OpenGL rectangle inexplicably takes up entire window - c++

So I am using GLEW & SDL2. At the moment I'm having trouble with drawing a simple rectangle.
I've done this before and got it to work no problem. (I have checked my old code, but could not find any signifigant differences)
Here's what the output should look like, aside from a different background color.
However, this is what the output looks like:
When I check the output with Renderdoc, all the values seem to be as they should be, but for some reason the output rectangle is signifigantly larger than the viewport. (Assuming the white border in the output window represents the viewport.)
I've googled around a bit, but could not find any solution to this issue. I'm figuring I'm just missing a single function call somewhere which is causing the program to output things in a weird way.
Here's the relevant code
game.cpp
#include "Game.h"
void Game::Game::main_loop()
{
//Placeholder setup;
float vertices[] = {
-0.5f, -0.5f, 0.0f,
0.5f, -0.5f, 0.0f,
0.5f, 0.5f, 0.0f,
-0.5f, 0.5f, 0.0f,
};
unsigned int indices[] = {
0, 1, 2,
2, 3, 0
};
unsigned int vertex_array, vertex_buffer, element_buffer;
glGenVertexArrays(1, &vertex_array);
glBindVertexArray(vertex_array);
glGenBuffers(1, &vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glGenBuffers(1, &element_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, element_buffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, false, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
Asset::Loader l;
auto s = l.load_shader("res/GUI/Shaders/Textured_quad.vert", "res/GUI/Shaders/Textured_quad.frag");
keep_going = true;
while(keep_going)
{
handle_events();
renderer.clear();
s->use(); //Just calls 'glUseProgram' on the shader inside this object
glBindVertexArray(vertex_array);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
renderer.show();
}
}
void Game::Game::handle_events()
{
while(SDL_PollEvent(&event))
{
switch(event.type)
{
case SDL_MOUSEBUTTONDOWN:
case SDL_QUIT:
keep_going = false;
}
}
}
Renderer.cpp
#include "Renderer.h"
Game::Graphics::Renderer::Renderer()
{
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
window = SDL_CreateWindow(
"GUI",
SDL_WINDOWPOS_CENTERED_DISPLAY(1),
SDL_WINDOWPOS_CENTERED_DISPLAY(1),
640,
480,
SDL_WINDOW_OPENGL
);
context = SDL_GL_CreateContext(
window
);
if(!window)
{
std::cerr << "Window Error: " << SDL_GetError() << std::endl;
return;
}
if(!context)
{
std::cerr << "GL Context Error: " << SDL_GetError() << std::endl;
return;
}
glewInit();
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glViewport(0, 0, 640, 480);
glEnable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_2D);
glEnable(GL_LIGHTING);
glDisable(GL_BLEND);
}
Game::Graphics::Renderer::~Renderer()
{
SDL_HideWindow(window);
SDL_GL_DeleteContext(context);
SDL_DestroyWindow(window);
}
void Game::Graphics::Renderer::clear()
{
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
void Game::Graphics::Renderer::show()
{
SDL_GL_SwapWindow(window);
}
Shader
#version 330 core
layout (location = 0) in vec3 a_pos;
void main()
{
gl_Position = vec4(a_pos, 0.0f);
}
//fragment
#version 330 core
out vec4 o_color;
void main()
{
o_color = vec4(1.0f, 0.0f, 0.0f, 1.0f);
}

gl_Position = vec4(a_pos, 0.0f);
The X/Y/Z coordinates in gl_Position get divided by the W coordinate to get the screen coordinates. You are setting the W coordinate to 0, which means the X and Y coordinates become infinity and -infinity (1/0 and -1/0) and the Z coordinate becomes NaN.
Change it to:
vvvv
gl_Position = vec4(a_pos, 1.0f);

Related

How to get camera movement in existing OpenGL scene

I am a beginner with OpenGL and C++ and need assistance with implementing a camera into my code, which is below, to move around a 3D cube orbitally. I am unsure as to what else to insert into the code to get the camera to work. The code works but there is no camera movement at this time. I specifically need WASD keys to control the left, right, forward, and backward motions, the QE keys to control the upward and downward movement, and the cursor to control the orientation of the camera. Can someone assist me with what I need to insert into the code to make the camera work?
