Find elements in list and also keep adjacent element - clojure

i have a list like '(1 2 3 1 4 1 1 6 8 9 0 1) (not actually of numbers, just as an example)
I want to keep all "1" and the element next to the "1".
So the result i would want is (1 2 1 4 1 1 6 1).
Coming from an imperative point of view i would iterate over the list with a for loop, find the "1" at a certain index i and then also keep the element at index i+1.
What would a functional, Clojure idiomatic way of solving this problem be?

Using reduce you can move along the original list building a new list as you go. The reducing function f is passed the new list up until now and the next element from the old list. If the list up until now ends with a 1, or the next element is a 1, add the element to the new list. Otherwise keep the new list as is and move along.
user> (def xs [1 2 3 1 4 1 1 6 8 9 0 1])
#'user/xs
user> (defn f [x y] (if (or (= 1 y) (= 1 (peek x))) (conj x y) x))
#'user/f
user> (reduce f [] xs)
[1 2 1 4 1 1 6 1]

When you can't think of anything clever with sequence combinators, write the recursion by hand. It's not exactly elegant, but it's lazy:
(defn keep-pairs [pred coll]
(lazy-seq
(if (empty? coll)
[]
(let [x (first coll)
xs (next coll)]
(if (pred x)
(cons x (when xs
(let [y (first xs)]
(concat (when-not (pred y) [y])
(keep-pairs pred xs)))))
(when xs
(keep-pairs pred xs)))))))
user> (keep-pairs #{1} [1 2 3 1 4 1 1 6 8 9 0 1])
(1 2 1 4 1 1 6 1)
user> (take 10 (keep-pairs #{1} (cycle [1 2 3])))
(1 2 1 2 1 2 1 2 1 2)

I think I'd prefer reduce for something like this, but here's another 'functional' way of looking at it:
You have a sequence of values that should produce a potentially smaller sequence of values based on some predicate (i.e. filtering) and that predicate needs look-ahead/-behind behavior.
A less common use for map is mapping over multiple sequences at once e.g. (map f coll1 coll2 coll3). If you pass in an "offset" version of the same collection it can be used for the look-ahead/-behind logic.
(defn my-pairs [coll]
(mapcat
(fn [prev curr]
(when (or (= 1 prev) (= 1 curr))
[curr]))
(cons ::none coll) ;; these values are used for look-behind
coll))
This is (ab)using mapcat behavior to combine the mapping/filtering into one step, but it could also be phrased with map + filter.

here's one more solution with clojure's seq processors composition:
(defn process [pred data]
(->> data
(partition-by pred)
(partition-all 2 1)
(filter (comp pred ffirst))
(mapcat #(concat (first %) (take 1 (second %))))))
user> (process #{1} [1 2 1 1 3 4 1 5 1])
;;=> (1 2 1 1 3 1 5 1)
user> (process #{1} [0 1 2 1 1 1 3 4 1 5 1 6])
;;=> (1 2 1 1 1 3 1 5 1 6)

Another idea that does not work since it misses a last one:
(def v [1 2 3 1 4 1 1 6 8 9 0 1])
(mapcat (fn [a b] (when (= a 1) [a b])) v (rest v))
;; => (1 2 1 4 1 1 1 6 1)
So use two arity version of mapcat over the vector and the vector shifted one to the right.
You could check that last 1 explicitly and add, then you get a less elegant working version:
(concat
(mapcat (fn [a b] (when (= a 1) [a b])) v (rest v))
(when (= (peek v) 1) [1]))
;; => (1 2 1 4 1 1 1 6 1)

When you need to loop over data and retain state, I think a plain-old loop/recur is the most straightforward technique:
(ns tst.demo.core
(:use tupelo.core tupelo.test))
(defn keep-pairs
[data]
(loop [result []
prev nil
remaining data]
(if (empty? remaining)
result
(let [curr (first remaining)
keep-curr (or (= 1 curr)
(= 1 prev))
result-next (if keep-curr
(conj result curr)
result)
prev-next curr
remaining-next (rest remaining)]
(recur result-next prev-next remaining-next)))))
(dotest
(let [data [1 2 3 1 4 1 1 6 8 9 0 1]]
(is= [1 2 1 4 1 1 6 1]
(keep-pairs data))))

