C++ decrease modbus_connect timeout - c++

I'd like to try 10 immediate modbus connections. However, everytime I fail to connect, and I have to wait for 2 minutes for the next connection because the previous modbus_connect call is still actively listening. So, if I fail to connect 10 times, I have to wait for 20 minutes.
int max_tries = 10;
int retries = 0;
while ((modbus_connect(ctx) == -1) && retries < max_retries){
retries++;
// wait 2 mins
// I need to remove this waiting time
}
Can someone help me to reduce the time for timeout? I'm using Libmodbus v3.1.6

If you are talking about TCP connections, the behavior of your program may be correct.
There are several things involved here because you say you establish the connection and "is actively listening." Can't be both.
If you establish the connection, the only thing I can think of is that normally the connect (low level, not modbus) will try several times (after connecting) to send SYN packets (more or less two minutes) and if there is no response drop the connection.
That may be one problem.
If you are listening, you have to set the SO_REUSEADDR socket option.
In any case, you should verify errno and get the error description to know what is happening to your connection.

Related

Socket is open after process, that opened it finished

After closing client socket on sever side and exit application, socket still open for some time.
I can see it via netstat
Every 0.1s: netstat -tuplna | grep 6676
tcp 0 0 127.0.0.1:6676 127.0.0.1:36065 TIME_WAIT -
I use log4cxx logging and telnet appender. log4cxx use apr sockets.
Socket::close() method looks like that:
void Socket::close() {
if (socket != 0) {
apr_status_t status = apr_socket_close(socket);
if (status != APR_SUCCESS) {
throw SocketException(status);
}
socket = 0;
}
}
And it's successfully processed. But after program is finished I can see opened socket via netstat, and if it starts again log4cxx unable to open 6676 port, because it is busy.
I tries to modify log4cxx.
Shutdown socket before close:
void Socket::close() {
if (socket != 0) {
apr_status_t shutdown_status = apr_socket_shutdown(socket, APR_SHUTDOWN_READWRITE);
printf("Socket::close shutdown_status %d\n", shutdown_status);
if (shutdown_status != APR_SUCCESS) {
printf("Socket::close WTF %d\n", shutdown_status != APR_SUCCESS);
throw SocketException(shutdown_status);
}
apr_status_t close_status = apr_socket_close(socket);
printf("Socket::close close_status %d\n", close_status);
if (close_status != APR_SUCCESS) {
printf("Socket::close WTF %d\n", close_status != APR_SUCCESS);
throw SocketException(close_status);
}
socket = 0;
}
}
But it didn't helped, bug still reproduced.
This is not a bug. Time Wait (and Close Wait) is by design for safety purpose. You may however adjust the wait time. In any case, on server's perspective the socket is closed and you are relax by the ulimit counter, it has not much visible impact unless you are doing stress test.
As noted by Calvin this isn't a bug, it's a feature. Time Wait is a socket state that says, this socket isn't in use any more but nevertheless can't be reused quite yet.
Imagine you have a socket open and some client is sending data. The data may be backed up in the network or be in-flight when the server closes its socket.
Now imagine you start the service again or start some new service. The packets on the wire aren't aware that its a new service and the service can't know the packets were destined for a service that's gone. The new service may try to parse the packets and fail because they're in some odd format or the client may get an unrelated error back and keep trying to send, maybe because the sequence numbers don't match and the receiving host will get some odd error. With timed wait the client will get notified that the socket is closed and the server won't potentially get odd data. A win-win. The time it waits should be sofficient for all in-transit data to be flused from the system.
Take a look at this post for some additional info: Socket options SO_REUSEADDR and SO_REUSEPORT, how do they differ? Do they mean the same across all major operating systems?
TIME_WAIT is a socket state to allow all in travel packets that could remain from the connection to arrive or dead before the connection parameters (source address, source port, desintation address, destination port) can be reused again. The kernel simply sets a timer to wait for this time to elapse, before allowing you to reuse that socket again. But you cannot shorten it (even if you can, you had better not to do it), because you have no possibility to know if there are still packets travelling or to accelerate or kill them. The only possibility you have is to wait for a socket bound to that port to timeout and pass from the state TIME_WAIT to the CLOSED state.
If you were allowed to reuse the connection (I think there's an option or something can be done in the linux kernel) and you receive an old connection packet, you can get a connection reset due to the received packet. This can lead to more problems in the new connection. These are solved making you wait for all traffic belonging to the old connection to die or reach destination, before you use that socket again.