#include <iostream> // cout, cerr
#include <cstdlib> // EXIT_FAILURE
#include <GL/glew.h> // GLEW library
#include <GLFW/glfw3.h> // GLFW library
// GLM Math Header inclusions
#include <glm/glm.hpp>
#include <glm/gtx/transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <learnOpengl/camera.h> // Camera class
using namespace std; // Standard namespace
/*Shader program Macro*/
#ifndef GLSL
#define GLSL(Version, Source) "#version " #Version " core \n" #Source
#endif
// Unnamed namespace
namespace
{
const char* const WINDOW_TITLE = "3D Cube w/ Camera Movement"; // Macro for window title
// Variables for window width and height
const int WINDOW_WIDTH = 800;
const int WINDOW_HEIGHT = 600;
// Stores the GL data relative to a given mesh
struct GLMesh
{
GLuint vao; // Handle for the vertex array object
GLuint vbos[2]; // Handles for the vertex buffer objects
GLuint nIndices; // Number of indices of the mesh
};
// Main GLFW window
GLFWwindow* gWindow = nullptr;
// Triangle mesh data
GLMesh gMesh;
// Shader program
GLuint gProgramId;
}
/* User-defined Function prototypes to:
* initialize the program, set the window size,
* redraw graphics on the window when resized,
* and render graphics on the screen
*/
bool UInitialize(int, char* [], GLFWwindow** window);
void UResizeWindow(GLFWwindow* window, int width, int height);
void UProcessInput(GLFWwindow* window);
void UCreateMesh(GLMesh& mesh);
void UDestroyMesh(GLMesh& mesh);
void URender();
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint& programId);
void UDestroyShaderProgram(GLuint programId);
/* Vertex Shader Source Code*/
const GLchar* vertexShaderSource = GLSL(440,
layout(location = 0) in vec3 position; // Vertex data from Vertex Attrib Pointer 0
layout(location = 1) in vec4 color; // Color data from Vertex Attrib Pointer 1
out vec4 vertexColor; // variable to transfer color data to the fragment shader
//Global variables for the transform matrices
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f); // transforms vertices to clip coordinates
vertexColor = color; // references incoming color data
}
);
/* Fragment Shader Source Code*/
const GLchar* fragmentShaderSource = GLSL(440,
in vec4 vertexColor; // Variable to hold incoming color data from vertex shader
out vec4 fragmentColor;
void main()
{
fragmentColor = vec4(vertexColor);
}
);
int main(int argc, char* argv[])
{
if (!UInitialize(argc, argv, &gWindow))
return EXIT_FAILURE;
// Create the mesh
UCreateMesh(gMesh); // Calls the function to create the Vertex Buffer Object
// Create the shader program
if (!UCreateShaderProgram(vertexShaderSource, fragmentShaderSource, gProgramId))
return EXIT_FAILURE;
// Sets the background color of the window to black (it will be implicitely used by glClear)
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
// render loop
// -----------
while (!glfwWindowShouldClose(gWindow))
{
// input
// -----
UProcessInput(gWindow);
// Render this frame
URender();
glfwPollEvents();
}
// Release mesh data
UDestroyMesh(gMesh);
// Release shader program
UDestroyShaderProgram(gProgramId);
exit(EXIT_SUCCESS); // Terminates the program successfully
}
// Initialize GLFW, GLEW, and create a window
bool UInitialize(int argc, char* argv[], GLFWwindow** window)
{
// GLFW: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 4);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// GLFW: window creation
// ---------------------
* window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE, NULL, NULL);
if (*window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return false;
}
glfwMakeContextCurrent(*window);
glfwSetFramebufferSizeCallback(*window, UResizeWindow);
// GLEW: initialize
// ----------------
// Note: if using GLEW version 1.13 or earlier
glewExperimental = GL_TRUE;
GLenum GlewInitResult = glewInit();
if (GLEW_OK != GlewInitResult)
{
std::cerr << glewGetErrorString(GlewInitResult) << std::endl;
return false;
}
// Displays GPU OpenGL version
cout << "INFO: OpenGL Version: " << glGetString(GL_VERSION) << endl;
return true;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
void UProcessInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
void UResizeWindow(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
// Functioned called to render a frame
void URender()
{
// Enable z-depth
glEnable(GL_DEPTH_TEST);
// Clear the frame and z buffers
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. Scales the object by 2
glm::mat4 scale = glm::scale(glm::vec3(2.0f, 2.0f, 2.0f));
// 2. Rotates shape by 15 degrees in the x axis
glm::mat4 rotation = glm::rotate(45.0f, glm::vec3(2.0f, 2.0f, 1.0f));
// 3. Place object at the origin
glm::mat4 translation = glm::translate(glm::vec3(-1.0f, 1.0f, 0.0f));
// Model matrix: transformations are applied right-to-left order
glm::mat4 model = translation * rotation * scale;
// Transforms the camera: move the camera back (z axis)
glm::mat4 view = glm::translate(glm::vec3(0.0f, 0.0f, -5.0f));
// Creates a orthographic projection
glm::mat4 projection = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, 0.1f, 100.0f);
// Set the shader to be used
glUseProgram(gProgramId);
// Retrieves and passes transform matrices to the Shader program
GLint modelLoc = glGetUniformLocation(gProgramId, "model");
GLint viewLoc = glGetUniformLocation(gProgramId, "view");
GLint projLoc = glGetUniformLocation(gProgramId, "projection");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
// Activate the VBOs contained within the mesh's VAO
glBindVertexArray(gMesh.vao);
// Draws the triangles
glDrawElements(GL_TRIANGLES, gMesh.nIndices, GL_UNSIGNED_SHORT, NULL); // Draws the triangle
// Deactivate the Vertex Array Object
glBindVertexArray(0);
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
glfwSwapBuffers(gWindow); // Flips the the back buffer with the front buffer every frame.