(defn windowed-pred [n pred]
(let [window (atom [])]
(fn [rf]
(fn ([] (rf))
([acc] (rf acc))
([acc v]
(let [keep? (or (pred v) (some pred #window))]
(swap! window #(vec (take-last n (conj %1 %2))) v)
(if keep?
(rf acc v)
acc)))))))
(let [c [1 2 3 1 4 1 1 6 8 9 0 1]
pred #(= % 1)]
(eduction (windowed-pred 1 pred) c))

(defn last-or-first? [obj pair] (or (= obj (last pair)) (= obj (first pair))))
; to test, whether previous element or element is object
(defn back-shift [l] (cons nil (butlast l))) ;; back-shifts a list
(defn keep-with-follower
[obj l]
(map #'last ; take only the element itself without its previous element
(filter #(last-or-first? obj %) ; is element or previous element the object?
(map #'list (back-shift l) l)))) ; group previous element and element in list
(def l '(1 2 3 1 4 1 1 6 8 9 0 1))
(keep-with-follower 1 l)
;; => (1 2 1 4 1 1 6 1)
A functional solution using only cons first last butlast list map filter = and defn and def.

Related

Insert a new element at the N-th position of a list

Is it possible to insert a new element at the N-th position of a list without conj?
defn insert-at [x xs n]
(let [[before after] (my-drop xs (dec n))]
(if (empty? after)
(if (= (count before) (dec n))
(concat before (replicate 1 x))
before)
(concat before (conj after x)))))
Use split-at and insert new element between two halves of list:
(defn list-insert [lst elem index]
(let [[l r] (split-at index lst)]
(concat l [elem] r)))
Examples:
(list-insert '(1 2 3 4 5) 0 0)
=> (0 1 2 3 4 5)
(list-insert '(1 2 3 4 5) 1 1)
=> (1 1 2 3 4 5)