zeromq: reset REQ/REP socket state

When you use the simple ZeroMQ REQ/REP pattern you depend on a fixed send()->recv() / recv()->send() sequence.
As this article describes you get into trouble when a participant disconnects in the middle of a request because then you can't just start over with receiving the next request from another connection but the state machine would force you to send a request to the disconnected one.
Has there emerged a more elegant way to solve this since the mentioned article has been written?
Is reconnecting the only way to solve this (apart from not using REQ/REP but use another pattern)
As the accepted answer seem so terribly sad to me, I did some research and have found that everything we need was actually in the documentation.
The .setsockopt() with the correct parameter can help you resetting your socket state-machine without brutally destroy it and rebuild another on top of the previous one dead body.
(yeah I like the image).
ZMQ_REQ_CORRELATE: match replies with requests
The default behaviour of REQ sockets is to rely on the ordering of messages to match requests and responses and that is usually sufficient. When this option is set to 1, the REQ socket will prefix outgoing messages with an extra frame containing a request id. That means the full message is (request id, 0, user frames…). The REQ socket will discard all incoming messages that don't begin with these two frames.
Option value type int
Option value unit 0, 1
Default value 0
Applicable socket types ZMQ_REQ
ZMQ_REQ_RELAXED: relax strict alternation between request and reply
By default, a REQ socket does not allow initiating a new request with zmq_send(3) until the reply to the previous one has been received. When set to 1, sending another message is allowed and has the effect of disconnecting the underlying connection to the peer from which the reply was expected, triggering a reconnection attempt on transports that support it. The request-reply state machine is reset and a new request is sent to the next available peer.
If set to 1, also enable ZMQ_REQ_CORRELATE to ensure correct matching of requests and replies. Otherwise a late reply to an aborted request can be reported as the reply to the superseding request.
Option value type int
Option value unit 0, 1
Default value 0
Applicable socket types ZMQ_REQ
A complete documentation is here
The good news is that, as of ZMQ 3.0 and later (the modern era), you can set a timeout on a socket. As others have noted elsewhere, you must do this after you have created the socket, but before you connect it:
zmq_req_socket.setsockopt( zmq.RCVTIMEO, 500 ) # milliseconds
Then, when you actually try to receive the reply (after you have sent a message to the REP socket), you can catch the error that will be asserted if the timeout is exceeded:
try:
send( message, 0 )
send_failed = False
except zmq.Again:
logging.warning( "Image send failed." )
send_failed = True
However! When this happens, as observed elsewhere, your socket will be in a funny state, because it will still be expecting the response. At this point, I cannot find anything that works reliably other than just restarting the socket. Note that if you disconnect() the socket and then re connect() it, it will still be in this bad state. Thus you need to
def reset_my_socket:
zmq_req_socket.close()
zmq_req_socket = zmq_context.socket( zmq.REQ )
zmq_req_socket.setsockopt( zmq.RCVTIMEO, 500 ) # milliseconds
zmq_req_socket.connect( zmq_endpoint )
You will also notice that because I close()d the socket, the receive timeout option was "lost", so it is important set that on the new socket.
I hope this helps. And I hope that this does not turn out to be the best answer to this question. :)
There is one solution to this and that is adding timeouts to all calls. Since ZeroMQ by itself does not really provide simple timeout functionality I recommend using a subclass of the ZeroMQ socket that adds a timeout parameter to all important calls.
So, instead of calling s.recv() you would call s.recv(timeout=5.0) and if a response does not come back within that 5 second window it will return None and stop blocking. I had made a futile attempt at this when I run into this problem.
I'm actually looking into this at the moment, because I am retro fitting a legacy system.
I am coming across code constantly that "needs" to know about the state of the connection. However the thing is I want to move to the message passing paradigm that the library promotes.
I found the following function : zmq_socket_monitor
What it does is monitor the socket passed to it and generate events that are then passed to an "inproc" endpoint - at that point you can add handling code to actually do something.
There is also an example (actually test code) here : github
I have not got any specific code to give at the moment (maybe at the end of the week) but my intention is to respond to the connect and disconnects such that I can actually perform any resetting of logic required.
Hope this helps, and despite quoting 4.2 docs, I am using 4.0.4 which seems to have the functionality
as well.
Note I notice you talk about python above, but the question is tagged C++ so that's where my answer is coming from...
Update: I'm updating this answer with this excellent resource here: https://blog.cloudflare.com/when-tcp-sockets-refuse-to-die/ Socket programming is complicated so do checkout the references in this post.
None of the answers here seem accurate or useful. The OP is not looking for information on BSD socket programming. He is trying to figure out how to robustly handle accept()ed client-socket failures in ZMQ on the REP socket to prevent the server from hanging or crashing.