}
// Implements the UCreateMesh function
void UCreateMesh(GLMesh& mesh)
{
// Position and Color data
GLfloat verts[] = {
// Vertex Positions // Colors (r,g,b,a)
0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // Top Right Vertex 0
0.5f, -0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // Bottom Right Vertex 1
-0.5f, -0.5f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, // Bottom Left Vertex 2
-0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // Top Left Vertex 3
0.5f, -0.5f, -1.0f, 0.5f, 0.5f, 1.0f, 1.0f, // 4 br right
0.5f, 0.5f, -1.0f, 1.0f, 1.0f, 0.5f, 1.0f, // 5 tl right
-0.5f, 0.5f, -1.0f, 0.2f, 0.2f, 0.5f, 1.0f, // 6 tl top
-0.5f, -0.5f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f // 7 bl back
};
// Index data to share position data
GLushort indices[] = {
0, 1, 3, // Triangle 1
1, 2, 3, // Triangle 2
0, 1, 4, // Triangle 3
0, 4, 5, // Triangle 4
0, 5, 6, // Triangle 5
0, 3, 6, // Triangle 6
4, 5, 6, // Triangle 7
4, 6, 7, // Triangle 8
2, 3, 6, // Triangle 9
2, 6, 7, // Triangle 10
1, 4, 7, // Triangle 11
1, 2, 7 // Triangle 12
};
const GLuint floatsPerVertex = 3;
const GLuint floatsPerColor = 4;
glGenVertexArrays(1, &mesh.vao); // we can also generate multiple VAOs or buffers at the same time
glBindVertexArray(mesh.vao);
// Create 2 buffers: first one for the vertex data; second one for the indices
glGenBuffers(2, mesh.vbos);
glBindBuffer(GL_ARRAY_BUFFER, mesh.vbos[0]); // Activates the buffer
glBufferData(GL_ARRAY_BUFFER, sizeof(verts), verts, GL_STATIC_DRAW); // Sends vertex or coordinate data to the GPU
mesh.nIndices = sizeof(indices) / sizeof(indices[0]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vbos[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
// Strides between vertex coordinates is 6 (x, y, z, r, g, b, a). A tightly packed stride is 0.
GLint stride = sizeof(float) * (floatsPerVertex + floatsPerColor);// The number of floats before each
// Create Vertex Attribute Pointers
glVertexAttribPointer(0, floatsPerVertex, GL_FLOAT, GL_FALSE, stride, 0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, floatsPerColor, GL_FLOAT, GL_FALSE, stride, (char*)(sizeof(float) * floatsPerVertex));
glEnableVertexAttribArray(1);
}
void UDestroyMesh(GLMesh& mesh)
{
glDeleteVertexArrays(1, &mesh.vao);
glDeleteBuffers(2, mesh.vbos);
}
// Implements the UCreateShaders function
bool UCreateShaderProgram(const char* vtxShaderSource, const char* fragShaderSource, GLuint& programId)
{
// Compilation and linkage error reporting
int success = 0;
char infoLog[512];
// Create a Shader program object.
programId = glCreateProgram();
// Create the vertex and fragment shader objects
GLuint vertexShaderId = glCreateShader(GL_VERTEX_SHADER);
GLuint fragmentShaderId = glCreateShader(GL_FRAGMENT_SHADER);
// Retrive the shader source
glShaderSource(vertexShaderId, 1, &vtxShaderSource, NULL);
glShaderSource(fragmentShaderId, 1, &fragShaderSource, NULL);
// Compile the vertex shader, and print compilation errors (if any)
glCompileShader(vertexShaderId); // compile the vertex shader
// check for shader compile errors
glGetShaderiv(vertexShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(vertexShaderId, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
glCompileShader(fragmentShaderId); // compile the fragment shader
// check for shader compile errors
glGetShaderiv(fragmentShaderId, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(fragmentShaderId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
return false;
}
// Attached compiled shaders to the shader program
glAttachShader(programId, vertexShaderId);
glAttachShader(programId, fragmentShaderId);
glLinkProgram(programId); // links the shader program
// check for linking errors
glGetProgramiv(programId, GL_LINK_STATUS, &success);
if (!success)
{
glGetProgramInfoLog(programId, sizeof(infoLog), NULL, infoLog);
std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
return false;
}
glUseProgram(programId); // Uses the shader program
return true;
}
void UDestroyShaderProgram(GLuint programId)
{
glDeleteProgram(programId);
}

OpenGL fragment shader crashes with EXC_BAD_ACCESS on glDrawArrays

I'm using OpenGL 3.3 on Mac OSX 11.5.2. I have 6 fragment shaders, 3 that works and 3 that crashes with EXC_BAD_ACCESS. They all use the same vertex shader. There have been many questions about this problem, but I've made sure to:
Unbind my previous state.
Made sure attribute arrays enabled and used.
Am only using a single-thread, i.e. no concurrency.
The shaders that crash are all using one array of offsets and a kernel to do post-processing effects. If I replace texture_coordinate.st + offsets[i] with just texture_coordinate.st, it'll work just fine. As this makes the offsets array unused and optimized out, I have a suspicion that it could be due to a register allocation bug as mentioned in the comments in this question, but can't confirm.
I've also checked for other problems, such as loading them in different orders, using different compiler flags, but the crashes are consistent.
Here's a minimal, reproducible example (dependent on glad and glfw3, compiled with c++17) with one of the problematic shaders.
