So, I started learning and reading about OOP not so long ago, I've been implementing all the data structures I know using classes and objects just for overall practice and to get comfortable with using OOP in c++.
I'm implementing the tree data structure and I've been wondering how to call a method recursively(I'm aware that I have to pass in an argument) so that when I create an object in main and call a specific method it's written like the following a.inorder(); and not a.inorder(root) since root is a private attribute.
Is this possible ?
My code:
#include<iostream>
using namespace std;
struct node
{
int data;
node* left;
node* right;
};
class tree
{
private:
node* root;
public:
tree();
tree(int val);
void insert(int val);
void preorder();
void postorder();
void inorder();
int count();
};
tree::tree() : root { NULL }
{
}
tree::tree(int val)
{
root = new node;
root->data = val;
root->left = root->right = NULL;
}
void tree::insert(int val)
{
if (!root)
{
root = new node;
root->data = val;
root->left = root->right = NULL;
}
else
{
node* t = root;
node* p = NULL;
while (t)
{
p = t;
if (val > root->data)
t = root->right;
else
t = root->left;
}
t = new node;
t->data = val;
t->left = t->right = NULL;
if (p->data > t->data)
p->left = t;
else
p->right = t;
}
}
void tree::preorder()
{
if (root)
{
}
}
In your design, a node refers to itself. Since it is the node object that is recursive, you could define the recursive method on node:
struct node
{
int data;
node* left;
node* right;
void preorder() {
//...
left->preorder();
right->preorder();
}
};
And then, tree::preorder() would just dispatch a call to root->preorder().
Write a private static recursive function passing to it the pointer to the root node and call the function from the corresponding public non-static member function.
For example
public:
std::ostream & preorder( std::ostream &os = std::cout ) const
{
return preorder( root, os );
}
//...
private:
static std::ostream & preorder( const node *root, std::ostream &os );
//...
This is a comment rather than an actual answer, as it addresses a different issue than you are asking about. However, it is too long for a comment space, that's why I post it here.
I suppose you erroneously refer to root in this part
while (t)
{
p = t;
if (val > root->data)
t = root->right;
else
t = root->left;
}
IMHO it should look like this:
while (t)
{
p = t;
if (val > t->data)
t = t->right;
else
t = t->left;
}
Also compare the code to seek a place for insert with a code that makes an actual insertion:
if (p->data > t->data)
p->left = t;
else
p->right = t;
You've put a comparison subexpressions in reversed order - when seeking, you test whether the new value is greater than that in an existing node, but when inserting, you test whether the existing value is greater than the new one. If they differ, the code will work OK, because you also swapped left and right in the 'then' and 'else' branch.
However, if the values appear equal, the execution control will go to 'else' in both places. As a result the testing code may stop at empty left pointer, but then a new node would get appended to the right, which was not tested for being NULL.
Why would the tree class do intrinsic operations on node? The node class knows best the node's internal structure, so let it initialize itself. This will also help you to stick to the DRY principle and, indirectly, to the KISS principle, as well as the Single-responsibility principle.
struct node
{
int data;
node* left;
node* right;
node(int val) : data(val), left(NULL), right(NULL) {}
};
class tree
{
private:
node* root;
public:
tree();
tree(int val);
void insert(int val);
};
tree::tree() : root { NULL }
{
}
tree::tree(int val) : root(new node(val))
{
}
void tree::insert(int val)
{
if (!root)
{
root = new node(val);
}
else
{
node* t = root;
node* p = NULL;
while (t)
{
p = t;
if (val < t->data)
t = t->left;
else
t = t->right;
}
t = new node(val);
if (t->data < p->data)
p->left = t;
else
p->right = t;
}
}
Additionally, you can make insert recursive, too.
struct node
{
int data;
node* left;
node* right;
node(int val) : data(val), left(NULL), right(NULL) {}
};
class tree
{
private:
node* root;
public:
tree();
tree(int val);
void insert(int val);
protected:
void insertat(node* p, int val);
};
void tree::insert(int val)
{
if (!root)
root = new node(val);
else
insertat(root, val);
}
void tree::insertat(node* t, int val);
{
if (val < t->data)
{
if (t->left)
insertat(t->left, val);
else
t->left = new node(val);
}
else
{
if (t->right)
insertat(t->right, val);
else
t->right = new node(val);
}
}
Related
I'm trying to implement the insertion function used on geeksforgeeks.com but am running into some problems trying to work it into my current code.