As already noted -- this problem is complicated by the fact that ZMQ tries to pretend that the servers listen()ing socket is the same as an accept()ed socket (and there is no where in the documentation that describes how to set basic timeouts on such sockets.)
My answer:
After doing a lot of digging through the code, the only relevant socket options passed along to accept()ed socks seem to be keep alive options from the parent listen()er. So the solution is to set the following options on the listen socket before calling send or recv:
void zmq_setup(zmq::context_t** context, zmq::socket_t** socket, const char* endpoint)
{
// Free old references.
if(*socket != NULL)
{
(**socket).close();
(**socket).~socket_t();
}
if(*context != NULL)
{
// Shutdown all previous server client-sockets.
zmq_ctx_destroy((*context));
(**context).~context_t();
}
*context = new zmq::context_t(1);
*socket = new zmq::socket_t(**context, ZMQ_REP);
// Enable TCP keep alive.
int is_tcp_keep_alive = 1;
(**socket).setsockopt(ZMQ_TCP_KEEPALIVE, &is_tcp_keep_alive, sizeof(is_tcp_keep_alive));
// Only send 2 probes to check if client is still alive.
int tcp_probe_no = 2;
(**socket).setsockopt(ZMQ_TCP_KEEPALIVE_CNT, &tcp_probe_no, sizeof(tcp_probe_no));
// How long does a con need to be "idle" for in seconds.
int tcp_idle_timeout = 1;
(**socket).setsockopt(ZMQ_TCP_KEEPALIVE_IDLE, &tcp_idle_timeout, sizeof(tcp_idle_timeout));
// Time in seconds between individual keep alive probes.
int tcp_probe_interval = 1;
(**socket).setsockopt(ZMQ_TCP_KEEPALIVE_INTVL, &tcp_probe_interval, sizeof(tcp_probe_interval));
// Discard pending messages in buf on close.
int is_linger = 0;
(**socket).setsockopt(ZMQ_LINGER, &is_linger, sizeof(is_linger));
// TCP user timeout on unacknowledged send buffer
int is_user_timeout = 2;
(**socket).setsockopt(ZMQ_TCP_MAXRT, &is_user_timeout, sizeof(is_user_timeout));
// Start internal enclave event server.
printf("Host: Starting enclave event server\n");
(**socket).bind(endpoint);
}
What this does is tell the operating system to aggressively check the client socket for timeouts and reap them for cleanup when a client doesn't return a heart beat in time. The result is that the OS will send a SIGPIPE back to your program and socket errors will bubble up to send / recv - fixing a hung server. You then need to do two more things:
1. Handle SIGPIPE errors so the program doesn't crash
#include <signal.h>
#include <zmq.hpp>
// zmq_setup def here [...]
int main(int argc, char** argv)
{
// Ignore SIGPIPE signals.
signal(SIGPIPE, SIG_IGN);
// ... rest of your code after
// (Could potentially also restart the server
// sock on N SIGPIPEs if you're paranoid.)
// Start server socket.
const char* endpoint = "tcp://127.0.0.1:47357";
zmq::context_t* context;
zmq::socket_t* socket;
zmq_setup(&context, &socket, endpoint);
// Message buffers.
zmq::message_t request;
zmq::message_t reply;
// ... rest of your socket code here
}
2. Check for -1 returned by send or recv and catch ZMQ errors.
// E.g. skip broken accepted sockets (pseudo-code.)
while (1):
{
try
{
if ((*socket).recv(&request)) == -1)
throw -1;
}
catch (...)
{
// Prevent any endless error loops killing CPU.
sleep(1)
// Reset ZMQ state machine.
try
{
zmq::message_t blank_reply = zmq::message_t();
(*socket).send (blank_reply);
}
catch (...)
{
1;
}
continue;
}
Notice the weird code that tries to send a reply on a socket failure? In ZMQ, a REP server "socket" is an endpoint to another program making a REQ socket to that server. The result is if you go do a recv on a REP socket with a hung client, the server sock becomes stuck in a broken receive loop where it will wait forever to receive a valid reply.
To force an update on the state machine, you try send a reply. ZMQ detects that the socket is broken, and removes it from its queue. The server socket becomes "unstuck", and the next recv call returns a new client from the queue.
To enable timeouts on an async client (in Python 3), the code would look something like this:
import asyncio
import zmq
import zmq.asyncio
#asyncio.coroutine
def req(endpoint):
ms = 2000 # In milliseconds.
sock = ctx.socket(zmq.REQ)
sock.setsockopt(zmq.SNDTIMEO, ms)
sock.setsockopt(zmq.RCVTIMEO, ms)
sock.setsockopt(zmq.LINGER, ms) # Discard pending buffered socket messages on close().
sock.setsockopt(zmq.CONNECT_TIMEOUT, ms)
# Connect the socket.
# Connections don't strictly happen here.
# ZMQ waits until the socket is used (which is confusing, I know.)
sock.connect(endpoint)
# Send some bytes.
yield from sock.send(b"some bytes")
# Recv bytes and convert to unicode.
msg = yield from sock.recv()
msg = msg.decode(u"utf-8")
Now you have some failure scenarios when something goes wrong.
By the way -- if anyone's curious -- the default value for TCP idle timeout in Linux seems to be 7200 seconds or 2 hours. So you would be waiting a long time for a hung server to do anything!
Sources:
https://github.com/zeromq/libzmq/blob/84dc40dd90fdc59b91cb011a14c1abb79b01b726/src/tcp_listener.cpp#L82 TCP keep alive options preserved for client sock
http://www.tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO/ How does keep alive work
https://github.com/zeromq/libzmq/blob/master/builds/zos/README.md Handling sig pipe errors
https://github.com/zeromq/libzmq/issues/2586 for information on closing sockets
https://blog.cloudflare.com/when-tcp-sockets-refuse-to-die/
https://github.com/zeromq/libzmq/issues/976
Disclaimer:
I've tested this code and it seems to be working, but ZMQ does complicate testing this a fair bit because the client re-connects on failure? If anyone wants to use this solution in production, I recommend writing some basic unit tests, first.
The server code could also be improved a lot with threading or polling to be able to handle multiple clients at once. As it stands, a malicious client can temporarily take up resources from the server (3 second timeout) which isn't ideal.