#include <glad/glad.h>
#include <GLFW/glfw3.h>
const char VERTEX_POST[] = R"(
#version 330 core
layout (location = 0) in vec2 position;
layout (location = 1) in vec2 in_texture_coordinate;
out vec2 texture_coordinate;
void main()
{
gl_Position = vec4(position.x, position.y, 0.0, 1.0);
texture_coordinate = in_texture_coordinate;
}
)";
const char FRAGMENT_POST[] = R"(
#version 330 core
in vec2 texture_coordinate;
out vec4 FragColor;
uniform sampler2D image;
const float offset = 1.0 / 300.0;
void main()
{
vec2 offsets[9] = vec2[](
vec2(-offset, offset), // top-left
vec2( 0.0f, offset), // top-center
vec2( offset, offset), // top-right
vec2(-offset, 0.0f), // center-left
vec2( 0.0f, 0.0f), // center-center
vec2( offset, 0.0f), // center-right
vec2(-offset, -offset), // bottom-left
vec2( 0.0f, -offset), // bottom-center
vec2( offset, -offset) // bottom-right
);
float kernel[9] = float[](
-1, -1, -1,
-1, 9, -1,
-1, -1, -1
);
vec3 sample_texture[9];
for(int i = 0; i < 9; i++)
sample_texture[i] = vec3(texture(image, texture_coordinate + offsets[i]));
vec3 color = vec3(0.0);
for (int i = 0; i < 9; i++)
color += sample_texture[i] * kernel[i];
FragColor = vec4(color, 1.0);
}
)";
float vertices[] = {
// Positions // Texture coords
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f
};
GLuint create_shader(const char* source, GLenum type)
{
GLuint id = glCreateShader(type);
glShaderSource(id, 1, &source, nullptr);
glCompileShader(id);
int success;
glGetShaderiv(id, GL_COMPILE_STATUS, &success);
assert(success);
return id;
}
int main()
{
// ---- INIT GLFW & GLAD ----
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, GLFW_TRUE);
GLFWwindow* window = glfwCreateWindow(800, 800, "Temp", nullptr, nullptr);
if (window == nullptr) return -1;
glfwMakeContextCurrent(window);
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) return -1;
// ---- CREATE QUAD ----
GLuint quad, vbo;
glGenVertexArrays(1, &quad);
glGenBuffers(1, &vbo);
glBindVertexArray(quad);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (void*)0);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (void*)(3 * sizeof(float)));
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
// ---- CREATE TEXTURE ----
GLuint texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
char data[800 * 800 * 4] = {};
for (char& i : data) i = 127;
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 800, 800, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
// ---- CREATE SHADER PROGRAM ----
GLuint vertex_shader = create_shader(VERTEX_POST, GL_VERTEX_SHADER);
GLuint fragment_shader = create_shader(FRAGMENT_POST, GL_FRAGMENT_SHADER);
GLuint program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
glValidateProgram(program);
int success;
glGetProgramiv(program, GL_LINK_STATUS, &success);
assert(success);
// ---- MAIN LOOP ----
while (!glfwWindowShouldClose(window))
{
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(program);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
glUniform1i(glGetUniformLocation(program, "image"), 0);
glBindVertexArray(quad);
glDrawArrays(GL_TRIANGLES, 0, 6);
glfwSwapBuffers(window);
glfwPollEvents();
}
return 0;
}
The example gives me a grey image when not including offsets and otherwise exhibits the crash. What could be causing this?

FFmpeg: Why the recorded video's quality is much lower than rendered in OpenGL

I tried to use FFmpeg to capture frames rendered by OpenGL. The result is a .mp4 file for playing back purposes. It works since I got the .mp4 I expected, however the quality is quite low compared to the one rendered by OpenGL. Can anyone tell me why? And How can I adjust my code to make the mp4 of the same quality as the original frames generated by OpenGL?
The result I've got:
images OpenGL vs FFmpeg
Here is my simple code:
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <iostream>
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);
// settings
const unsigned int SCR_WIDTH = 500;
const unsigned int SCR_HEIGHT = 500;
// start ffmpeg telling it to expect raw rgba 720p-60hz frames
// -i - tells it to read frames from stdin
const char* cmd = "ffmpeg -f rawvideo -pix_fmt rgba -s 500x500 -i - "
"-threads 0 -preset fast -y -pix_fmt yuv420p -crf 21 -vf vflip output.mp4";
// open pipe to ffmpeg's stdin in binary write mode
FILE* ffmpeg = _popen(cmd, "wb");
int* buffer = new int[SCR_WIDTH*SCR_HEIGHT];
// shaders
const char *vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 aPos;\n"
"layout (location = 1) in vec3 aColor;\n"
"layout (location = 2) in vec2 aTexCoord;\n"
"out vec3 ourColor;\n"
"out vec2 texCoord;\n"
"uniform mat4 transform;\n"
"void main()\n"
"{\n"
" gl_Position = transform*vec4(aPos, 1.0);\n"
" ourColor = aColor;\n"
" texCoord = aTexCoord;\n"
"}\0";
const char *fragmentShaderSource = "#version 330 core\n"
"out vec4 FragColor;\n"
"in vec3 ourColor;\n"
"in vec2 texCoord;\n"
"void main()\n"
"{\n"
" FragColor = vec4(1.0f, 0.0f, 0.0f, 1.0f);\n"
"}\n\0";
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// render preparation: data collection and passing
// -----------------------------------------------
// vertex shader: create and compile
unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShader);
// fragment shader: create and compile
unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
glCompileShader(fragmentShader);
// shader program
unsigned int shaderProgram = glCreateProgram();
glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
glLinkProgram(shaderProgram);
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);
// first shape: square
float vertices[] = {
// positions // colors // texture coords
0.25f, 0.25f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top right
0.25f, -0.25f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom right
-0.25f, -0.25f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom left
-0.25f, 0.25f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f // top left
};
int indices[] = {
0, 1, 2,
2, 3, 0
};
unsigned int VAO, VBO, EBO;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glGenBuffers(1, &EBO);
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), 0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), 0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), 0);
glEnableVertexAttribArray(2);
// second shape: line(from the center of the screen to the center of the square
float vertices2[] = {
0.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.0f
};
unsigned int VAO2, VBO2;
glGenVertexArrays(1, &VAO2);
glGenBuffers(1, &VBO2);
glBindVertexArray(VAO2);
glBindBuffer(GL_ARRAY_BUFFER, VBO2);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices2), vertices2, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), 0);
glEnableVertexAttribArray(0);
// wireframe mode
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
int frameCounter = 0;
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
if (frameCounter > 900) break;
// input
// -----
processInput(window);
// render
// ------
glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
// be sure to activate the shader before any calls to glUniform
glUseProgram(shaderProgram);
/**********************draw rotating line*****************************/
glm::mat4 transform = glm::mat4(1.0f);
/// rotate( around the center of the screen )
transform = glm::rotate(transform, (float)glfwGetTime(), glm::vec3(0.0f, 0.0f, 1.0f));
unsigned int transLoc = glGetUniformLocation(shaderProgram, "transform");
glUniformMatrix4fv(transLoc, 1, GL_FALSE, glm::value_ptr(transform));
// draw
glBindVertexArray(VAO2);
glDrawArrays(GL_LINES, 0, 2);
/**********************draw rotating square*****************************/
transform = glm::mat4(1.0f);
/// rotate( around the center of the screen )
transform = glm::rotate(transform, (float)glfwGetTime(), glm::vec3(0.0f, 0.0f, 1.0f));
//// translate
transform = glm::translate(transform, glm::vec3(0.5f, 0.5f, 0.0f));
//// rotate( self rotate)
transform = glm::rotate(transform, (float)glfwGetTime(), glm::vec3(0.0f, 0.0f, 1.0f));
transLoc = glGetUniformLocation(shaderProgram, "transform");
glUniformMatrix4fv(transLoc, 1, GL_FALSE, glm::value_ptr(transform));
// draw
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
/**********************draw center squares*****************************/
transform = glm::mat4(1.0f);
float scaler = sin((float)glfwGetTime())*4;
transform = glm::scale(transform, glm::vec3(scaler, scaler, scaler));
transLoc = glGetUniformLocation(shaderProgram, "transform");
glUniformMatrix4fv(transLoc, 1, GL_FALSE, glm::value_ptr(transform));
// draw
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
/****** ffmpeg *****/
glReadPixels(0, 0, SCR_WIDTH, SCR_HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE, buffer);
fwrite(buffer, sizeof(int)*SCR_WIDTH*SCR_HEIGHT, 1, ffmpeg);
frameCounter++;
/****** end: ffmpeg *****/
glfwPollEvents();
}
_pclose(ffmpeg);
// glfw: terminate, clearing all previously allocated GLFW resources.
// ------------------------------------------------------------------
glfwTerminate();
return 0;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
Switch to the libx264rgb encoder & crf 0 for lossless capture:
const char* cmd = "ffmpeg -framerate 60 -f rawvideo -pix_fmt rgba -s 500x500 -i - "
"-c:v libx264rgb -threads 0 -preset fast -y -crf 0 -vf vflip output.mp4";
Note that you'll want a re-encode the output before passing it off to other, less general software than ffmpeg since RGB isn't a terribly common color-space for H.264.
Be careful with your player software when checking results, MPV's --profile=gpu-hq on my Linux system introduced ringing artifacts around the lines while VLC didn't.

Can't create a texture with a simple box

I'm trying to render a simple blue box to a texture, so that I can pass the texture to ImGui to render it as an image. For some reason though, I only ever get a simply white texture, and I can't figure out why. I've stripped my class down to as simple a case that I can, but I still only ever get a solid white texture, instead of a blue box that takes up most of the screen.
main.cpp
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <stdlib.h>
#include <cstdio>
#include <iostream>
#include <string>
#include <vector>
GLFWwindow * window;
GLuint solid_texture;
GLuint loadShaders(const char * vertex_file_source, const char * fragment_file_source)
{
// Create the shaders
GLuint vertex_shader_id = glCreateShader(GL_VERTEX_SHADER);
GLuint framgent_shader_id = glCreateShader(GL_FRAGMENT_SHADER);
GLint Result = GL_FALSE;
int InfoLogLength;
glShaderSource(vertex_shader_id, 1, &vertex_file_source, NULL);
glCompileShader(vertex_shader_id);
// Check Vertex Shader
glGetShaderiv(vertex_shader_id, GL_COMPILE_STATUS, &Result);
glGetShaderiv(vertex_shader_id, GL_INFO_LOG_LENGTH, &InfoLogLength);
if (InfoLogLength > 0) {