I have a vector with the data I need to put into the binary tree. I use this function to pass the numbers into the insertion function:
void populateTree(vector<string> dataVec) {
for (int i = 0; i < dataVec.size(); i++) {
insert(stoi(dataVec[i]), root);
}
}
This is the insertion function:
node* insert(int x, node* node) {
if (node == nullptr)
return newNode(x);
if (x < node->data)
node->left = insert(x, node->left);
else
node->right = insert(x, node->right);
return root;
}
New node function:
node* newNode(int num) {
node* temp = new node;
temp->data = num;
temp->left = temp->right = nullptr;
temp->level = 1;
return temp;
}
Root is a private member within the class which is initialized to nullptr. I'm not sure how I should go about making the first node that comes in from the vector as the root and then keep inserting things beginning from there recursively. Thanks!
The problem in your is related to use of pointer.
Instead of using node* insert(int x, node* node) you should use node* insert(int x, node** node) or node* insert(int x, node*& node) and adopt your code accordingly.
Following is corrected sample code. See it in execution here:
#include <iostream>
#include <vector>
using namespace std;
struct Node
{
int val;
Node* left;
Node* right;
Node(int v)
{
val = v;
left = right = nullptr;
}
};
class Tree
{
Node* root;
Tree()
{
root = nullptr;
}
public:
static void insert(int x, Node*& node)
{
if (node == nullptr)
{
node = new Node(x);
}
else
{
if (x < node->val)
insert(x, node->left);
else
insert(x, node->right);
}
}
static Tree* populateTree(vector<string> dataVec)
{
Tree* t= new Tree();
for (int i = 0; i < dataVec.size(); i++)
{
insert(stoi(dataVec[i]), t->root);
}
return t;
}
static void printTree(Node* node, string s)
{
if(node == nullptr) return;
cout<<s<< "+"<<node->val <<endl;
s += "----";
printTree(node->left,s);
printTree(node->right, s);
}
static void printTree(Tree* t)
{
if(t)
{
printTree(t->root, "");
}
}
};
int main() {
Tree* t = Tree::populateTree({"70", "2", "7", "20", "41", "28", "20", "51", "91"});
Tree::printTree(t);
return 0;
}
I am writing a code to return data of a node in BST based on id.
below is my node class:
struct Node{
int id;
string data;
Node *left;
Node *right;
Node();
};
below is my node constructor: I defined id and data in addNode function
Node :: Node(){
this->left = nullptr;
this->right = nullptr;
}
below is my BST class:
class BST{
private:
Node * root = nullptr;
void setRoot(Node *);
Node* getRoot();
public:
Node *addNode(BST *, int);//helper function
Node *addNode(Node *,int);
string getEntry(BST*,int);//helper function
string getEntry(Node*,int);
}
below is my helper functions:
Node *BST::addNode(BST *bst, int val){
addNode(bst->getRoot(),val);
}
string BST::getEntry(BST* bst,int id){
getEntry(bst->getRoot(),id);
}
below is my addNode class:
Node* BST::addNode(Node* root, int val) {
Node *newNode = new Node();
newNode->id = val;
newNode->data = "Number " + to_string(val);
if (root == nullptr) {
if (getRoot() == nullptr){
setRoot(newNode);
}
setCount(getCount()+1);
return newNode;
}
if (root->id > val) {
root->left = addNode(root->left, val);
} else {
root->right = addNode(root->right, val);
}
return root;
}
below is my getEntry class:
string BST::getEntry(Node *base,int id) {
if (base == nullptr){
return "";
}
if (base->id == id){
cout<<base->data<<endl;
return base->data;
}
getEntry(base->left,id);
getEntry(base->right,id);
}
below are the nodes I passed in from main:
int main(){
BST *newBst = new BST();
newBst->addNode(newBst,1);
newBst->addNode(newBst,2);
newBst->addNode(newBst,3);
newBst->addNode(newBst,2);
newBst->addNode(newBst,3);
newBst->addNode(newBst,5);
newBst->addNode(newBst,7);
newBst->addNode(newBst,10);
cout<<newBst->getEntry(newBst,5)<<endl;
return 0;
}
The code would compile but does not return anything, I tried to debug, at the "return base->data statement", there is an error "can not access memory at address 0xc8". What causes the problem and what can I do about it?
this is the warning I got when I debug the code.
if (base->id != id){
getEntry(base->left,id);
getEntry(base->right,id);
}
As you are using a sorted tree, you know which of the right or left node you need to have a look at. Also, you need to return something:
if (base->id > val){
return getEntry(base->left,id);
}
return getEntry(base->right,id);
But the design with addNode is very bad, you shouldn't have to pass the root twice!
