Azure WebJobs - how to keep the state? - azure-webjobs

I have a need to implement some kind of orchestrator by a WebJob. So it needs to keep a state for some kind of internal queue.
Is there any way apart from static field and from using database to keep that state?
In general the idea is simple: I have a calculation job. It get's e.g. ProductId and is doing calculations for it. It takes some time, so when another message for same ProductId is coming I need to wait, until previous calculations will finish. But at the same time I can pick a message for another ProductId if there are no running calculations for that.
I haven't found any way to make sequential processing of messages based on a specific conditions. So end up with idea to implement a stateful orchestrator which will do the trick.
Am I doing it in a wrong way?

Related

Siddhi: state persistence and realtime queryable state?

My Scenario is like this.
I want to see/query what is the current aggregation value(s) of a particular query of the active processing window.
I have seen this in Apache Flink.
For e.g:
Say I have a query to count total number of failures, windowing to every 12 hours. And I want to ask (from another application) what is the current count for active aggregating window. Note that active window is still processing.
Reason is that my application need to give a feedback to the user regarding its current total failure count. So he/she can act based on that. Waiting until the window is processed and get the count then, is not the desired behavior in the perspective of user.
Is this possible? If so how?
One option is to use rolling time window. Rolling time window will give you the rolling aggregation(sum, count, etc) for a given time range. So for every incoming event you will get an output event with the count. You can use that to give feedback. There are two catches of this approach. One is it is a rolling count not a batch count. Other one is process is triggered with events to count stream. If you want to trigger the feedback depending on another requirement(Ex: user initiated, every hour etc) this approach will not work. For that you need to use below approach.
Use a time batch window and then join it with another stream which will get triggered depending on the business requirement. Below is a sample and here are the testcases for your reference.
from countStream#window.timeBatch(12 hrs) right outer join
feedbackTriggerStream#window.length(1)
select count() as totalFailures
insert into FeedbackStream;
Another option is to use the query feature. This approach is suitable if you are using Siddhi as a library and you have access to SiddhiAppRuntime. Below is a code sample for that. Lets assume below is your window query to calculate count.
define countWindow(userid string, reason string) timeBatch(12 hrs);
From countStream
Select *
Insert into countWindow;
Then you can use queries as below to access window data.
Event[] events = siddhiAppRuntime.query(
"from countWindow " +
"select count() as totalCount ");
events will contain the one event with count. Here is a reference to testcases.

Dealing with out-of-order messages stored in Datomic?

Background
In distributed systems messages can arrive in an out of order fashion. For example if message A is sent at time T1 and message B is sent at T2 there is a chance that B is received before A. This matters for example if A is a message such as "CustomerRegistered" and B is "CustomerUnregistered".
In other databases I'd typically write a tombstone if CustomerUnregistered is received for a customer that is not present in the database. I can then check if this tombstone exists when the CustomerRegistered message is received (and perhaps simply ignore this message depending on use case). I could of course do something similar with Datomic as well but I hope that maybe Datomic can help me so that I don't need to do this.
One potential solution I'm thinking of is this:
Can you perhaps retract a non-existing customer entity (CustomerUnregistered) and later when CustomerRegistered is received the customer entity is written at a time in history before the retraction? It would be neat (I think) if the :db/txInstant could be set to a timestamp defined in the message.
Question
How would one deal with this scenario in Datomic in an idiomatic way?
As a general principle, do not let your application code manipulate :db/txInstant. :db/txInstant represents the time at which you learned a fact, not the time at which it happened.
Maybe you should consider un-registration as adding a Datom about a customer (e.g via an instant-typed :customer/unregistered attribute) instead of retracting the Datoms of that customer (which means: "forget that this customer existed").
However, if retracting the datoms of customer is really the way you want to do things, I'd use a record which prevents the customer registration transaction to take place (which I'd enforce via a transaction function).