std::vector<char> VertexShaderErrorMessage(InfoLogLength + 1);
glGetShaderInfoLog(vertex_shader_id, InfoLogLength, NULL, &VertexShaderErrorMessage[0]);
std::cerr << VertexShaderErrorMessage[0] << std::endl;
}
glShaderSource(framgent_shader_id, 1, &fragment_file_source, NULL);
glCompileShader(framgent_shader_id);
// Check Fragment Shader
glGetShaderiv(framgent_shader_id, GL_COMPILE_STATUS, &Result);
glGetShaderiv(framgent_shader_id, GL_INFO_LOG_LENGTH, &InfoLogLength);
if (InfoLogLength > 0) {
std::vector<char> FragmentShaderErrorMessage(InfoLogLength + 1);
glGetShaderInfoLog(framgent_shader_id, InfoLogLength, NULL, &FragmentShaderErrorMessage[0]);
std::cerr << FragmentShaderErrorMessage[0] << std::endl;
}
GLuint ProgramID = glCreateProgram();
glAttachShader(ProgramID, vertex_shader_id);
glAttachShader(ProgramID, framgent_shader_id);
glLinkProgram(ProgramID);
// Check the program
glGetProgramiv(ProgramID, GL_LINK_STATUS, &Result);
glGetProgramiv(ProgramID, GL_INFO_LOG_LENGTH, &InfoLogLength);
if (InfoLogLength > 0) {
std::vector<char> ProgramErrorMessage(InfoLogLength + 1);
glGetProgramInfoLog(ProgramID, InfoLogLength, NULL, &ProgramErrorMessage[0]);
std::cerr << ProgramErrorMessage[0] << std::endl;
}
glDetachShader(ProgramID, vertex_shader_id);
glDetachShader(ProgramID, framgent_shader_id);
glDeleteShader(vertex_shader_id);
glDeleteShader(framgent_shader_id);
return ProgramID;
}
void generate_solid_texture()
{
glGenTextures(1, &solid_texture);
// Solid texture
unsigned char solidTexturePixels[4];
solidTexturePixels[0] = ~0;
solidTexturePixels[1] = ~0;
solidTexturePixels[2] = ~0;
solidTexturePixels[3] = ~0;
glBindTexture(GL_TEXTURE_2D, solid_texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, solidTexturePixels);
glBindTexture(GL_TEXTURE_2D, 0);
}
int main(void)
{
// Initialise GLFW
if (!glfwInit()) {
std::cerr << "Failed to initialize GLFW" << std::endl;
return -1;
}
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// Open a window and create its OpenGL context
window = glfwCreateWindow(1024, 768, "Tutorial 14 - Render To Texture", NULL, NULL);
if (window == NULL) {
fprintf(stderr,
"Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 "
"version of the tutorials.\n");
getchar();
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
// We would expect width and height to be 1024 and 768
int windowWidth = 1024;
int windowHeight = 768;
// But on MacOS X with a retina screen it'll be 1024*2 and 768*2, so we get the actual framebuffer size:
glfwGetFramebufferSize(window, &windowWidth, &windowHeight);
// Initialize GLEW
glewExperimental = true; // Needed for core profile
if (glewInit() != GLEW_OK) {
fprintf(stderr, "Failed to initialize GLEW\n");
getchar();
glfwTerminate();
return -1;
}
// Ensure we can capture the escape key being pressed below
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
// Hide the mouse and enable unlimited mouvement
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Set the mouse at the center of the screen
glfwPollEvents();
glfwSetCursorPos(window, 1024 / 2, 768 / 2);
// Dark blue background
glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
// Enable depth test
glEnable(GL_DEPTH_TEST);
// Setup OpenGL shaders
std::string vertex_shader_source =
R""(
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec2 uv;
layout (location = 2) in vec3 color;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
out vec2 frag_uv;
out vec4 frag_color;
void main()
{
frag_uv = uv;
frag_color = vec4(color, 1.0f);
gl_Position = proj_matrix * mv_matrix * vec4(position.xyz, 1);
}
)"";
std::string fragment_shader_source =
R""(
#version 330 core
uniform sampler2D Texture;
in vec2 frag_uv;
in vec4 frag_color;
layout (location = 0) out vec4 color;
void main()
{
// color = frag_color * texture(Texture, frag_uv.st);
// color = vec4((frag_color * texture(Texture, frag_uv)).xyz, 1);
color = frag_color * texture(Texture, frag_uv.st);
}
)"";
GLuint program_id = loadShaders(vertex_shader_source.c_str(), fragment_shader_source.c_str());
generate_solid_texture();
// Heatmap objects
GLuint m_vao, m_vbo, m_uvbo, m_cbo;
glGenVertexArrays(1, &m_vao);
glBindVertexArray(m_vao);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glGenBuffers(1, &m_vbo);
glGenBuffers(1, &m_uvbo);
glGenBuffers(1, &m_cbo);
glBindBuffer(GL_ARRAY_BUFFER, m_vbo);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, (void *)0);
glBindBuffer(GL_ARRAY_BUFFER, m_uvbo);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, (void *)0);
glBindBuffer(GL_ARRAY_BUFFER, m_cbo);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, (void *)0);
// Create the FBO for later
GLuint fbo, map_texture;
glGenFramebuffers(1, &fbo);
glGenTextures(1, &map_texture);
glBindVertexArray(0);
GLsizei heat_map_width = 600;
GLsizei heat_map_height = 600;
std::vector<float> map_vertices, map_vertex_uvs, map_vertex_colors;
std::vector<float> solid_uv = {0.0f, 0.0f};
std::vector<float> bl = {0, 0}, br = {1.0f, 0}, tl = {0, 1.0f}, tr = {1.0f, 1.0f};
map_vertices = {bl[0], bl[1], 1.0f, tr[0], tr[1], 1.0f, tl[0], tl[1], 1.0f,
bl[0], bl[1], 1.0f, br[0], br[1], 1.0f, tr[0], tr[1], 1.0f};
map_vertex_uvs = {solid_uv[0], solid_uv[1], solid_uv[0], solid_uv[1], solid_uv[0], solid_uv[1],
solid_uv[0], solid_uv[1], solid_uv[0], solid_uv[1], solid_uv[0], solid_uv[1]};
map_vertex_colors = {0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f};
glUseProgram(program_id);