sockets go to not closing after 32739 connections

UPDATE : After investigating lil more I found the real problem for this behavior . Problem is, I am creating the threads for each connection and passing the sock fd to the thread but was not pthraed_joining immediately so that made my main thread not to able to create any more threads after the connection acceptance. and my logic of closing the socket is in child thread, coz of that i was not able to close the socket and hence they were going to WAIT CLOSE state. SO I just detached the threads after creating them and all works well as of now !!
I have a client server program, I am using a script to run the client and make as many as connections possible and close them after sending a line of data and exit the client, every thing works fine until 32739 th connection i.e. connection is closed on both the sides and all but after that number the connection is not getting closed and server stops taking any more connections and if do
netstat -tonpa 2>&1 | grep CLOSE
I see around 1020 sockets waiting for CLOSE. sample out of the command,
tcp 25 0 192.168.0.175:16099 192.168.0.175:41704 CLOSE_WAIT 5250/./bl_manager off (0.00/0/0)
tcp 24 0 192.168.0.175:16099 192.168.0.175:41585 CLOSE_WAIT 5250/./bl_manager off (0.00/0/0)
tcp 30 0 192.168.0.175:16099 192.168.0.175:41679 CLOSE_WAIT 5250/./bl_manager off (0.00/0/0)
tcp 31 0 192.168.0.175:16099 192.168.0.175:41339 CLOSE_WAIT 5250/./bl_manager off (0.00/0/0)
tcp 25 0 192.168.0.175:16099 192.168.0.175:41760 CLOSE_WAIT 5250/./bl_manager off (0.00/0/0)
I am using following code to detect the client disconnection.
for(fd = 0; fd <= fd_max; fd++) {
if(FD_ISSET(fd, &testfds)) {
if (fd == client_fd) {
ioctl(fd, FIONREAD, &nread);
if(nread == 0) {
FD_CLR(fd, &readfds);
close(fd);
return 0;
}
}
}
} /* for()*/
Please do let me know if am doing anything wrong. Its a Python client and CPP server setup.
thank you
CLOSE-WAIT means the port is waiting for the local application to close the socket, having already received a close from the peer. Clearly you are leaking sockets somehow, possibly in an error path.
Your code to 'detect client disconnection' is completely incorrect. All you are testing is the amount of data that can be read without blocking, i.e. that has already arrived. The correct test is a return value of zero from recv() or an error other than EAGAIN/EWOULDBLOCK when reading or writing.
Without knowing your platform, I can't be sure, but the fact that you're clearly using select, and you're having a problem only a few dozen away from 32768, it seems very likely that this is your problem.
An fd_set is a collection of bits, indexed by file descriptor numbers. Every platform has a different max number. OpenBSD and recent versions of FreeBSD and OS X usually limit fd_set to an FD_SETSIZE that defaults to 1024. Different linux boxes seem to have 1024, 4096, 32768, and 65536.
So, what happens if you FD_ISSET(32800, &testfds) and FD_SETSIZE is 32768? You're asking it to read a bit from arbitrary memory.
A select or other call before this should give you an EINVAL error when you pass in 32800 for the nfds parameter… but historically, many platforms have not done so. Or they have returned an error, but only after filling in the first FD_SETSIZE bits properly and leaving the rest set to uninitialized memory, which means if you forget to check the error, your code seems to work until you stress it.
This is one of the reasons using select for more than a few hundred sockets is a bad idea. The other reason is that select is linear (and, worse, not linear on the number of current sockets, but linear on the highest fd, so even after most clients go away it's still slow).
Most modern platforms that have select also have poll, which avoids that problem.
Unless you're on Windows… in which case there are completely different reasons not to use select, and different answers.