I am trying to implement BST with unique_ptr. I want to return the node with the minimum value in BST. I know how to return the minimum value and I wrote the function for it but what if I want to return node? Is it possible with the classes I have?
#include <iostream>
#include <memory>
template<class T>
class BinarySearchTree{
struct TreeNode;
typedef std::unique_ptr<TreeNode> spTreeNode;
struct TreeNode{
T data;
spTreeNode left;
spTreeNode right;
TreeNode(const T & value):data(value),left(nullptr),right(nullptr){}
};
spTreeNode root;
bool insert(spTreeNode &node);
void print(const spTreeNode&) const ;
public:
BinarySearchTree();
void insert( const T & node);
void print()const;
T getMin();
};
template<class T>
BinarySearchTree<T>::BinarySearchTree():root(nullptr){}
template<class T>
void BinarySearchTree<T>::insert(const T & ref)
{
std::unique_ptr<TreeNode> node(new TreeNode(ref));
if (root == nullptr) {
root = std::move(node);
} else {
TreeNode* temp = root.get();
TreeNode* prev = root.get();
while (temp != nullptr) {
prev = temp;
if (temp->data < ref)
temp = temp->right.get();
else
temp = temp->left.get();
}
if (prev->data < ref)
prev->right = std::move(node);
else
prev->left = std::move(node);
}
}
template<class T>
T BinarySearchTree<T>::getMin()
{
TreeNode* temp = root.get();
TreeNode *prev = nullptr;
while (temp)
{
prev = temp;
temp = temp->left.get();
}
return prev->data;
}
int main()
{
BinarySearchTree<int> bst;
bst.insert(13);
bst.insert(3);
bst.insert(5);
bst.insert(31);
bst.insert(511);
bst.insert(311);
std::cout << bst.getMin(); // Works but what if I want to return the Node?
return 0;
}
You would have to decide the interface you want. Do you want to return a const pointer to the extant TreeNode? A const reference to the TreeNode? A copy of the TreeNode? The key is to think about how long references/pointers will be valid.
I frankly don't think any of those are good ideas for a public interface. So let's say you made getMinNode() private, and kept getMin() public:
// Returns non-owning pointer; do not attempt to delete TreeNode.
template<class T>
const BinarySearchTree<T>::TreeNode* BinarySearchTree<T>::getMinNode() const
{
// Like getMin(), but return prev
// Does this work for empty BinarySearchTree?
TreeNode* temp = root.get();
TreeNode *prev = nullptr;
while (temp)
{
prev = temp;
temp = temp->left.get();
}
return prev;
}
template<class T>
T BinarySearchTree<T>::getMin() const // member function is const
{
return getMinNode()->data;
}
I am trying to create a n-ary tree with a vector of the children.
This is what I have gotten so far.
In the node.h file I have this:
#include <vector>
#include <string>
using namespace std;
class Node{
private:
Node *parent;
vector <Node*> children;
int data;
public:
Node();
Node(Node parent, vector<Node> children);
Node(Node parent, vector<Node> children, int data);
Node * GetParent();
void SetChildren(vector<Node> children);
vector<Node>* GetChildren();
void AddChildren(Node children);
void SetData(int data);
int GetData();
bool IsLeaf();
bool IsInternalNode();
bool IsRoot();
};
And this is my node.cpp file.
#include "node.h"
Node::Node(){
this->parent = NULL;
this->children = NULL;
this->data = 0;
}
Node::Node(Node parent, vector<Node> children){
this->parent = &parent;
this->children = &children;
}
Node::Node(Node parent, vector<Node> children, int data){
this->parent = &parent;
this->children = &children;
this->data = data;
}
Node* Node:: GetParent(){
return this->parent;
}
void Node::SetChildren(vector<Node> children){
this->children = &children;
}
vector<Node> * Node::GetChildren(){
return this->children;
}
void Node::AddChildren(Node children){
this->children.push_back(children);
}
void Node::SetData(int data){
this->data = data;
}
This obviously doesn't work. My main problem is that I am not quite sure how to handle the vector for the children. I wrote this following some tutorials online, but as you can see I am super confused.
The main (and possibly only) problem in your code is that you defined your Node class to manipulate nodes by pointers (Node*) :
class Node{
private:
Node *parent;
vector <Node*> children;
But your methods are manipulating nodes by values (Node).
As instance, in the constructors :
Node::Node(Node parent, vector<Node> children){
this->parent = &parent;
Storing the address of the parent parameter won't work, it's a temporary object, you'll need to pass a Node* parent to your constructor or to create a new Node object.
this->children = &children;
This doesn't make any sense since this->children is a vector of Node* and the children parameter is a vector of Node. Again, you'll need to either pass a vector of Node* to your constructor or to create new node objects.
