(button->isChecked() loop) would completely freeze as the application would be running the loop, the gui would freeze and the button couldn't be turned off (hence the idea of running it in a separate thread). Voila! I hope it's a clearer formulation. Thank you in advance.
Here's a simple skeleton of something that might work. Without knowing your exact requirements, it may or may not be right for your problem. Hopefully it will give you a few hints that do actually help.
void Ui::buttonPressedSlot(bool checked){
if (checked){
Processor *processor = new Processor;
connect(this, SIGNAL(abortCalculations()), processor, SLOT(abort()), Qt::QueuedConnection);
connect(processor, SIGNAL(updateNeeded()), this, SLOT(updateGui()), Qt::QueuedConnection);
QThreadPool::globalInstance()->start(processor);
} else {
emit abortCalculations(); // this is a signal in your UI class
}
}
You can then use the following for your calculations.
class Processor : public QObject, public QRunnable{ // QObject must always be first in multiple inheritance
Q_OBJECT
public:
~Processor();
void run();
public slots:
void abort();
void doCalculations();
signals:
void updateNeeded(); // connect this to the GUI to tell it to refresh
private:
QScopedPointer<QEventLoop> loop;
};
Processor::~Processor(){
abort();
}
void Processor::run() {
loop.reset(new QEventLoop);
QTimer timer;
connect(&timer, SIGNAL(timeout()), this, SLOT(doCalculations()));
timer.setInterval(1000);
timer.start();
loop->exec();
}
void Processor::abort(){
if (!loop.isNull()){
loop->quit();
}
}
void Processor::doCalculations(){
// do whatever needs to be done
emit updateNeeded();
}
I don't know if I really understand what you want to do, but I will try to answer.
First, you want a Button that send a start & stop info to control a thread. You can use a checkbox to begin. This check box send a signal when its state changes. Connect this signal to a slot that perform start thread and stop according to the boolean sent.
Second, in you thread you need to launch the events loop. After, set a timer that call you repaint after every timeout.
Hope it helped.
PS: take care of execution context with you thread and Qt's objects.
I've a dialog displaying progress bar + some other data, and I also have a cancel button on this dialog. While this dialog is displayed there is potentially heavy computation going on, which is show on progress bar. This computation is started from withing this dialog code so I have:
Counting_Progress_Dialog::Counting_Progress_Dialog(QWidget *parent) :
QDialog(parent)
{
setupUi(this);
thread_ = new Threaded;//THIS IS THE THREAD IN WHICH COMPUTATION IS BEING PERFORMED
connect(thread_,SIGNAL(counter_value(int)),this,SLOT(update_progress_bar(int)));
connect(this,SIGNAL(rejected()),thread_,SLOT(terminate()),Qt::QueuedConnection);//
HERE I'M CONNECTING REJECTED ON DIALOG TO TERMINATE ON THREAD
}
void Counting_Progress_Dialog::start()
{
thread_->start(QThread::LowestPriority);
}
and I do invoke this in part of the program:
void My_Class::dummy_()
{
auto old_priority = this->thread()->priority();
this->thread()->setPriority(QThread::HighestPriority);
Counting_Progress_Dialog progress;
progress.start();//this will start thread
progress.exec();//this will enter it's event loop
progress.wait();//this will wait until thread is finished
this->thread()->setPriority(QThread::NormalPriority);
}
But despite all this, when I press cancel on my dialog, the whole application freezes. What am I doing wrong? How to make it behave correctly?
UPDATED:
void Counting_Progress_Dialog::wait()
{
thread_->wait();
}
I see that you are connecting using 2 different strategies. But if thread_ and this(counting dialog) are really within two separated threads then the connection will always be Qt::QueuedConnection. Well that's not the issue.
progress.exec();//this will enter it's event loop
Calling exec() suspend the execution of dummy_() until the dialog have to return. And when the dialog return your thread is terminated. So I don't see the purpose of
progress.wait();//this will wait until thread is finished
By the way which function is that? the only one I know is Qthread::wait(). I am pretty confident the issue is here...
edit:
progress.wait() is not the issue... But it is possible that the events sent by the thread are causing trouble in some way. Use the debugger or some qDebug() to see if update_progress_bar is called after you push cancel.