TCP connection accepted, but writing data causes it to use a stale connection

The server (192.168.1.5:3001), is running Linux 3.2, and is designed to only accept one connection at a time.
The client (192.168.1.18), is running Windows 7. The connection is a wireless connection. Both programs are written in C++.
It works great 9 in 10 connect/disconnect cycles. The tenth-ish (randomly happens) connection has the server accept the connection, then when it later actually writes to it (typically 30+s later), according to Wireshark (see screenshot) it looks like it's writing to an old stale connection, with a port number that the client has FINed (a while ago), but the server hasn't yet FINed. So the client and server connections seems to get out of sync - the client makes new connections, and the server tries writing to the previous one. Every subsequent connection attempt fails once it gets in this broken state. The broken state can be initiated by going beyond the maximum wireless range for a half a minute (as before 9 in 10 cases this works, but it sometimes causes the broken state).
Wireshark screenshot behind link
The red arrows in the screenshot indicate when the server started sending data (Len != 0), which is the point when the client rejects it and sends a RST to the server. The coloured dots down the right edge indicate a single colour for each of the client port numbers used. Note how one or two dots appear well after the rest of the dots of that colour were (and note the time column).
The problem looks like it's on the server's end, since if you kill the server process and restart, it resolves itself (until next time it occurs).
The code is hopefully not too out-of-the-ordinary. I set the queue size parameter in listen() to 0, which I think means it only allows one current connection and no pending connections (I tried 1 instead, but the problem was still there). None of the errors appear as trace prints where "// error" is shown in the code.
// Server code
mySocket = ::socket(AF_INET, SOCK_STREAM, 0);
if (mySocket == -1)
{
// error
}
// Set non-blocking
const int saveFlags = ::fcntl(mySocket, F_GETFL, 0);
::fcntl(mySocket, F_SETFL, saveFlags | O_NONBLOCK);
// Bind to port
// Union to work around pointer aliasing issues.
union SocketAddress
{
sockaddr myBase;
sockaddr_in myIn4;
};
SocketAddress address;
::memset(reinterpret_cast<Tbyte*>(&address), 0, sizeof(address));
address.myIn4.sin_family = AF_INET;
address.myIn4.sin_port = htons(Port);
address.myIn4.sin_addr.s_addr = INADDR_ANY;
if (::bind(mySocket, &address.myBase, sizeof(address)) != 0)
{
// error
}
if (::listen(mySocket, 0) != 0)
{
// error
}
// main loop
{
...
// Wait for a connection.
fd_set readSet;
FD_ZERO(&readSet);
FD_SET(mySocket, &readSet);
const int aResult = ::select(getdtablesize(), &readSet, NULL, NULL, NULL);
if (aResult != 1)
{
continue;
}
// A connection is definitely waiting.
const int fileDescriptor = ::accept(mySocket, NULL, NULL);
if (fileDescriptor == -1)
{
// error
}
// Set non-blocking
const int saveFlags = ::fcntl(fileDescriptor, F_GETFL, 0);
::fcntl(fileDescriptor, F_SETFL, saveFlags | O_NONBLOCK);
...
// Do other things for 30+ seconds.
...
const int bytesWritten = ::write(fileDescriptor, buffer, bufferSize);
if (bytesWritten < 0)
{
// THIS FAILS!! (but succeeds the first ~9 times)
}
// Finished with the connection.
::shutdown(fileDescriptor, SHUT_RDWR);
while (::close(fileDescriptor) == -1)
{
switch(errno)
{
case EINTR:
// Break from the switch statement. Continue in the loop.
break;
case EIO:
case EBADF:
default:
// error
return;
}
}
}
So somewhere between the accept() call (assuming that is exactly the point when the SYN packet is sent), and the write() call, the client's port gets changed to the previously-used client port.
So the question is: how can it be that the server accepts a connection (and thus opens a file descriptor), and then sends data through a previous (now stale and dead) connection/file descriptor? Does it need some sort of option in a system call that's missing?
I'm submitting an answer to summarize what we've figured out in the comments, even though it's not a finished answer yet. It does cover the important points, I think.
You have a server that handles clients one at a time. It accepts a connection, prepares some data for the client, writes the data, and closes the connection. The trouble is that the preparing-the-data step sometimes takes longer than the client is willing to wait. While the server is busy preparing the data, the client gives up.
On the client side, when the socket is closed, a FIN is sent notifying the server that the client has no more data to send. The client's socket now goes into FIN_WAIT1 state.
The server receives the FIN and replies with an ACK. (ACKs are done by the kernel without any help from the userspace process.) The server socket goes into the CLOSE_WAIT state. The socket is now readable, but the server process doesn't notice because it's busy with its data-preparation phase.
