Given a matrix class
using index_t = int;
template<index_t M, index_t N, typename S>
struct mat {
// matrix implementation
};
I would like to have a generic way of obtaining the elementCount for a given type T that will work for both matrices and scalars. For example, I imagine being able to do this:
dimensionality<mat<1,2,double>>(); // returns 2
dimensionality<mat<2,2,float>>(); // returns 4
dimensionality<double>(); // returns 1
or perhaps something like this:
attributes<mat<1,2,double>>::dimensionality; // returns 2
attributes<mat<2,2,float>>::dimensionality; // returns 4
attributes<double>::dimensionality; // returns 1
My attempt:
I tried doing the following (thinking that I am partially specializing the struct attributes):
template<typename T>
struct attributes {};
template<typename S, typename = std::enable_if_t<std::is_arithmetic<S>::value>>
struct attributes<S> { // <--- compiler error on this line
static constexpr index_t dimensionality = 1;
};
template<index_t M, index_t N, typename S>
struct attributes<mat<M, N, S>> {
static constexpr index_t dimensionality = M * N;
};
but I get a compiler error on the indicated line. Can you help me (either by suggesting a better approach, or to understand what I'm doing wrong)?
First, the specialization cannot have more template parameters than the primary template, but your code puts typename = std::enable_if_t for the arithmetic case.
Secondly, in order to make this std::enable_if_t to work, it would need to result in something that makes the specialization more specialized than the primary template, not only valid. For that, you could use the void_t trick:
template <typename T, typename = void>
struct attributes {};
template <typename S>
struct attributes<S, std::enable_if_t<std::is_arithmetic<S>::value>> {
static constexpr index_t dimensionality = 1;
};
This also entails that the specialization for matrices should include this void parameter as well:
template <index_t M, index_t N, typename S>
struct attributes<mat<M, N, S>, void> {
static constexpr index_t dimensionality = M * N;
};
DEMO
Your trait could, however, be shortened to:
template <typename T>
struct attributes {
static_assert(std::is_arithmetic<T>::value, "T must be arithmetic or mat");
static constexpr index_t dimensionality = 1;
};
template <index_t M, index_t N, typename S>
struct attributes<mat<M, N, S>> {
static constexpr index_t dimensionality = M * N;
};
DEMO 2
That is, just consider arithmetic types in the primary template, when no specialization matches.
You could add another template parameter with default type void, then specify the std::enable_if as the corresponding template argument in the partial specialization for arithmetic types. (And adjust the partial specialization for mat too.)
template<typename T, typename = void>
struct attributes {};
template<typename S>
struct attributes<S, std::enable_if_t<std::is_arithmetic<S>::value>> {
static constexpr index_t dimensionality = 1;
};
template<index_t M, index_t N, typename S>
struct attributes<mat<M, N, S>, void> {
static constexpr index_t dimensionality = M * N;
};
LIVE
Wrapping a trait-based static constant: std::integral_constant
You may want to make use of std::integral_constant from <type_traits> to implement your trait,
[...] std::integral_constant wraps a static constant of specified type. It is the base class for the C++ type traits.
as well as supply a helper variable template dimensionality_v for ease of use:
#include <type_traits>
// Default dimensionality 0.
template <class T, typename = void>
struct dimensionality : std::integral_constant<index_t, 0> {};
template <typename S>
struct dimensionality<S, std::enable_if_t<std::is_arithmetic_v<S>>>
: std::integral_constant<index_t, 1> {};
template <index_t M, index_t N, typename S>
struct dimensionality<mat<M, N, S>> : std::integral_constant<index_t, M * N> {};
template <class T>
inline constexpr index_t dimensionality_v = dimensionality<T>::value;
DEMO.
Alternatively, if you don't want to allow a default dimensionality for types that are neither fulfilling std::is_arithmetic_v nor equals mat:
template <class T, typename = void>
struct dimensionality {};
template <typename S>
struct dimensionality<S, std::enable_if_t<std::is_arithmetic_v<S>>>
: std::integral_constant<index_t, 1> {};
template <index_t M, index_t N, typename S>
struct dimensionality<mat<M, N, S>> : std::integral_constant<index_t, M * N> {};
template <class T>
inline constexpr index_t dimensionality_v = dimensionality<T>::value;
DEMO.