Create fault tolerance example with Dynamodb streams

I have been looking at DynamoDB to create something close to a transaction. I was watching this video presentation: https://www.youtube.com/watch?v=KmHGrONoif4 in which the speaker shows around the 30 minute mark ways to make dynamodb operation close to ACID compliant as can be. He shows the best concept is to use dynamodb streams, but doesn't show a demo or an example. I have a very simple scenario I am look at and that is I have one Table called USERS. Each user has a list of friends. If two users no longer wish to be friends they must be removed from both of the user's entities (I can't afford for one friend to be deleted from one entity, and due to a crash for example, the second user entities friend attribute is not updated causing inconsistent data). I was wondering if someone could provide some simple walk-through oh of how to accomplish something like this to see how it all works? If code could be provided that would be great to see how it works.
Cheers!
Here is the transaction library that he is referring: https://github.com/awslabs/dynamodb-transactions
You can read through the design: https://github.com/awslabs/dynamodb-transactions/blob/master/DESIGN.md
Here is the Kinesis client library:
http://docs.aws.amazon.com/kinesis/latest/dev/developing-consumers-with-kcl.html
When you're writing to DynamoDB, you can get an output stream with all the operations that happen on the table. That stream can be consumed and processed by the Kinesis Client Library.
In your case, have your client remove it from the first user, then from the second user. In the Kinesis Client Library when you are consuming the stream and see a user removed, look at who he was friends with and go check/remove if needed - if needed the removal should probably done through the same means. It's not truly a transaction, and relies on the fact that KCL guarantees that the records from the streams will be processed.
To add to this confusion, KCL uses Dynamo to store where in the stream is at when processing and to checkpoint processed records.
You should try and minimize the need for transactions, which is a nice concept in a small scale, but can't really scale once you become very successful and need to support millions and billions of records.
If you are thinking in a NoSQL mind set, you can consider using a slightly different data model. One simple example is to use Global Secondary Index on a single table on the "friend-with" attribute. When you add a single record with a pair of friends, both the record and the index will be updated in a single action. Both table and index will be updated in a single action, when you delete the friendship record.
If you choose to use the Updates Stream mechanism or the Global Secondary Index one, you should take into consideration the "eventual consistency" case of the distributed system. The consistency can be achieved within milli-seconds, but it can also take longer. You should analyze the business implications and the technical measures you can take to solve it. For example, you can verify the existence of both records (main table as well as the index, if you found it in the index), before you present it to the user.

Optimistic locking and re-try

I'm not sure about proper design of an approach.
We use optimistic locking using long incremented version placed on every entity. Each update of such entity is executed via compare-and-swap algorithm which just succeed or fail depending on whether some other client updates entity in the meantime or not. Classic optimistic locking as e.g. hibernate do.
We also need to adopt re-trying approach. We use http based storage (etcd) and it can happen that some update request is just timeouted.
And here it's the problem. How to combine optimistic locking and re-try. Here is the specific issue I'm facing.
Let say I have an entity having version=1 and I'm trying to update it. Next version is obviously 2. My client than executes conditional update. It's successfully executed only when the version in persistence is 1 and it's atomically updated to version=2. So far, so good.
Now, let say that a response for the update request does not arrive. It's impossible to say if it succeeded or not at this moment. The only thing I can do now is to re-try the update again. In memory entity still contains version=1 intending to update value to 2.
The real problem arise now. What if the second update fails because a version in persistence is 2 and not 1?
There is two possible reasons:
first request indeed caused the update - the operation was successful but the response got lost or my client timeout, whatever. It just did not arrived but it passed
some other client performed the update concurrently on the background
Now I can't say what is true. Did my client update the entity or some other client did? Did the operation passed or failed?
Current approach we use just compares persisted entity and the entity in main memory. Either as java equal or json content equality. If they are equal, the update methods is declared as successful. I'm not satisfied with the algorithm as it's not both cheap and reasonable for me.
Another possible approach is to do not use long version but timestamp instead. Every client generates own timestamp within the update operation in the meaning that potential concurrent client would generate other in high probability. The problem for me is the probability, especially when two concurrent updates would come from same machine.
Is there any other solution?
You can fake transactions in etcd by using a two-step protocol.
Algorithm for updating:
First phase: record the update to etcd
add an "update-lock" node with a fairly small TTL. If it exists, wait until it disappears and try again.
add a watchdog to your code. You MUST abort if performing the next steps takes longer than the lock's TTL (or if you fail to refresh it).
add a "update-plan" node with [old,new] values. Its structure is up to you, but you need to ensure that the old values are copied while you hold the lock.
add a "committed-update" node. At this point you have "atomically" updated the data.
Second phase: perform the actual update
read the "planned-update" node and apply the changes it describes.
If a change fails, verify that the new value is present.
If it's not, you have a major problem. Bail out.
delete the committed-update node
delete the update-plan node
delete the update-lock node
If you want to read consistent data:
While there is no committed-update node, your data are OK.
Otherwise, wait for it to get deleted.
Whenever committed-update is present but update-lock is not, initiate recovery.
Transaction recovery, if you find an update-plan node without a lock:
Get the update-lock.
if there is no committed-update node, delete the plan and release the lock.
Otherwise, continue at "Second phase", above.
IMHO, as etcd is built upon HTTP which is inherently an unsecure protocol, it will be very hard to have a bullet proof solution.
Classical SQL databases use connected protocols, transactions and journalisation to allow users to make sure that a transaction as a whole will be either fully committed or fully rollbacked, even in worst case of power outage in the middle of the operation.
So if 2 operations depend on each other (money transfert from one bank account to the other) you can make sure that either both are ok or none, and you can simply implement in the database a journal of "operations" with their status to be able to later see if a particuliar one was passed by consulting the journal, even if you were disconnected in the middle of the commit.
But I simply cannot imagine such a solution for etcd. So unless someone else finds a better way, you are left with two options
use a classical SQL database in the backend, using etcd (or equivalent) as a simple cache
accept the weaknesses of the protocol
BTW, I do not think that timestamp in lieue of long version number will strengthen the system, because in high load, the probability that two client transaction use same timestamp increases. Maybe you could try to add a unique id (client id or just technical uuid) to your fields, and when version is n+1 just compare the UUID that increased it : if it is yours, the transaction passed if not id did not.
But the really worse problem would arise if at the moment you can read the version, it is not at n+1 but already at n+2. If UUID is yours, you are sure your transaction passed, but if it is not nobody can say.