Single duplicate in a vector

Given a list of integers from 1 do 10 with size of 5, how do I check if there are only 2 same integers in the list?
For example
(check '(2 2 4 5 7))
yields yes, while
(check '(2 1 4 4 4))
or
(check '(1 2 3 4 5))
yields no
Here is a solution using frequencies to count occurrences and filter to count the number of values that occur only twice:
(defn only-one-pair? [coll]
(->> coll
frequencies ; map with counts of each value in coll
(filter #(= (second %) 2)) ; Keep values that have 2 occurrences
count ; number of unique values with only 2 occurrences
(= 1))) ; true if only one unique val in coll with 2 occurrences
Which gives:
user=> (only-one-pair? '(2 1 4 4 4))
false
user=> (only-one-pair? '(2 2 4 5 7))
true
user=> (only-one-pair? '(1 2 3 4 5))
false
Intermediate steps in the function to get a sense of how it works:
user=> (->> '(2 2 4 5 7) frequencies)
{2 2, 4 1, 5 1, 7 1}
user=> (->> '(2 2 4 5 7) frequencies (filter #(= (second %) 2)))
([2 2])
user=> (->> '(2 2 4 5 7) frequencies (filter #(= (second %) 2)) count)
1
Per a suggestion, the function could use a more descriptive name and it's also best practice to give predicate functions a ? at the end of it in Clojure. So maybe something like only-one-pair? is better than just check.
Christian Gonzalez's answer is elegant, and great if you are sure you are operating on a small input. However, it is eager: it forces the entire input list even when itcould in principle tell sooner that the result will be false. This is a problem if the list is very large, or if it is a lazy list whose elements are expensive to compute - try it on (list* 1 1 1 (range 1e9))! I therefore present below an alternative that short-circuits as soon as it finds a second duplicate:
(defn exactly-one-duplicate? [coll]
(loop [seen #{}
xs (seq coll)
seen-dupe false]
(if-not xs
seen-dupe
(let [x (first xs)]
(if (contains? seen x)
(and (not seen-dupe)
(recur seen (next xs) true))
(recur (conj seen x) (next xs) seen-dupe))))))
Naturally it is rather more cumbersome than the carefree approach, but I couldn't see a way to get this short-circuiting behavior without doing everything by hand. I would love to see an improvement that achieves the same result by combining higher-level functions.
(letfn [(check [xs] (->> xs distinct count (= (dec (count xs)))))]
(clojure.test/are [input output]
(= (check input) output)
[1 2 3 4 5] false
[1 2 1 4 5] true
[1 2 1 2 1] false))
but I like a shorter (but limited to exactly 5 item lists):
(check [xs] (->> xs distinct count (= 4)))
In answer to Alan Malloy's plea, here is a somewhat combinatory solution:
(defn check [coll]
(let [accums (reductions conj #{} coll)]
(->> (map contains? accums coll)
(filter identity)
(= (list true)))))
This
creates a lazy sequence of the accumulating set;
tests it against each corresponding new element;
filters for the true cases - those where the element is already present;
tests whether there is exactly one of them.
It is lazy, but does duplicate the business of scanning the given collection. I tried it on Alan Malloy's example:
=> (check (list* 1 1 1 (range 1e9)))
false
This returns instantly. Extending the range makes no difference:
=> (check (list* 1 1 1 (range 1e20)))
false
... also returns instantly.
Edited to accept Alan Malloy's suggested simplification, which I have had to modify to avoid what appears to be a bug in Clojure 1.10.0.
you can do something like this
(defn check [my-list]
(not (empty? (filter (fn[[k v]] (= v 2)) (frequencies my-list)))))
(check '(2 4 5 7))
(check '(2 2 4 5 7))
Similar to others using frequencies - just apply twice
(-> coll
frequencies
vals
frequencies
(get 2)
(= 1))
Positive case:
(def coll '(2 2 4 5 7))
frequencies=> {2 2, 4 1, 5 1, 7 1}
vals=> (2 1 1 1)
frequencies=> {2 1, 1 3}
(get (frequencies #) 2)=> 1
Negative case:
(def coll '(2 1 4 4 4))
frequencies=> {2 1, 1 1, 4 3}
vals=> (1 1 3)
frequencies=> {1 2, 3 1}
(get (frequencies #) 2)=> nil

How to move first list item to the end?

For given list:
(1 2 3 4)
I'd like to get as output:
(2 3 4 1)
Code I came up with looks like this:
(flatten (cons (rest l) (list (first l))))
However my feeling is, that I overcomplicated this. Any other ideas?
You don't need to flatten a cons, just use concat.
Here is an example:
(let [fruit ["apple" "orange" "grapes" "bananas"]]
(concat (rest fruit) [(first fruit)])
Developing #stonemetal's hint, we can quickly and lazily rotate a vector thus:
(defn rotate [v n]
(let [cv (count v), n (mod n cv)]
(concat (subvec v n cv) (subvec v 0 n))))
It works in either direction:
(map #(rotate (vec (range 5)) %) (range -2 8))
;((3 4 0 1 2)
; (4 0 1 2 3)
; (0 1 2 3 4)
; (1 2 3 4 0)
; (2 3 4 0 1)
; (3 4 0 1 2)
; ...
; (2 3 4 0 1))
So to rotate the first in a sequence to the end:
(rotate (vec (range 1 5)) 1)
You can also use destructuring (either on the function arguments or in a let binding).
(let [[h & tail] '(1 2 3 4)]
(concat tail (list h))) ;=> (1 2 3 4)

