heres my code:
int oupt=0;
for(int i=0, power=number.length()-1; i<number.length(); i++, power--) {
oupt+=((int)number[i]-48)*pow(5, power);
}
string output = std::to_string(oupt);
in this, number is a string of the number i want to convert from base 5 to base 10, for example "414".when i run the code i get the answer as 108 when i know the answer is 109. for all other bases of 5 it gives output which is decremented by one. when i try to print ((int)number[i]-48)*pow(5, power), i get output which makes sense, 100, 5, 4. which add up to 109. the output i get is 108. this is true for all conversions from base 5 to base 10. please help me.
Any toolset that doesn't give you an exact double value for pow with integral arguments ought to be considered defective.
But alas the C++ standard permits pow to give you an approximation beyond that endemic in double precision floating point arithmetic. Under some standards - such as IEEE754 - some functions (e.g. sqrt) and the arithmetic operators are required to return the best floating point number possible, but that rule does not apply to pow. It allows compiler and C++ standard library vendors to be lazy and implement pow(x, y) as exp(y * log(x)) for example. And that can undershoot the correct value, and the truncation to an integral type makes the problem pernicious.
This is what's happening to you here.
Putting std::round around the pow result will probably work.
If you have to roll your own text-to-integer conversion, it can be done much more simply:
const int base = 5;
int oupt = 0;
for (int i = 0; i < number.length(); ++i) {
oupt *= base;
oupt += number[i] - '0'; // works for all character encodings
}
std::string output = std::to_string(oupt);
Note: no floating-point math used or needed.
But it's even easier to use the standard library:
int oupt = std::stoi(number, nullptr, base);
Related
Consider the following piece of code:
#include <iostream>
#include <cmath>
int main() {
int i = 23;
int j = 1;
int base = 10;
int k = 2;
i += j * pow(base, k);
std::cout << i << std::endl;
}
It outputs "122" instead of "123". Is it a bug in g++ 4.7.2 (MinGW, Windows XP)?
std::pow() works with floating point numbers, which do not have infinite precision, and probably the implementation of the Standard Library you are using implements pow() in a (poor) way that makes this lack of infinite precision become relevant.
However, you could easily define your own version that works with integers. In C++11, you can even make it constexpr (so that the result could be computed at compile-time when possible):
constexpr int int_pow(int b, int e)
{
return (e == 0) ? 1 : b * int_pow(b, e - 1);
}
Here is a live example.
Tail-recursive form (credits to Dan Nissenbaum):
constexpr int int_pow(int b, int e, int res = 1)
{
return (e == 0) ? res : int_pow(b, e - 1, b * res);
}
All the other answers so far miss or dance around the one and only problem in the question:
The pow in your C++ implementation is poor quality. It returns an inaccurate answer when there is no need to.
Get a better C++ implementation, or at least replace the math functions in it. The one pointed to by Pascal Cuoq is good.
Not with mine at least:
$ g++ --version | head -1
g++ (GCC) 4.7.2 20120921 (Red Hat 4.7.2-2)
$ ./a.out
123
IDEone is also running version 4.7.2 and gives 123.
Signatures of pow() from http://www.cplusplus.com/reference/cmath/pow/
double pow ( double base, double exponent );
long double pow ( long double base, long double exponent );
float pow ( float base, float exponent );
double pow ( double base, int exponent );
long double pow ( long double base, int exponent );
You should set double base = 10.0; and double i = 23.0.
If you simply write
#include <iostream>
#include <cmath>
int main() {
int i = 23;
int j = 1;
int base = 10;
int k = 2;
i += j * pow(base, k);
std::cout << i << std::endl;
}
what do you think is pow supposed to refer to? The C++ standard does not even guarantee that after including cmath you'll have a pow function at global scope.