I have asked this problem on many popular forums but no concrete response. My applciation uses serial communication to interface with external systems each having its own interface protocol. The data that is received from the systems is displayed on a GUI made in Qt 4.2.1.
Structure of application is such that
When app begins we have a login page
with a choice of four modules. This
is implemented as a maindisplay
class. Each of the four modules is a
separate class in itself. The concerned module here is of action class which is responsible of gathering and displaying data from various systems.
User authentication gets him/her
into the action screen. The
constructor of the action screen
class executes and apart from
mundane initialisation it starts the
individual systems threads which are
implemented as singleton.
Each system protocol is implemented as a singleton thread of the form:
class SensorProtocol:public QThread {
static SensorProtocol* s_instance;
SensorProtocol(){}
SensorProtocol(const SensorProtocol&);
operator=(const SensorProtocol&);
public:
static SensorProtocol* getInstance();
//miscellaneous system related data to be used for
// data acquisition and processing
};
In implementation file *.cpp:
SensorProtocol* SensorProtocol::s_instance=0;
SensorProtocol* SensorProtocol::getInstance()
{
//DOUBLE CHECKED LOCKING PATTERN I have used singletons
// without this overrated pattern also but just fyi
if(!s_instance)
{
mutex.lock();
if(!s_instance)
s_instance=new SensorProtocol();
mutex.unlock();
}
}
Structure of run function
while(!mStop)
{
mutex.lock()
while(!WaitCondition.wait(&mutex,5)
{
if(mStop)
return;
}
//code to read from port when data becomes available
// and process it and store in variables
mutex.unlock();
}
In the action screen class I have define an InputSignalHandler using sigaction and saio. This is a function pointer which is activated as soon as data arrives on any of the serial ports.
It is a global function (we cannot change it as it is specific to Linux) which is just used to compare the file descriptors of the serial port where data has arrived and the fd's of the sensor systems, if a match is found WaitCondition.wakeOne is invoked on that thread and it comes out the wait and reads and processes the data.
In the action screen class the individual threads are started as SensorProtocol::getInstance()->start().
Each system's protocol has a frame rate at which it sends data. Based on this fact, in actions screen we set up update timers to time out at refresh rate of protocols. When these timers time out the UpdateSensorProtocol() function of operation screen is called
connect(&timer, SIGNAL(timeout), this,SLOT(UpdateSensorProtocol()));
This grabs an instance of sensor singleton as
SensorProtocol* pSingleton=SensorProtocol::getInstance();
if(pSingleton->mUpdate)
{
//update data on action screen GUI
pSingleton->mUpdate=false; //NOTE : this variable is set to
// true in the singleton thread
// while one frame is processed completely
}
For all uses of singleton instance SensorProtocol::getInstance() is used. Given the above scenario, One of my protocols is hanging no matter what changes I do.
The hang occurs in the while displaying data using UpdateSensorProtocol() If I comment ShowSensorData() function in the UpdateSensorProtocol() it works fine. But otherwise it hangs and the GUI freezes. Any suggestions!
Also, Since the main thread grabs the running instance of singleton, is it really multithreading because we are essentially changing mUpdate in singleton itself albeit from action screen.
I am confused in this.
Also, Can somebody suggest an alternate design as to what I am doing now.
Thanks In Advance
First off all don't make the Systems singletons. Use some kind of Context Encapsulation
for the different system.
If you ignoe this advice and still want to create "singletons" threads at least use QApplication::instance(); as the parent of the thread and put QThread::wait() in the singleton destructors otherwise your program will crash at the program exit.
if(!s_instance){
QMutexLocker lock(&mutex);
if(!s_instance)
s_instance=new SensorProtocol( QApplication::instance());
}
But this isn't going to solve your problem ...
Qt is event driven so try to exployed this very nice event-driven architecture and create a eventloop for each system thread. Then you can create "SystemProtocols" that live in another threads and you can create timers, send events between threads, ... without using low level synchronization objects.