Related
I'm writing a template that can convert a c style multidimensional array to a std array and declare it.
get c-style array matrix
template <typename, typename IS = std::index_sequence<>>
struct unpacked_array_type_impl
{
using type = IS;
};
template <typename T, std::size_t ... I>
struct unpacked_array_type_impl<T*, std::index_sequence<I...>>
: public unpacked_array_type_impl<T, std::index_sequence<0u, I...>>
{ };
template <typename T, std::size_t N, std::size_t ... I>
struct unpacked_array_type_impl<T[N], std::index_sequence<I...>>
: public unpacked_array_type_impl<T, std::index_sequence<I..., N>>
{ };
template<typename T>
struct unpacked_array_type
{
using type = typename unpacked_array_type_impl<T>::type;
};
std array declaration
template<typename T, size_t size, size_t... more>
struct myArray_impl
{
using type = std::array<typename myArray_impl<T, more...>::type, size>;
};
template<typename T, size_t size>
struct myArray_impl<T, size>
{
using type = std::array<T, size>;
};
template<typename T, size_t size, size_t... more>
using myArray = typename myArray_impl<T, size, more...>::type;
Below is the code I want to achieve.
using example_type = int[4][10];
using real_type = std::remove_all_extents<example_type>::type
myArray<real_type, unpacked_array_type<example_type>::type> this_would_be_std_arr;
But I got C2993 error.
The problem is that std::integer_sequence cannot expand to the variable argument of myArray template.
I would appreciate if you can help me.
First template return std::index_sequence, whereas the second take a list of number.
You might use std::index_sequence for both:
template<typename T, typename Seq>
struct myArray_impl;
template<typename T, size_t size, size_t... more>
struct myArray_impl<T, std::index_sequence<size, more...>>
{
using type = std::array<typename myArray_impl<T, std::index_sequence<more...>>::type, size>;
};
template<typename T, size_t size>
struct myArray_impl<T, std::index_sequence<size>>
{
using type = std::array<T, size>;
};
template<typename T, typename Seq>
using myArray = typename myArray_impl<T, Seq>::type;
Demo.
Instead of trying to build a stack of array extents with std::index_sequence and apply them to a template parameter pack, why not just define your specialization of myArray_impl to recursively deduce each extent from typename T?
template <typename T>
struct myArray_impl
{
using type = typename std::remove_cv<T>::type;
};
template <typename T, std::size_t N>
struct myArray_impl<T[N]>
{
using type = std::array<typename myArray_impl<T>::type, N>;
};
template <typename T>
using myArray = typename myArray_impl<T>::type;
Then you get the following example type aliases:
myArray<const int[4]> // std::array<int, 4>>
myArray<float[4][10]> // std::array<std::array<float, 10>, 4>>
Suppose we have a variadic templated class like
template<class...Ts>
class X{
template<size_t I>
constexpr bool shouldSelect();
std::tuple<TransformedTs...> mResults; // this is want I want eventually
};
where the implementation of shouldSelect is not provided, but what it does is that, given an index i referring to the ith element of the variadic Ts, tells you whether we should select it to the subset.
I want to do a transformation on Ts such that only classes Ts at indexes that results in shouldSelect returning true should be selected. Is there an easy way to do this?
For example, if shouldSelect returns true for I = 1,2,4, and Ts... = short, int, double, T1, T2, then I want to get a TransformedTs... that is made up of int, double, T2. Then I can use this TransformedTs... in the same class.
If you're able to use C++17, this is pretty easy to implement using a combination of if constexpr and expression folding.
Start with some helper types, one with parameters to track the arguments to X::shouldSelect<I>(), and the other with a type to test.