Partition a seq by a "windowing" predicate in Clojure

I would like to "chunk" a seq into subseqs the same as partition-by, except that the function is not applied to each individual element, but to a range of elements.
So, for example:
(gather (fn [a b] (> (- b a) 2))
[1 4 5 8 9 10 15 20 21])
would result in:
[[1] [4 5] [8 9 10] [15] [20 21]]
Likewise:
(defn f [a b] (> (- b a) 2))
(gather f [1 2 3 4]) ;; => [[1 2 3] [4]]
(gather f [1 2 3 4 5 6 7 8 9]) ;; => [[1 2 3] [4 5 6] [7 8 9]]
The idea is that I apply the start of the list and the next element to the function, and if the function returns true we partition the current head of the list up to that point into a new partition.
I've written this:
(defn gather
[pred? lst]
(loop [acc [] cur [] l lst]
(let [a (first cur)
b (first l)
nxt (conj cur b)
rst (rest l)]
(cond
(empty? l) (conj acc cur)
(empty? cur) (recur acc nxt rst)
((complement pred?) a b) (recur acc nxt rst)
:else (recur (conj acc cur) [b] rst)))))
and it works, but I know there's a simpler way. My question is:
Is there a built in function to do this where this function would be unnecessary? If not, is there a more idiomatic (or simpler) solution that I have overlooked? Something combining reduce and take-while?
Thanks.
Original interpretation of question
We (all) seemed to have misinterpreted your question as wanting to start a new partition whenever the predicate held for consecutive elements.
Yet another, lazy, built on partition-by
(defn partition-between [pred? coll]
(let [switch (reductions not= true (map pred? coll (rest coll)))]
(map (partial map first) (partition-by second (map list coll switch)))))
(partition-between (fn [a b] (> (- b a) 2)) [1 4 5 8 9 10 15 20 21])
;=> ((1) (4 5) (8 9 10) (15) (20 21))
Actual Question
The actual question asks us to start a new partition whenever pred? holds for the beginning of the current partition and the current element. For this we can just rip off partition-by with a few tweaks to its source.
(defn gather [pred? coll]
(lazy-seq
(when-let [s (seq coll)]
(let [fst (first s)
run (cons fst (take-while #((complement pred?) fst %) (next s)))]
(cons run (gather pred? (seq (drop (count run) s))))))))
(gather (fn [a b] (> (- b a) 2)) [1 4 5 8 9 10 15 20 21])
;=> ((1) (4 5) (8 9 10) (15) (20 21))
(gather (fn [a b] (> (- b a) 2)) [1 2 3 4])
;=> ((1 2 3) (4))
(gather (fn [a b] (> (- b a) 2)) [1 2 3 4 5 6 7 8 9])
;=> ((1 2 3) (4 5 6) (7 8 9))
Since you need to have the information from previous or next elements than the one you are currently deciding on, a partition of pairs with a reduce could do the trick in this case.
This is what I came up with after some iterations:
(defn gather [pred s]
(->> (partition 2 1 (repeat nil) s) ; partition the sequence and if necessary
; fill the last partition with nils
(reduce (fn [acc [x :as s]]
(let [n (dec (count acc))
acc (update-in acc [n] conj x)]
(if (apply pred s)
(conj acc [])
acc)))
[[]])))
(gather (fn [a b] (when (and a b) (> (- b a) 2)))
[1 4 5 8 9 10 15 20 21])
;= [[1] [4 5] [8 9 10] [15] [20 21]]
The basic idea is to make partitions of the number of elements the predicate function takes, filling the last partition with nils if necessary. The function then reduces each partition by determining if the predicate is met, if so then the first element in the partition is added to the current group and a new group is created. Since the last partition could have been filled with nulls, the predicate has to be modified.
Tow possible improvements to this function would be to let the user:
Define the value to fill the last partition, so the reducing function could check if any of the elements in the partition is this value.
Specify the arity of the predicate, thus allowing to determine the grouping taking into account the current and the next n elements.
I wrote this some time ago in useful:
(defn partition-between [split? coll]
(lazy-seq
(when-let [[x & more] (seq coll)]
(lazy-loop [items [x], coll more]
(if-let [[x & more] (seq coll)]
(if (split? [(peek items) x])
(cons items (lazy-recur [x] more))
(lazy-recur (conj items x) more))
[items])))))
It uses lazy-loop, which is just a way to write lazy-seq expressions that look like loop/recur, but I hope it's fairly clear.
I linked to a historical version of the function, because later I realized there's a more general function that you can use to implement partition-between, or partition-by, or indeed lots of other sequential functions. These days the implementation is much shorter, but it's less obvious what's going on if you're not familiar with the more general function I called glue:
(defn partition-between [split? coll]
(glue conj []
(fn [v x]
(not (split? [(peek v) x])))
(constantly false)
coll))
Note that both of these solutions are lazy, which at the time I'm writing this is not true of any of the other solutions in this thread.
Here is one way, with steps split up. It can be narrowed down to fewer statements.
(def l [1 4 5 8 9 10 15 20 21])
(defn reduce_fn [f x y]
(cond
(f (last (last x)) y) (conj x [y])
:else (conj (vec (butlast x)) (conj (last x) y)) )
)
(def reduce_fn1 (partial reduce_fn #(> (- %2 %1) 2)))
(reduce reduce_fn1 [[(first l)]] (rest l))
keep-indexed is a wonderful function. Given a function f and a vector lst,
(keep-indexed (fn [idx it] (if (apply f it) idx))
(partition 2 1 lst)))
(0 2 5 6)
this returns the indices after which you want to split. Let's increment them and tack a 0 at the front:
(cons 0 (map inc (.....)))
(0 1 3 6 7)
Partition these to get ranges:
(partition 2 1 nil (....))
((0 1) (1 3) (3 6) (6 7) (7))
Now use these to generate subvecs:
(map (partial apply subvec lst) ....)
([1] [4 5] [8 9 10] [15] [20 21])
Putting it all together:
(defn gather
[f lst]
(let [indices (cons 0 (map inc
(keep-indexed (fn [idx it]
(if (apply f it) idx))
(partition 2 1 lst))))]
(map (partial apply subvec (vec lst))
(partition 2 1 nil indices))))
(gather #(> (- %2 %) 2) '(1 4 5 8 9 10 15 20 21))
([1] [4 5] [8 9 10] [15] [20 21])