Have a look at the blog entry from Bradley T. Hughes Treading without the headache
Code is not compiled but should give you a good idea where to start ...
class GuiComponent : public QWidget {
//...
signals:
void start(int); // button triggerd signal
void stop(); // button triggerd singal
public slots:
// don't forget to register DataPackage at the metacompiler
// qRegisterMetaType<DataPackage>();
void dataFromProtocol( DataPackage ){
// update the gui the the new data
}
};
class ProtocolSystem : public QObject {
//...
int timerId;
signals:
void dataReady(DataPackage);
public slots:
void stop() {
killTimer(timerId);
}
void start( int interval ) {
timerId = startTimer();
}
protected:
void timerEvent(QTimerEvent * event) {
//code to read from port when data becomes available
// and process it and store in dataPackage
emit dataReady(dataPackage);
}
};
int main( int argc, char ** argv ) {
QApplication app( argc, argv );
// construct the system and glue them together
ProtocolSystem protocolSystem;
GuiComponent gui;
gui.connect(&protocolSystem, SIGNAL(dataReady(DataPackage)), SLOT(dataFromProtocol(DataPackage)));
protocolSystem.connect(&gui, SIGNAL(start(int)), SLOT(start(int)));
protocolSystem.connect(&gui, SIGNAL(stop()), SLOT(stop()));
// move communication to its thread
QThread protocolThread;
protocolSystem.moveToThread(&protocolThread);
protocolThread.start();
// repeat this for other systems ...
// start the application
gui.show();
app.exec();
// stop eventloop to before closing the application
protocolThread.quit();
protocolThread.wait();
return 0;
}
Now you have total independent systems, gui and protocols don't now each other and don't even know that the program is multithreaded. You can unit test all systems independently in a single threaded environement and just glue them together in the real application and if you need to, divided them between different threads.
That is the program architecture that I would use for this problem. Mutlithreading without a single low level synchronization element. No race conditions, no locks, ...
Problems:
Use RAII to lock/unlock your mutexes. They are currently not exception safe.
while(!mStop)
{
mutex.lock()
while(!WaitCondition.wait(&mutex,5))
{
if(mStop)
{
// PROBLEM 1: You mutex is still locked here.
// So returning here will leave the mutex locked forever.
return;
}
// PROBLEM 2: If you leave here via an exception.
// This will not fire, and again you will the mutex locked forever.
mutex.unlock();
// Problem 3: You are using the WaitCondition() incorrectly.
// You unlock the mutex here. The next thing that happens is a call
// WaitCondition.wait() where the mutex MUST be locked
}
// PROBLEM 4
// You are using the WaitCondition() incorrectly.
// On exit the mutex is always locked. So nwo the mutex is locked.
What your code should look like:
while(!mStop)
{
MutextLocker lock(mutex); // RAII lock and unlock mutex.
while(!WaitCondition.wait(&mutex,5))
{
if(mStop)
{
return;
}
//code to read from port when data becomes available
// and process it and store in variables
}
By using RAII it solves all the problems I spotted above.
On a side note.
Your double checked locking will not work correctly.
By using the static function variable suggested by 'Anders Karlsson' you solve the problem because g++ guarantees that static function variables will only be initialized once. In addition this method guaranteed that the singelton will be correctly destroyed (via destructor). Currently unless you are doing some fancy stuff via onexit() you will be leaking memory.
See here for lots of details about better implementation of singleton.
C++ Singleton design pattern
See here why your double checked locking does not work.
What are all the common undefined behaviours that a C++ programmer should know about?
I would start by using RAII (Resource Acquisition Is Initialization) to improve the safety of your locking code. You have code that look like this:
mutex.lock();
...logic...
mutex.unlock();
Wrap the mutex code inside a class where the mutex gets acquired in the ctor and released in the dtor. Now your code looks like this:
MyMutex mutex;
...logic...
The major improvement is that if any exceptions throw in the logic part, your mutex still gets released.