glBindTexture(GL_TEXTURE_2D, map_texture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, heat_map_width, heat_map_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glBindTexture(GL_TEXTURE_2D, 0);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, map_texture, 0);
// glViewport(0, 0, heat_map_width, heat_map_height);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_DEPTH_TEST);
glEnable(GL_MULTISAMPLE);
glClearColor(0.0f, 0.0f, 0.0f, 1.00f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBindVertexArray(m_vao);
// Vertex buffer
glBindBuffer(GL_ARRAY_BUFFER, m_vbo);
glBufferData(GL_ARRAY_BUFFER, map_vertices.size() * sizeof(map_vertices[0]), map_vertices.data(), GL_STATIC_DRAW);
// UV buffer
glBindBuffer(GL_ARRAY_BUFFER, m_uvbo);
glBufferData(GL_ARRAY_BUFFER, map_vertex_uvs.size() * sizeof(map_vertex_uvs[0]), map_vertex_uvs.data(),
GL_STATIC_DRAW);
// Color buffer
glBindBuffer(GL_ARRAY_BUFFER, m_cbo);
glBufferData(GL_ARRAY_BUFFER, map_vertex_colors.size() * sizeof(map_vertex_colors[0]), map_vertex_colors.data(),
GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
static const GLfloat identity_matrix[16] = {1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
GLuint move_matrix_location = glGetUniformLocation(program_id, "mv_matrix");
GLuint projection_matrix_location = glGetUniformLocation(program_id, "proj_matrix");
GLuint texture_location = glGetUniformLocation(program_id, "Texture");
glUniformMatrix4fv(move_matrix_location, 1, GL_FALSE, identity_matrix);
glUniformMatrix4fv(projection_matrix_location, 1, GL_FALSE, identity_matrix);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, solid_texture);
glUniform1i(texture_location, 0);
glDrawArrays(GL_TRIANGLES, 0, map_vertices.size() / 3);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
glBindVertexArray(0);
// Framebuffer to texture
glBindBuffer(GL_ARRAY_BUFFER, 0);
// Always check that our framebuffer is ok
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
return false;
// The fullscreen quad's FBO
static const GLfloat g_quad_vertex_buffer_data[] = {
-1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f, -1.0f, 1.0f, 0.0f,
-1.0f, 1.0f, 0.0f, 1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.0f,
};
static const GLfloat g_quad_vertex_uv_data[] = {
-1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f,
};
static const GLfloat g_quad_vertex_color_data[] = {
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
};
GLuint quad_vao;
glGenVertexArrays(1, &quad_vao);
glBindVertexArray(quad_vao);
GLuint quad_vertexbuffer;
glGenBuffers(1, &quad_vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, quad_vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_quad_vertex_buffer_data), g_quad_vertex_buffer_data, GL_STATIC_DRAW);
GLuint quad_uvbuffer;
glGenBuffers(1, &quad_uvbuffer);
glBindBuffer(GL_ARRAY_BUFFER, quad_uvbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_quad_vertex_uv_data), g_quad_vertex_uv_data, GL_STATIC_DRAW);
GLuint quad_colorbuffer;
glGenBuffers(1, &quad_colorbuffer);
glBindBuffer(GL_ARRAY_BUFFER, quad_colorbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_quad_vertex_color_data), g_quad_vertex_color_data, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, quad_vertexbuffer);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, (void *)0);
glBindBuffer(GL_ARRAY_BUFFER, quad_uvbuffer);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, (void *)0);
glBindBuffer(GL_ARRAY_BUFFER, quad_colorbuffer);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, (void *)0);
glBindVertexArray(0);
do {
// Render to our framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glViewport(
0, 0, windowWidth,
windowHeight); // Render on the whole framebuffer, complete from the lower left corner to the upper right
// Clear the screen
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use our shader
glUseProgram(program_id);
// Render to the screen
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Render on the whole framebuffer, complete from the lower left corner to the upper right
glViewport(0, 0, windowWidth, windowHeight);
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use our shader
glUseProgram(program_id);
// Bind our texture in Texture Unit 0
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, map_texture);
// Set our "renderedTexture" sampler to use Texture Unit 0
glUniform1i(texture_location, 0);
glBindVertexArray(quad_vao);
// Draw the triangles !
glDrawArrays(GL_TRIANGLES, 0, 6); // 2*3 indices starting at 0 -> 2 triangles
glBindVertexArray(0);
glDisableVertexAttribArray(0);
// Swap buffers
glfwSwapBuffers(window);
glfwPollEvents();
} // Check if the ESC key was pressed or the window was closed
while (glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS && glfwWindowShouldClose(window) == 0);
// Close OpenGL window and terminate GLFW
glfwTerminate();
return 0;
}
I am fairly certain the issue is not with the vertex or fragment shaders, because I use them in another renderer class and that one works fine. Please let me know if I can provide anything else that would be of use.
Major Edit: I've created a minimal reproducible example of my issue.
Edit2: I believe I have updated it for the better, but now showing a black screen instead of a white one. I ran the generate_solid_texture function, enabled the verex atttrib arrays for the quad_vao, and set the framebuffer to default in the main loop.