template <typename T, size_t I, typename...Ts>
struct Accumulator {
using Type = std::tuple<Ts...>;
};
template <typename T>
struct Next { };
Then an operator overload either adds the type to the accumulator, or not with if constexpr:
template <typename TAcc, size_t I, typename... Ts, typename TArg>
decltype(auto) operator +(Accumulator<TAcc, I, Ts...>, Next<TArg>) {
if constexpr (TAcc::template shouldSelect<I>()) {
return Accumulator<TAcc, I + 1, Ts..., TArg>{};
} else {
return Accumulator<TAcc, I + 1, Ts...>{};
}
}
Finally, you can put it all together with a fold expression and extract the type with decltype:
template <template <typename... Ts> class T, typename... Ts>
constexpr decltype(auto) FilterImpl(const T<Ts...>&) {
return (Accumulator<T<Ts...>, 0>{} + ... + Next<Ts>{});
}
template<typename T>
using FilterT = typename decltype(FilterImpl(std::declval<T>()))::Type;
Usage:
using Result = FilterT<X<int, double, bool, etc>>;
Demo: https://godbolt.org/z/9h89zG
If you don't have C++17 available to you, it's still possible. You can do the same sort of conditional type transfer using a recursive inheritance chain to iterate though each type in the parameter pack, and std::enable_if to do the conditional copy. Below is the same code, but working in C++11:
// Dummy type for copying parameter packs
template <typename... Ts>
struct Mule {};
/* Filter implementation */
template <typename T, typename Input, typename Output, size_t I, typename = void>
struct FilterImpl;
template <typename T, typename THead, typename... TTail, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<THead, TTail...>, Mule<OutputTs...>, I, typename std::enable_if<( T::template shouldSelect<I>() )>::type >
: FilterImpl<T, Mule<TTail...>, Mule<OutputTs..., THead>, (I + 1)>
{ };
template <typename T, typename THead, typename... TTail, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<THead, TTail...>, Mule<OutputTs...>, I, typename std::enable_if<( !T::template shouldSelect<I>() )>::type >
: FilterImpl<T, Mule<TTail...>, Mule<OutputTs...>, (I + 1)>
{ };
template <typename T, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<>, Mule<OutputTs...>, I>
{
using Type = std::tuple<OutputTs...>;
};
/* Helper types */
template <typename T>
struct Filter;
template <template <typename... Ts> class T, typename... Ts>
struct Filter<T<Ts...>> : FilterImpl<T<Ts...>, Mule<Ts...>, Mule<>, 0>
{ };
template <typename T>
using FilterT = typename Filter<T>::Type;
Demo: https://godbolt.org/z/esso4M
Is there a utility in the standard library to get the index of a given type in std::variant? Or should I make one for myself? That is, I want to get the index of B in std::variant<A, B, C> and have that return 1.
There is std::variant_alternative for the opposite operation. Of course, there could be many same types on std::variant's list, so this operation is not a bijection, but it isn't a problem for me (I can have first occurrence of type on list, or unique types on std::variant list).
Update a few years later: My answer here may be a cool answer, but this is the correct one. That is how I would solve this problem today.
We could take advantage of the fact that index() almost already does the right thing.
We can't arbitrarily create instances of various types - we wouldn't know how to do it, and arbitrary types might not be literal types. But we can create instances of specific types that we know about:
template <typename> struct tag { }; // <== this one IS literal
template <typename T, typename V>
struct get_index;
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: std::integral_constant<size_t, std::variant<tag<Ts>...>(tag<T>()).index()>
{ };
That is, to find the index of B in variant<A, B, C> we construct a variant<tag<A>, tag<B>, tag<C>> with a tag<B> and find its index.
This only works with distinct types.
I found this answer for tuple and slightly modificated it:
template<typename VariantType, typename T, std::size_t index = 0>
constexpr std::size_t variant_index() {
static_assert(std::variant_size_v<VariantType> > index, "Type not found in variant");
if constexpr (index == std::variant_size_v<VariantType>) {
return index;
} else if constexpr (std::is_same_v<std::variant_alternative_t<index, VariantType>, T>) {
return index;
} else {
return variant_index<VariantType, T, index + 1>();
}
}
It works for me, but now I'm curious how to do it in old way without constexpr if, as a structure.
You can also do this with a fold expression:
template <typename T, typename... Ts>
constexpr size_t get_index(std::variant<Ts...> const&) {
size_t r = 0;
auto test = [&](bool b){
if (!b) ++r;
return b;
};
(test(std::is_same_v<T,Ts>) || ...);
return r;
}
The fold expression stops the first time we match a type, at which point we stop incrementing r. This works even with duplicate types. If a type is not found, the size is returned. This could be easily changed to not return in this case if that's preferable, since missing return in a constexpr function is ill-formed.
If you dont want to take an instance of variant, the argument here could instead be a tag<variant<Ts...>>.