You have the same issues in SetChildren and AddChildren.
Also, since you're manipulating your nodes as pointers, be very careful about the memory management. There's no garbage collector in C++, you'll have to delete every thing you new and at the proper time.
Check if below code helps you to create n-array tree creation.
struct TreeNode
{
vector<TreeNode*> children;
char value;
};
class TreeDictionary
{
TreeNode *root;
public:
TreeDictionary()
{
root = new TreeNode();
root->value = 0;
}
TreeNode *CreateNode(char data)
{
TreeNode *parent_node = new TreeNode;
if (parent_node)
parent_node->value = data;
return parent_node;
}
TreeNode* SearchElement(TreeNode *NextNode, char *data, int& val)
{
bool bVal = false;
for (vector<TreeNode*>::iterator it = NextNode->children.begin(); it != NextNode->children.end(); it++)
{
if ((*it)->value == *(data))
return SearchElement((*it), ++data, ++val);
}
return NextNode;
}
TreeNode *InsertNode(TreeNode *parent, TreeNode *ChildNode, char data)
{
if (parent == NULL)
ChildNode = CreateNode(data);
else
{
TreeNode *childNode = CreateNode(data);
parent->children.push_back(childNode);
return childNode;
}
return ChildNode;
}
void InsertMyString(string str)
{
TreeNode *NextNode = root;
for (int i = 0; i < str.size(); i++)
{
if (str[i] == '\0')
return;
cout << str[i] << endl;
if (NextNode->value == 0)
{
NextNode->value = str[i];
continue;
}
else if (NextNode->value != str[i])
{
NextNode = InsertNode(NextNode, NULL, str[i]);
}
else
{
TreeNode *node;
node = SearchElement(NextNode, &str[++i], i);
NextNode = InsertNode(node, NULL, str[i]);
}
}
}
};
int main()
{
TreeDictionary td;
td.InsertMyString("Monster");
td.InsertMyString("Maid");
td.InsertMyString("Monday");
td.InsertMyString("Malli");
td.InsertMyString("Moid");
return 0;
}
This implementation of SearchElement (without recursion) also works:
TreeNode* SearchElement(TreeNode *NextNode, char *data, int& val)
{
bool bVal = false;
for (vector<TreeNode*>::iterator it = NextNode->children.begin(); it != NextNode->children.end(); it++)
{
if ((*it)->value == *(data))
return (*it);
}
return NextNode;
}
TreeNode* res = SearchElement(root, data, value);
I checked this out, not understandable, why - it works for any node you want to find in the tree, no matter the depth and the level of the node in the tree, And that's unclear why, Because the loop iterates only over the children at the second level of the tree (children of the root node), Despite this - it even will find nodes with depth of 10 levels in the tree.
I have written an implementation of BST-Tree but the key can be only string type. I would like to use that tree with other types of keys. I know that I would have to define a template, but do not know how to do it so the key will have T type. The examples show all but not important stuff.
using namespace std;
int ASCENDING = 0, DESCENDING = 1;
class Node {
public:
string key; //I would like to change type to T
Node* left;
Node* right;
Node(string key) {
this->key = key;
left = NULL;
right = NULL;
}
};
class BST {
public:
Node* root;
BST(string key) {
root = new Node(key);
}
void insert(string value){
if(root == NULL)
root = new Node(value);
else
insertHelper(root, value);
}
void insertHelper(Node* node, string value){
if(value < node->key){
if(node->left == NULL)
node->left = new Node(value);
else
insertHelper(node->left, value);
}
else{
if(node->right == NULL)
node->right = new Node(value);
else
insertHelper(node->right, value);
}
}
void print(int order){
show(order, root);
}
~BST(){
//delete all nodes
}
private:
void show(int order, Node* n){
Node* pom = n;
if(order == ASCENDING){
if(pom != NULL){
show(order, n->left);
cout<<n->key<<endl;
show(order, n->right);
}
}else{
if(pom != NULL){
show(order, n->right);
cout<<n->key<<endl;
show(order, n->left);
}
}
}
};
This should cover the basic setup and the rest of the changes should be similar:
template <typename T>
class Node {
public:
T key; //I would like to change type to T
^^^^^ Type now T
Node<T>* left;
Node<T>* right;
Node(T key) {
this->key = key;
left = NULL;
right = NULL;
}
};
template <typename T>
class BST {
public:
Node<T>* root;
^^^^^^^ Node now will become Node<T> in the rest of the code as well
BST(T key) {
root = new Node<T>(key);
}
// rest of code
};