I have converted The Red Book 9ed ex. 3.7 from old functions to 4.5 functions, but it's not displaying anything

For practice purpose, I have converted OpenGL Red Book 9ed ex. 3.7 from "old" functions to 4.5 functions. I have done it before, and it has worked on my system, but this time, it's not displaying anything, just the glClearBufferfv() color. I tried to follow the example to a tee, and I didn't omit anything. I just converted glBufferData() to glNamedBufferStorage(). And a a few other things. Here's the original code as it appears in the book. But let me copy-paste my own code and shaders:
Main.cpp
#include <iostream>
#include <glad/glad.h>
#include <KHR/khrplatform.h>
#include <GLFW/glfw3.h>
#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <SOIL2/SOIL2.h>
#include <Shader.h>
#include <Camera.h>
enum VAO_IDs { Triangles, NumVAOs, ID3 };
enum Buffer_IDs { ArrayBuffer1, ArrayBuffer2, EBOBuffer, NumBuffers
};
enum Attrib_IDs { vPosition = 0, cPosition = 1 };
GLuint VAOs[NumVAOs];
GLuint Buffers[NumBuffers];
const GLuint NumVertices = 6;
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);
// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
void init()
{
GLfloat cube_positions[] = {
-1.0f, -1.0f, -1.0f, 1.0f,
-1.0f, -1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, -1.0f, 1.0f,
-1.0f, 1.0f, 1.0f, 1.0f,
1.0f, -1.0f, -1.0f, 1.0f,
1.0f, -1.0f, 1.0f, 1.0f,
1.0f, 1.0f, -1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f
};
GLfloat cube_colors[] = {
1.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 1.0f, 1.0f,
1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 1.0f, 1.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f
};
GLushort cube_indices[] = {
0, 1, 2, 3, 6, 7, 4, 5,
0xFFFF,
2, 6, 0, 4, 1, 5, 3, 7
};
glCreateVertexArrays(NumVAOs, VAOs);
glCreateBuffers(NumBuffers, Buffers);
glNamedBufferStorage(Buffers[ArrayBuffer1], sizeof(cube_positions), cube_positions, GL_ARRAY_BUFFER);
glNamedBufferStorage(Buffers[ArrayBuffer2], sizeof(cube_colors), cube_colors, GL_ARRAY_BUFFER);
glNamedBufferStorage(Buffers[EBOBuffer], sizeof(cube_indices), cube_indices, GL_ELEMENT_ARRAY_BUFFER);
Shader myShader("TirangleVert.glsl", "TriangleFrag.glsl");
myShader.Use();
glBindVertexArray(VAOs[Triangles]);
glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer1]);
glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer2]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, Buffers[EBOBuffer]);
glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_FALSE, 0, 0);
glVertexAttribPointer(cPosition, 4, GL_FLOAT, GL_FALSE, 0, (const GLvoid *) sizeof(cube_positions));
glEnableVertexAttribArray(vPosition);
glEnableVertexAttribArray(cPosition);
}
void display()
{
GLfloat black[] = { 0.2f, 0.5f, 0.6f };
glClearBufferfv(GL_COLOR, 0, black);
glBindVertexArray(VAOs[Triangles]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, Buffers[EBOBuffer]);
glLineWidth(20);
glPointSize(20);
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex(0xFFFF);
glDrawElements(GL_TRIANGLE_STRIP, 17, GL_UNSIGNED_SHORT, NULL);
//glDrawElements(GL_TRIANGLE_STRIP, 8, GL_UNSIGNED_SHORT, NULL);
//glDrawElements(GL_TRIANGLE_STRIP, 8, GL_UNSIGNED_SHORT,
// (const GLvoid *)(9 * sizeof(GLushort)));
}
void dealloc()
{
glDeleteVertexArrays(NumVAOs, VAOs);
glDeleteBuffers(NumBuffers, Buffers);
}
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 5);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
init();
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
// input
// -----
processInput(window);
// render
// ------
display();
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
dealloc();
// glfw: terminate, clearing all previously allocated GLFW resources.
// ------------------------------------------------------------------
glfwTerminate();
return 0;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
TirangleVert.glsl:
#version 450 core
layout (location = 0) in vec4 cube_pos;
layout (location = 1) in vec4 colors;
out vec4 myColor;
void main()
{
gl_Position = cube_pos;
myColor = colors;
}
TriangleFrag.glsl:
#version 450 core
layout (location = 0) in vec4 myColor;
out vec4 color;
void main()
{
color = myColor;
}
PS: I realize that there's a typo in the name of the vertex shader, but it's all accounted for. Also, there's no problem with Shader.h, as I have used it before with no issues.
Many thanks.
The last parameter of the glNamedBufferStorage is the bitfield, which specifies the intended usage of the buffer's data store, rather than GL_ARRAY_BUFFERor GL_ELEMENT_ARRAY_BUFFER. This will cause a GL_INVALID_VALUE error:
GLbitfield flags = GL_DYNAMIC_STORAGE_BIT | GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT;
glNamedBufferStorage(Buffers[ArrayBuffer1], sizeof(cube_positions), cube_positions, flags);
glNamedBufferStorage(Buffers[ArrayBuffer2], sizeof(cube_colors), cube_colors, flags);
glNamedBufferStorage(Buffers[EBOBuffer], sizeof(cube_indices), cube_indices, flags);
glVertexAttribPointer specifies a vertex array which is refers to the array buffer which is currently bound.
The proper buffer has to be bound by glBindBuffer before glVertexAttribPointer is called. Note, there is only 1 buffer which can be currently bound.
If a buffer is bound, then the last parameter (pointer) is treated as a byte offset into the buffer object's data store. In your case this parameter has to be 0. Note, in a core profile context you have to use an array buffer, a directly addressed memory is not valid.
glBindVertexArray(VAOs[Triangles]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, Buffers[EBOBuffer]);
glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer1]);
glVertexAttribPointer(vPosition, 4, GL_FLOAT, GL_FALSE, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer2]);
glVertexAttribPointer(cPosition, 4, GL_FLOAT, GL_FALSE, 0, 0);
glEnableVertexAttribArray(vPosition);
glEnableVertexAttribArray(cPosition);