Keep in mind that all the overloads are at least in the std namespace. There is are pow functions that take an integer exponent and there are pow functions that take floating point exponents. It is quite possible that your C++ implementation only declares the C pow function at global scope. This function takes a floating point exponent. The thing is that this function is likely to have a couple of approximation and rounding errors. For example, one possible way of implementing that function is:
double pow(double base, double power)
{
return exp(log(base)*power);
}
It's quite possible that pow(10.0,2.0) yields something like 99.99999999992543453265 due to rounding and approximation errors. Combined with the fact that floating point to integer conversion yields the number before the decimal point this explains your result of 122 because 99+3=122.
Try using an overload of pow which takes an integer exponent and/or do some proper rounding from float to int. The overload taking an integer exponent might give you the exact result for 10 to the 2nd power.
Edit:
As you pointed out, trying to use the std::pow(double,int) overload also seems to yield a value slightly less 100. I took the time to check the ISO standards and the libstdc++ implementation to see that starting with C++11 the overloads taking integer exponents have been dropped as a result of resolving defect report 550. Enabling C++0x/C++11 support actually removes the overloads in the libstdc++ implementation which could explain why you did not see any improvement.
Anyhow, it is probably a bad idea to rely on the accuracy of such a function especially if a conversion to integer is involved. A slight error towards zero will obviously make a big difference if you expect a floating point value that is an integer (like 100) and then convert it to an int-type value. So my suggestion would be write your own pow function that takes all integers or take special care with respect to the double->int conversion using your own round function so that a slight error torwards zero does not change the result.
Your problem is not a bug in gcc, that's absolutely certain. It may be a bug in the implementation of pow, but I think your problem is really simply the fact that you are using pow which gives an imprecise floating point result (because it is implemented as something like exp(power * log(base)); and log(base) is never going to be absolutely accurate [unless base is a power of e].
Consider the following piece of code:
#include <iostream>
#include <cmath>
int main() {
int i = 23;
int j = 1;
int base = 10;
int k = 2;
i += j * pow(base, k);
std::cout << i << std::endl;
}
It outputs "122" instead of "123". Is it a bug in g++ 4.7.2 (MinGW, Windows XP)?
std::pow() works with floating point numbers, which do not have infinite precision, and probably the implementation of the Standard Library you are using implements pow() in a (poor) way that makes this lack of infinite precision become relevant.
However, you could easily define your own version that works with integers. In C++11, you can even make it constexpr (so that the result could be computed at compile-time when possible):
constexpr int int_pow(int b, int e)
{
return (e == 0) ? 1 : b * int_pow(b, e - 1);
}
Here is a live example.
Tail-recursive form (credits to Dan Nissenbaum):
constexpr int int_pow(int b, int e, int res = 1)
{
return (e == 0) ? res : int_pow(b, e - 1, b * res);
}
All the other answers so far miss or dance around the one and only problem in the question:
The pow in your C++ implementation is poor quality. It returns an inaccurate answer when there is no need to.
Get a better C++ implementation, or at least replace the math functions in it. The one pointed to by Pascal Cuoq is good.
Not with mine at least:
$ g++ --version | head -1
g++ (GCC) 4.7.2 20120921 (Red Hat 4.7.2-2)
$ ./a.out
123
IDEone is also running version 4.7.2 and gives 123.
Signatures of pow() from http://www.cplusplus.com/reference/cmath/pow/
double pow ( double base, double exponent );
long double pow ( long double base, long double exponent );
float pow ( float base, float exponent );
double pow ( double base, int exponent );
long double pow ( long double base, int exponent );
You should set double base = 10.0; and double i = 23.0.
If you simply write
#include <iostream>
#include <cmath>
int main() {
int i = 23;
int j = 1;
int base = 10;
int k = 2;
i += j * pow(base, k);
std::cout << i << std::endl;
}
what do you think is pow supposed to refer to? The C++ standard does not even guarantee that after including cmath you'll have a pow function at global scope.
Keep in mind that all the overloads are at least in the std namespace. There is are pow functions that take an integer exponent and there are pow functions that take floating point exponents. It is quite possible that your C++ implementation only declares the C pow function at global scope. This function takes a floating point exponent. The thing is that this function is likely to have a couple of approximation and rounding errors. For example, one possible way of implementing that function is:
double pow(double base, double power)
{
return exp(log(base)*power);
}
It's quite possible that pow(10.0,2.0) yields something like 99.99999999992543453265 due to rounding and approximation errors. Combined with the fact that floating point to integer conversion yields the number before the decimal point this explains your result of 122 because 99+3=122.