Also, don't let any exceptions leak out of your threads! Catch them even if you don't know how to handle them other than logging it somewhere.
I can't be completely sure what the problem is since I have no clue what the ShowSensorData() function (method?) is doing, but there are some multithreading issues with the code that you have included.
mUpdate should be protected by a mutex if it is accessed by more than one thread.
The run() method looks like it will lock the mutex and never release it if mStop is true.
You should consider using RAII practices to grab and release the mutex. I don't know if you are using Qt mutexes or not but you should look into using QMutexLocker to lock and unlock your mutexes.
I would consider changing your SensorProtocol class to use the condition variable and a flag or some sort of event (not sure what Qt has to offer here) to handle the update inside of a method associated with the object instance. Something like:
/*static*/ void
SensorProtocol::updateSensorProtocol() {
SensorProtocol *inst = SensorProtocol::getInstance();
inst->update();
}
Then make sure that the update() method grabs the mutex before reading or writing any of the members that are shared between the reader and display.
A more complete approach would be to separate your UI display, the sensors, and their linkage using a Model-View-Controller architecture. Refactoring the solution into an MVC architecture would probably simplify things quite a bit. Not to mention that it makes applications like this a lot less error-prone. Take a look at the QAbstractItemView and QAbstractItemDelegate classes for an idea on how this can be implemented. From what I remember, there is a tutorial about implementing MVC using Qt somewhere... it's been quite a few years since I have played with Qt though.
your getInstance method could maybe be written like this as well to avoid having the s_instance var:
SensorProtocol& getInstance()
{
static SensorProtocol instance;
return instance;
}
The double checked locking pattern is broken in C++. This is well documented all over the internet. I don't know what your problem is but clearly you will need to resolve this in your code.
Take a look at QextSerialPort:
QextSerialPort is a cross-platform
serial port class. This class
encapsulates a serial port on both
POSIX and Windows systems.
QextSerialPort inherits from QIODevice and makes serial port communications integrate more smoothly with the rest of the Qt API.
Also, you could use a message passing scheme for communications between the I/O and GUI threads instead of shared memory. This is often much less error prone. You can use the QApplication::postEvent function to send custom QEvent messages to a QObject to be processed in the GUI thread with the QObject::customeEvent handler. It will take care of synchronization for you and alleviate your deadlock problems..
Here is a quick and dirty example:
class IODataEvent : public QEvent
{
public:
IODataEvent() : QEvent(QEvent::User) {}
// put all of your data here
};
class IOThread : public QThread
{
public:
IOThread(QObject * parent) : QThread(parent) {}
void run()
{
for (;;) {
// do blocking I/O and protocol parsing
IODataEvent *event = new IODataEvent;
// put all of your data for the GUI into the event
qApp->postEvent(parent(), event);
// QApplication will take ownership of the event
}
}
};
class GUIObject : public QObject
{
public:
GUIObject() : QObject(), thread(new IOThread(this)) { thread->start() }
protected:
void customEvent(QEvent *event)
{
if (QEvent::User == event->type) {
IODataEvent *data = (IODataEvent *) event;
// get data and update GUI here
event->accept();
} else {
event->ignore();
}
// the event loop will release the IODataEvent memory automatically
}
private:
IOThread *thread;
};
Also, Qt 4 supports queing signals and slots across threads.
Have three sepearate threads for send, receive and display.
Raise an event whenever data is received and handle that within the display thread.
Edit in response to comment 1
I'll admit that I know nothing of qt but from what you've said it would still appear that you can create your serial port object which in turn starts up two worker threads (by use of a start method) for the input and output buffer control.
If the serial port class has a "Connect to port" method to gain use of the serial port; an "Open port" method which starts up your worker threads and opens the port; a "Close port" method to shutdown the send and receive threads and a property for setting the "On Data Received" event handler then you should be all set.
The class shouldn't need to be a singleton as you'll find that most operating systems wont allow more than one process to control a serial port at any one time, instead you'll get an exception (which you need to handle) when you try and connect if it is already in use. The worker threads ensure that the port is held under you're control.