The client receives the ACK of the FIN and goes into FIN_WAIT2 state. I don't know what's happening in userspace on the client since you haven't shown the client code, but I don't think it matters.
The server process is still preparing data for a client that has hung up. It's oblivious to everything else. Meanwhile, another client connects. The kernel completes the handshake. This new client will not be getting any attention from the server process for a while, but at the kernel level the second connection is now ESTABLISHED on both ends.
Eventually, the server's data preparation (for the first client) is complete. It attempts to write(). The server's kernel doesn't know that the first client is no longer willing to receive data because TCP doesn't communicate that information! So the write succeeds and the data is sent out (packet 10711 in your wireshark listing).
The client gets this packet and its kernel replies with RST because it knows what the server didn't know: the client socket has already been shut down for both reading and writing, probably closed, and maybe forgotten already.
In the wireshark trace it appears that the server only wanted to send 15 bytes of data to the client, so it probably completed the write() successfully. But the RST arrived quickly, before the server got a chance to do its shutdown() and close() which would have sent a FIN. Once the RST is received, the server won't send any more packets on that socket. The shutdown() and close() are now executed, but don't have any on-the-wire effect.
Now the server is finally ready to accept() the next client. It begins another slow preparation step, and it's falling further behind schedule because the second client has been waiting a while already. The problem will keep getting worse until the rate of client connections slows down to something the server can handle.
The fix will have to be for you to make the server process notice when a client hangs up during the preparation step, and immediately close the socket and move on to the next client. How you will do it depends on what the data preparation code actually looks like. If it's just a big CPU-bound loop, you have to find some place to insert a periodic check of the socket. Or create a child process to do the data preparation and writing, while the parent process just watches the socket - and if the client hangs up before the child exits, kill the child process. Other solutions are possible (like F_SETOWN to have a signal sent to the process when something happens on the socket).
Aha, success! It turns out the server was receiving the client's SYN, and the server's kernel was automatically completing the connection with another SYN, before the accept() had been called. So there definitely a listening queue, and having two connections waiting on the queue was half of the cause.
The other half of the cause was to do with information which was omitted from the question (I thought it was irrelevant because of the false assumption above). There was a primary connection port (call it A), and the secondary, troublesome connection port which this question is all about (call it B). The proper connection order is A establishes a connection (A1), then B attempts to establish a connection (which would become B1)... within a time frame of 200ms (I already doubled the timeout from 100ms which was written ages ago, so I thought I was being generous!). If it doesn't get a B connection within 200ms, then it drops A1. So then B1 establishes a connection with the server's kernel, waiting to be accepted. It only gets accepted on the next connection cycle when A2 establishes a connection, and the client also sends a B2 connection. The server accepts the A2 connection, then gets the first connection on the B queue, which is B1 (hasn't been accepted yet - the queue looked like B1, B2). That is why the server didn't send a FIN for B1 when the client had disconnected B1. So the two connections the server has are A2 and B1, which are obviously out of sync. It tries writing to B1, which is a dead connection, so it drops A2 and B1. Then the next pair are A3 and B2, which are also invalid pairs. They never recover from being out of sync until the server process is killed and the TCP connections are all reset.
So the solution was to just change a timeout for waiting on the B socket from 200ms to 5s. Such a simple fix that had me scratching my head for days (and fixed it within 24 hours of putting it on stackoverflow)! I also made it recover from stray B connections by adding socket B to the main select() call, and then accept()ing it and close()ing it immediately (which would only happen if the B connection took longer than 5s to establish). Thanks #AlanCurry for the suggestion of adding it to the select() and adding the puzzle piece about the listen() backlog parameter being a hint.