Try using an overload of pow which takes an integer exponent and/or do some proper rounding from float to int. The overload taking an integer exponent might give you the exact result for 10 to the 2nd power.
Edit:
As you pointed out, trying to use the std::pow(double,int) overload also seems to yield a value slightly less 100. I took the time to check the ISO standards and the libstdc++ implementation to see that starting with C++11 the overloads taking integer exponents have been dropped as a result of resolving defect report 550. Enabling C++0x/C++11 support actually removes the overloads in the libstdc++ implementation which could explain why you did not see any improvement.
Anyhow, it is probably a bad idea to rely on the accuracy of such a function especially if a conversion to integer is involved. A slight error towards zero will obviously make a big difference if you expect a floating point value that is an integer (like 100) and then convert it to an int-type value. So my suggestion would be write your own pow function that takes all integers or take special care with respect to the double->int conversion using your own round function so that a slight error torwards zero does not change the result.
Your problem is not a bug in gcc, that's absolutely certain. It may be a bug in the implementation of pow, but I think your problem is really simply the fact that you are using pow which gives an imprecise floating point result (because it is implemented as something like exp(power * log(base)); and log(base) is never going to be absolutely accurate [unless base is a power of e].
Consider the following piece of code:
#include <iostream>
#include <cmath>
int main() {
int i = 23;
int j = 1;
int base = 10;
int k = 2;
i += j * pow(base, k);
std::cout << i << std::endl;
}
It outputs "122" instead of "123". Is it a bug in g++ 4.7.2 (MinGW, Windows XP)?
std::pow() works with floating point numbers, which do not have infinite precision, and probably the implementation of the Standard Library you are using implements pow() in a (poor) way that makes this lack of infinite precision become relevant.
However, you could easily define your own version that works with integers. In C++11, you can even make it constexpr (so that the result could be computed at compile-time when possible):
constexpr int int_pow(int b, int e)
{
return (e == 0) ? 1 : b * int_pow(b, e - 1);
}
Here is a live example.
Tail-recursive form (credits to Dan Nissenbaum):
constexpr int int_pow(int b, int e, int res = 1)
{
return (e == 0) ? res : int_pow(b, e - 1, b * res);
}
All the other answers so far miss or dance around the one and only problem in the question:
The pow in your C++ implementation is poor quality. It returns an inaccurate answer when there is no need to.
Get a better C++ implementation, or at least replace the math functions in it. The one pointed to by Pascal Cuoq is good.
Not with mine at least:
$ g++ --version | head -1
g++ (GCC) 4.7.2 20120921 (Red Hat 4.7.2-2)
$ ./a.out
123
IDEone is also running version 4.7.2 and gives 123.
Signatures of pow() from http://www.cplusplus.com/reference/cmath/pow/
double pow ( double base, double exponent );
long double pow ( long double base, long double exponent );
float pow ( float base, float exponent );
double pow ( double base, int exponent );
long double pow ( long double base, int exponent );
You should set double base = 10.0; and double i = 23.0.
If you simply write
#include <iostream>
#include <cmath>
int main() {
int i = 23;
int j = 1;
int base = 10;
int k = 2;
i += j * pow(base, k);
std::cout << i << std::endl;
}
what do you think is pow supposed to refer to? The C++ standard does not even guarantee that after including cmath you'll have a pow function at global scope.
Keep in mind that all the overloads are at least in the std namespace. There is are pow functions that take an integer exponent and there are pow functions that take floating point exponents. It is quite possible that your C++ implementation only declares the C pow function at global scope. This function takes a floating point exponent. The thing is that this function is likely to have a couple of approximation and rounding errors. For example, one possible way of implementing that function is:
double pow(double base, double power)
{
return exp(log(base)*power);
}
It's quite possible that pow(10.0,2.0) yields something like 99.99999999992543453265 due to rounding and approximation errors. Combined with the fact that floating point to integer conversion yields the number before the decimal point this explains your result of 122 because 99+3=122.