With Boost.Mp11 this is a short, one-liner:
template<typename Variant, typename T>
constexpr size_t IndexInVariant = mp_find<Variant, T>::value;
Full example:
#include <variant>
#include <boost/mp11/algorithm.hpp>
using namespace boost::mp11;
template<typename Variant, typename T>
constexpr size_t IndexInVariant = mp_find<Variant, T>::value;
int main()
{
using V = std::variant<int,double, char, double>;
static_assert(IndexInVariant<V, int> == 0);
// for duplicates first idx is returned
static_assert(IndexInVariant<V, double> == 1);
static_assert(IndexInVariant<V, char> == 2);
// not found returns ".end()"/ or size of variant
static_assert(IndexInVariant<V, float> == 4);
// beware that const and volatile and ref are not stripped
static_assert(IndexInVariant<V, int&> == 4);
static_assert(IndexInVariant<V, const int> == 4);
static_assert(IndexInVariant<V, volatile int> == 4);
}
One fun way to do this is to take your variant<Ts...> and turn it into a custom class hierarchy that all implement a particular static member function with a different result that you can query.
In other words, given variant<A, B, C>, create a hierarchy that looks like:
struct base_A {
static integral_constant<int, 0> get(tag<A>);
};
struct base_B {
static integral_constant<int, 1> get(tag<B>);
};
struct base_C {
static integral_constant<int, 2> get(tag<C>);
};
struct getter : base_A, base_B, base_C {
using base_A::get, base_B::get, base_C::get;
};
And then, decltype(getter::get(tag<T>())) is the index (or doesn't compile). Hopefully that makes sense.
In real code, the above becomes:
template <typename T> struct tag { };
template <std::size_t I, typename T>
struct base {
static std::integral_constant<size_t, I> get(tag<T>);
};
template <typename S, typename... Ts>
struct getter_impl;
template <std::size_t... Is, typename... Ts>
struct getter_impl<std::index_sequence<Is...>, Ts...>
: base<Is, Ts>...
{
using base<Is, Ts>::get...;
};
template <typename... Ts>
struct getter : getter_impl<std::index_sequence_for<Ts...>, Ts...>
{ };
And once you establish a getter, actually using it is much more straightforward:
template <typename T, typename V>
struct get_index;
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: decltype(getter<Ts...>::get(tag<T>()))
{ };
That only works in the case where the types are distinct. If you need it to work with independent types, then the best you can do is probably a linear search?
template <typename T, typename>
struct get_index;
template <size_t I, typename... Ts>
struct get_index_impl
{ };
template <size_t I, typename T, typename... Ts>
struct get_index_impl<I, T, T, Ts...>
: std::integral_constant<size_t, I>
{ };
template <size_t I, typename T, typename U, typename... Ts>
struct get_index_impl<I, T, U, Ts...>
: get_index_impl<I+1, T, Ts...>
{ };
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: get_index_impl<0, T, Ts...>
{ };
My two cents solutions:
template <typename T, typename... Ts>
constexpr std::size_t variant_index_impl(std::variant<Ts...>**)
{
std::size_t i = 0; ((!std::is_same_v<T, Ts> && ++i) && ...); return i;
}
template <typename T, typename V>
constexpr std::size_t variant_index_v = variant_index_impl<T>(static_cast<V**>(nullptr));
template <typename T, typename V, std::size_t... Is>
constexpr std::size_t variant_index_impl(std::index_sequence<Is...>)
{
return ((std::is_same_v<T, std::variant_alternative_t<Is, V>> * Is) + ...);
}
template <typename T, typename V>
constexpr std::size_t variant_index_v = variant_index_impl<T, V>(std::make_index_sequence<std::variant_size_v<V>>{});
If you wish a hard error on lookups of not containing type or duplicate type - here are static asserts:
constexpr auto occurrences = (std::is_same_v<T, Ts> + ...);
static_assert(occurrences != 0, "The variant cannot have the type");
static_assert(occurrences <= 1, "The variant has duplicates of the type");
Another take on it:
#include <type_traits>
namespace detail {
struct count_index {
std::size_t value = 0;
bool found = false;
template <typename T, typename U>
constexpr count_index operator+(const std::is_same<T, U> &rhs)
{
if (found)
return *this;
return { value + !rhs, rhs};
}
};
}
template <typename Seq, typename T>
struct index_of;
template <template <typename...> typename Seq, typename... Ts, typename T>
struct index_of<Seq<Ts...>, T>: std::integral_constant<std::size_t, (detail::count_index{} + ... + std::is_same<T, Ts>{}).value> {
static_assert(index_of::value < sizeof...(Ts), "Sequence doesn't contain the type");
};
And then:
#include <variant>
struct A{};
struct B{};
struct C{};
using V = std::variant<A, B, C>;
static_assert(index_of<V, B>::value == 1);
Or:
static_assert(index_of<std::tuple<int, float, bool>, float>::value == 1);
See on godbolt: https://godbolt.org/z/7ob6veWGr
Let's say I want a class/struct type, inheriting from integral_constant<size_t, N> where N is the dimension and the dimension is achieved as follows:
template<class T>
struct dimension;
template<class T>
struct dimension<vector<T>> : integral_constant<size_t, 1> {};
template<class T>
struct dimension<vector<vector<T>>> : integral_constant<size_t, 2> {};
And then
cout << dimension<vector<int>>::value; // 1
cout << dimension<vector<vector<int>>>::value; // 2
But obviously this is not perfect, as the number of dimensions can be a infinite (in theory). Is there a way to achieve a generic solution to this?