Connect Timeout with Alarm()

Since it seems that I can't find a solution to my original problem, I tried to do a little workaround. I'm simply trying to set a timeout to the connect() call of my TCP Socket.
I want the connect() to be blocking but not until the usual 75 seconds timeout, I want to define my own.
I have already tried select() which worked for the timeout but I couldn't get a connection (that was my initial problem as described here ).
So now I found another way to deal with it: just do a blocking connect() call but interrupt it with an alarm like this :
signal(SIGALRM, connect_alarm);
int secs = 5;
alarm(secs);
if (connect(m_Socket, (struct sockaddr *)&addr, sizeof(addr)) < 0 )
{
if ( errno == EINTR )
{
debug_printf("Timeout");
m_connectionStatus = STATUS_CLOSED;
return ERR_TIMEOUT;
}
else
{
debug_printf("Other Err");
m_connectionStatus = STATUS_CLOSED;
return ERR_NET_SOCKET;
}
}
with
static void connect_alarm(int signo)
{
debug_printf("SignalHandler");
return;
}
This is the solution I found on the Internet in a thread here on stackoverflow. If I use this code the program starts the timer and then goes into the connect() call. After the 5 seconds the signal handler is fired (as seen on the console with the printf()), but after that the program still remains within the connect() function for 75 seconds. Actually every description says that the connect_alarm() should interrupt the connect() function but it seems it doesn't in my case. Is there any way to get the desired result for my problem?
signal is a massively under-specified interface and should be avoided in new code. On some versions of Linux, I believe it provides "BSD semantics", which means (among other things) that providing SA_RESTART by default.
Use sigaction instead, do not specify SA_RESTART, and you should be good to go.
...
Well, except for the general fragility and unavoidable race conditions, that is. connect will return EINTR for any signal, not just SIGALARM. More troublesome, if the system happens to be under heavy load, it could take more than 5 seconds between the call to alarm and the call to connect, in which case you will miss the signal and block in connect forever.
Your earlier attempt, using non-blocking sockets with connect and select, was a much better idea. I would suggest debugging that.
While it's relatively easy to setup the alarm(2) (less the pain of signal handling and system call interruptions), the more efficient way of timing out TCP connection attempts is the non-blocking connect, which also allows you to initiate multiple connections and wait on all of them, handling successes and failures one at a time.