Try using an overload of pow which takes an integer exponent and/or do some proper rounding from float to int. The overload taking an integer exponent might give you the exact result for 10 to the 2nd power.
Edit:
As you pointed out, trying to use the std::pow(double,int) overload also seems to yield a value slightly less 100. I took the time to check the ISO standards and the libstdc++ implementation to see that starting with C++11 the overloads taking integer exponents have been dropped as a result of resolving defect report 550. Enabling C++0x/C++11 support actually removes the overloads in the libstdc++ implementation which could explain why you did not see any improvement.
Anyhow, it is probably a bad idea to rely on the accuracy of such a function especially if a conversion to integer is involved. A slight error towards zero will obviously make a big difference if you expect a floating point value that is an integer (like 100) and then convert it to an int-type value. So my suggestion would be write your own pow function that takes all integers or take special care with respect to the double->int conversion using your own round function so that a slight error torwards zero does not change the result.
Your problem is not a bug in gcc, that's absolutely certain. It may be a bug in the implementation of pow, but I think your problem is really simply the fact that you are using pow which gives an imprecise floating point result (because it is implemented as something like exp(power * log(base)); and log(base) is never going to be absolutely accurate [unless base is a power of e].
I stumbled onto this code here.
Generators doubleSquares(int value)
{
Generators result;
for (int i = 0; i <= std::sqrt(value / 2); i++) // 1
{
double j = std::sqrt(value - std::pow(i, 2)); // 2
if (std::floor(j) == j) // 3
result.push_back( { i, static_cast<int>(j) } ); // 4
}
return result;
}
Am I wrong to think that //3 is dangerous ?
This code is not guaranteed by the C++ standard to work as desired.
Some low-quality math libraries do not return correctly rounded values for pow, even when the inputs have integer values and the mathematical result can be exactly represented. sqrt may also return an inaccurate value, although this function is easier to implement and so less commonly suffers from defects.
Thus, it is not guaranteed that j is exactly an integer when you might expect it to be.
In a good-quality math library, pow and sqrt will always return correct results (zero error) when the mathematical result is exactly representable. If you have a good-quality C++ implementation, this code should work as desired, up to the limits of the integer and floating-point types used.
Improving the Code
This code has no reason to use pow; std::pow(i, 2) should be i*i. This results in exact arithmetic (up to the point of integer overflow) and completely avoids the question of whether pow is correct.
Eliminating pow leaves just sqrt. If we know the implementation returns correct values, we can accept the use of sqrt. If not, we can use this instead:
for (int i = 0; i*i <= value/2; ++i)
{
int j = std::round(std::sqrt(value - i*i));
if (j*j + i*i == value)
result.push_back( { i, j } );
}
This code only relies on sqrt to return a result accurate within .5, which even a low-quality sqrt implementation should provide for reasonable input values.
There are two different, but related, questions:
Is j an integer?
Is j likely to be the result of a double calculation whose exact result would be an integer?
The quoted code asks the first question. It is not correct for asking the second question. More context would be needed to be certain which question should be being asked.
If the second question should be being asked, you cannot depend only on floor. Consider a double that is greater than 2.99999999999 but less than 3. It could be the result of a calculation whose exact value would be 3. Its floor is 2, and it is greater than its floor by almost 1. You would need to compare for being close to the result of std:round instead.
I would say it is dangerous. One should always test for "equality" of floating point numbers by comparing the difference between the two numbers with an acceptably small number, e.g.:
#include <math.h>
...
if (fabs(std::floor(j) - j) < eps) {
...
... where eps is a number that is acceptably small for one's purpose. This approach is essential unless one can guarantee that the operations return exact results, which may be true for some cases (e.g. IEEE-754-compliant systems) but the C++ standard does not require that this be true. See, for instance Cross-Platform Issues With Floating-Point Arithmetics in C++.