Auto-increment on Azure Table Storage

I am currently developing an application for Azure Table Storage. In that application I have table which will have relatively few inserts (a couple of thousand/day) and the primary key of these entities will be used in another table, which will have billions of rows.
Therefore I am looking for a way to use an auto-incremented integer, instead of GUID, as primary key in the small table (since it will save lots of storage and scalability of the inserts is not really an issue).
There've been some discussions on the topic, e.g. on http://social.msdn.microsoft.com/Forums/en/windowsazure/thread/6b7d1ece-301b-44f1-85ab-eeb274349797.
However, since concurrency problems can be really hard to debug and spot, I am a bit uncomfortable with implementing this on own. My question is therefore if there is a well tested impelemntation of this?
For everyone who will find it in search, there is a better solution. Minimal time for table lock is 15 seconds - that's awful. Do not use it if you want to create a truly scalable solution. Use Etag!
Create one entity in table for ID (you can even name it as ID or whatever).
1) Read it.
2) Increment.
3) InsertOrUpdate WITH ETag specified (from the read query).
if last operation (InsertOrUpdate) succeeds, then you have a new, unique, auto-incremented ID. If it fails (exception with HttpStatusCode == 412), it means that some other client changed it. So, repeat again 1,2 and 3.
The usual time for Read+InsertOrUpdate is less than 200ms. My test utility with source on github.
See UniqueIdGenerator class by Josh Twist.
I haven't implemented this yet but am working on it ...
You could seed a queue with your next ids to use, then just pick them off the queue when you need them.
You need to keep a table to contain the value of the biggest number added to the queue. If you know you won't be using a ton of the integers, you could have a worker every so often wake up and make sure the queue still has integers in it. You could also have a used int queue the worker could check to keep an eye on usage.
You could also hook that worker up so if the queue was empty when your code needed an id (by chance) it could interupt the worker's nap to create more keys asap.
If that call failed you would need a way to (tell the worker you are going to do the work for them (lock), then do the workers work of getting the next id and unlock)
lock
get the last key created from the table
increment and save
unlock
then use the new value.
The solution I found that prevents duplicate ids and lets you autoincrement it is to
lock (lease) a blob and let that act as a logical gate.
Then read the value.
Write the incremented value
Release the lease
Use the value in your app/table
Then if your worker role were to crash during that process, then you would only have a missing ID in your store. IMHO that is better than duplicates.
Here is a code sample and more information on this approach from Steve Marx
If you really need to avoid guids, have you considered using something based on date/time and then leveraging partition keys to minimize the concurrency risk.
Your partition key could be by user, year, month, day, hour, etc and the row key could be the rest of the datetime at a small enough timespan to control concurrency.
Of course you have to ask yourself, at the price of date in Azure, if avoiding a Guid is really worth all of this extra effort (assuming a Guid will just work).