Suggestion: I went in this direction, but no further:
template<class T, class... Tn>
struct dimension<vector<Tn...>> : integral_constant<size_t, sizeof...(Tn)> {};
Since std::vector has other template parameters this wouldn't work.
A bit hard to define "what's a container". The below checks for value_type, iterator, and const_iterator nested typedefs. Tweak the void_t check as you want. (For instance, if you want only things that can be subscripted to be recognized as containers, then add decltype(std::declval<T&>()[0]) to the list.)
Note that dimension_impl's specialization calls dimension. this allows you to specialize dimension for container-like things you don't want to be treated as a container (std::string comes to mind).
template<class T> struct dimension;
namespace details {
template<class T, class = void>
struct dimension_impl {
static constexpr std::size_t value = 0;
};
template<class T>
struct dimension_impl<T, std::void_t<typename T::value_type,
typename T::iterator,
typename T::const_iterator>> {
static constexpr std::size_t value = 1 + dimension<typename T::value_type>::value;
};
}
template<class T>
struct dimension : std::integral_constant<std::size_t,
details::dimension_impl<T>::value> {};
You can do this for a std::vector (note that the template parameter list of a std::vector is longer than 1):
template<typename T>
struct dimension { static constexpr std::size_t value = 0; };
template<typename T, typename... V>
struct dimension<std::vector<T, V...>>{
static constexpr std::size_t value = 1 + dimension<T>::value;
};
This works instead for a std::array:
template<typename>
struct dimension { static constexpr std::size_t value = 0; };
template<typename T, std::size_t N>
struct dimension<std::array<T, N>>{
static constexpr std::size_t value = 1 + dimension<T>::value;
};
It follows a minimal, working example:
#include<vector>
#include<iostream>
template<typename T>
struct dimension { static constexpr std::size_t value = 0; };
template<typename T, typename... V>
struct dimension<std::vector<T, V...>>{
static constexpr std::size_t value = 1 + dimension<T>::value;
};
int main() {
std::cout << dimension<std::vector<std::vector<int>>>::value << std::endl;
}
Given a parameter pack with variadic arguments, how can one find the number of unique values in the pack. I am looking for something along the lines of
no_of_uniques<0,1,2,1,2,2>::value // should return 3
My rudimentary implementation looks something this
template <size_t ... all>
struct no_of_uniques;
// this specialisation exceeds -ftemplate-depth as it has no terminating condition
template <size_t one, size_t ... all>
struct no_of_uniques<one,all...> {
static const size_t value = no_of_uniques<one,all...>::value;
};
template <size_t one, size_t two, size_t three>
struct no_of_uniques<one,two,three> {
static const size_t value = (one==two && one==three && two==three) ? 1:
(one!=two && two==three) ? 2:
(one==two && one!=three) ? 2:
(one==three && two!=three) ? 2: 3;
};
template <size_t one, size_t two>
struct no_of_uniques<one,two> {
static const size_t value = one==two ? 1: 2;
};
template <size_t one>
struct no_of_uniques<one> {
static const size_t value = 1;
};
Here, I have specialised for up to three arguments but understandably the code grows exponentially with the number of arguments. I would like to have a meta solution for this using solely STL and no third party libraries like Boost.MPL.