Consider the following piece of code:
#include <iostream>
#include <cmath>
int main() {
int i = 23;
int j = 1;
int base = 10;
int k = 2;
i += j * pow(base, k);
std::cout << i << std::endl;
}
It outputs "122" instead of "123". Is it a bug in g++ 4.7.2 (MinGW, Windows XP)?
std::pow() works with floating point numbers, which do not have infinite precision, and probably the implementation of the Standard Library you are using implements pow() in a (poor) way that makes this lack of infinite precision become relevant.
However, you could easily define your own version that works with integers. In C++11, you can even make it constexpr (so that the result could be computed at compile-time when possible):
constexpr int int_pow(int b, int e)
{
return (e == 0) ? 1 : b * int_pow(b, e - 1);
}
Here is a live example.
Tail-recursive form (credits to Dan Nissenbaum):
constexpr int int_pow(int b, int e, int res = 1)
{
return (e == 0) ? res : int_pow(b, e - 1, b * res);
}
All the other answers so far miss or dance around the one and only problem in the question:
The pow in your C++ implementation is poor quality. It returns an inaccurate answer when there is no need to.
Get a better C++ implementation, or at least replace the math functions in it. The one pointed to by Pascal Cuoq is good.
Not with mine at least:
$ g++ --version | head -1
g++ (GCC) 4.7.2 20120921 (Red Hat 4.7.2-2)
$ ./a.out
123
IDEone is also running version 4.7.2 and gives 123.
Signatures of pow() from http://www.cplusplus.com/reference/cmath/pow/
double pow ( double base, double exponent );
long double pow ( long double base, long double exponent );
float pow ( float base, float exponent );
double pow ( double base, int exponent );
long double pow ( long double base, int exponent );
You should set double base = 10.0; and double i = 23.0.
If you simply write
#include <iostream>
#include <cmath>
int main() {
int i = 23;
int j = 1;
int base = 10;
int k = 2;
i += j * pow(base, k);
std::cout << i << std::endl;
}
what do you think is pow supposed to refer to? The C++ standard does not even guarantee that after including cmath you'll have a pow function at global scope.
Keep in mind that all the overloads are at least in the std namespace. There is are pow functions that take an integer exponent and there are pow functions that take floating point exponents. It is quite possible that your C++ implementation only declares the C pow function at global scope. This function takes a floating point exponent. The thing is that this function is likely to have a couple of approximation and rounding errors. For example, one possible way of implementing that function is:
double pow(double base, double power)
{
return exp(log(base)*power);
}
It's quite possible that pow(10.0,2.0) yields something like 99.99999999992543453265 due to rounding and approximation errors. Combined with the fact that floating point to integer conversion yields the number before the decimal point this explains your result of 122 because 99+3=122.
Try using an overload of pow which takes an integer exponent and/or do some proper rounding from float to int. The overload taking an integer exponent might give you the exact result for 10 to the 2nd power.
Edit:
As you pointed out, trying to use the std::pow(double,int) overload also seems to yield a value slightly less 100. I took the time to check the ISO standards and the libstdc++ implementation to see that starting with C++11 the overloads taking integer exponents have been dropped as a result of resolving defect report 550. Enabling C++0x/C++11 support actually removes the overloads in the libstdc++ implementation which could explain why you did not see any improvement.
Anyhow, it is probably a bad idea to rely on the accuracy of such a function especially if a conversion to integer is involved. A slight error towards zero will obviously make a big difference if you expect a floating point value that is an integer (like 100) and then convert it to an int-type value. So my suggestion would be write your own pow function that takes all integers or take special care with respect to the double->int conversion using your own round function so that a slight error torwards zero does not change the result.
Your problem is not a bug in gcc, that's absolutely certain. It may be a bug in the implementation of pow, but I think your problem is really simply the fact that you are using pow which gives an imprecise floating point result (because it is implemented as something like exp(power * log(base)); and log(base) is never going to be absolutely accurate [unless base is a power of e].