Clojure - how to do reductions function but drop state?

If I use the reductions function like so:
(reductions + [1 2 3 4 5])
Then I get
(1 3 6 10 15)
Which is great - but I'd like to apply a binary function in the same way without the state being carried forward - something like
(magic-hof + [1 2 3 4 5])
leads to
(1 3 5 7 9)
ie it returns the operation applied to the first pair, then steps 1 to the next pair.
Can someone tell me the higher-order function I'm looking for? (Something like reductions)
This is my (non-working) go at it:
(defn thisfunc [a b] [(+ a b) b])
(reduce thisfunc [1 2 3 4 5])
You can do it with map:
(map f coll (rest coll))
And if you want a function:
(defn map-pairwise [f coll]
(map f coll (rest coll)))
And if you really need the first element to remain untouched (thanx to juan.facorro's comment):
(defn magic-hof [f [x & xs :as s]]
(cons x (map f s xs)))
partition will group your seq:
user> (->> [1 2 3 4 5] (partition 2 1) (map #(apply + %)) (cons 1))
(1 3 5 7 9)
So, you want to apply a function to subsequent pairs of elements?
(defn pairwise-apply
[f sq]
(when (seq sq)
(->> (map f sq (next sq))
(cons (first sq)))))
Let's try it:
(pairwise-apply + (range 1 6))
;; => (1 3 5 7 9)
This is sufficient:
(#(map + (cons 0 %) %) [1 2 3 4 5])
;; => (1 3 5 7 9)