A similar question albeit in the context of checking unique types, rather than finding number of unique values of parameter pack can be found here:
Check variadic templates parameters for uniqueness
In the process of finding the number of unique values of a parameter pack, we might need to sort the pack first, and an excellent implementation of that is provided in this other question
Quick sort at compilation time using C++11 variadic templates
Here's a simple O(n^2) way to do it
template <size_t...>
struct is_unique : std::integral_constant<bool, true> {};
template <size_t T, size_t U, size_t... VV>
struct is_unique<T, U, VV...> : std::integral_constant<bool, T != U && is_unique<T, VV...>::value> {};
template <size_t...>
struct no_unique : std::integral_constant<size_t, 0> {};
template <size_t T, size_t... UU>
struct no_unique<T, UU...> : std::integral_constant<size_t, is_unique<T, UU...>::value + no_unique<UU...>::value> {};
So using your example:
no_unique<0, 1, 2, 1, 2, 2>::value; // gives 3
Most of this is machinery I already wrote for a different question, stripped of the "counting" part.
A pack with a sizeof shortcut:
template<class... Ts> struct pack {
static constexpr size_t size = sizeof...(Ts);
};
Add a type to a pack of types, but only if it doesn't exist already:
template<class T, class PT> struct do_push;
template<class T, class...Ts>
struct do_push<T, pack<Ts...>>{
using type = std::conditional_t<std::disjunction_v<std::is_same<Ts, T>...>,
pack<Ts...>,
pack<T, Ts...>
>;
};
template<class T, class PT> using push = typename do_push<T, PT>::type;
Now make a pack of unique types:
template<class P, class PT = pack<> >
struct unique_types_imp { using type = PT; };
template<class PT, class T, class... Ts>
struct unique_types_imp <pack<T, Ts...>, PT>
: unique_types_imp <pack<Ts...>, push<T, PT>> {};
template<class P>
using unique_types = typename unique_types_imp<P>::type;
Finally:
template<size_t S>
using size_constant = std::integral_constant<size_t, S>;
template<size_t... all>
struct no_of_uniques{
static constexpr size_t value = unique_types<pack<size_constant<all>...>>::size;
};
Using Boost.Mp11, this is a short one-liner (as always):
template <size_t... Ns>
using no_of_uniques = mp_size<mp_unique<mp_list<mp_size_t<Ns>...>>>;
Following the same logic as described below. We lift the values into types, put them in a type list, get the unique types out of that, and then get the length.
I'll generalize to types - since metaprogramming works better in types. The algorithm for counting uniqueness is an empty argument list has 0 unique types, and a non-empty list has 1 unique type + the number of unique types in the tail of that list after having removed the initial type.
In fact, let's generalize further than that - let's write a metafunction that takes a list of types and returns the unique types in it. Once you have the unique types, it's easy to count them.
template <class... > struct typelist { };
template <class >
struct uniq;
template <class TL>
using uniq_t = typename uniq<TL>::type;
template <>
struct uniq<typelist<>> {
using type = typelist<>;
};
template <class T, class... Ts>
struct uniq<typelist<T, Ts...>>
: concat<typelist<T>, uniq_t<filter_out_t<T, typelist<Ts...>>>>
{ };
Now we just need to fill in concat and filter_out_t. The latter is basically a glorified concat anyway:
template <class... > struct concat;
template <> struct concat<> { using type = typelist<>; };
template <class... Ts>
struct concat<typelist<Ts...>> {
using type = typelist<Ts...>;
};
template <class... Ts, class... Us, class... Args>
struct concat<typelist<Ts...>, typelist<Us...>, Args...>
: concat<typelist<Ts..., Us...>, Args...>
{ };
template <class T, class TL>
struct filter_out;
template <class T, class TL>
using filter_out_t = typename filter_out<T, TL>::type;
template <class T, class... Ts>
struct filter_out<T, typelist<Ts...>>
: concat<
std::conditional_t<std::is_same<T, Ts>::value, typelist<>, typelist<Ts>>...
>
{ };
Now, given a list of types, we can figure out the unique ones. To backport to the original problem, we just need a a size metafunction:
template <size_t N>
using size_t_ = std::integral_constant<size_t, N>;
template <class > struct length;
template <class T> using length_t = typename length<T>::type;
template <class... Ts>
struct length<typelist<Ts...>>
: size_t_<sizeof...(Ts)>
{ };
And then wrap everything up in one alias:
template <size_t... Ns>
using no_of_uniques = length_t<uniq_t<typelist<size_t_<Ns>...>>>;