Translating C++ member initialisation constructor to Julia - c++

I have this class in C++ and want to replicate it in Julia.
class Clock
{
double epsilon;
double dt;
int64_t timestep;
double t;
Clock(double _epsilon=1e-14) : epsilon(_epsilon)
};
So far I have
mutable struct Clock
epsilon::Float64
dt::Float64
timestep::Int64
t::Float64
#Need the constructor#
end

The closest to C++ behaviour I believe would be the following:
mutable struct Clock
epsilon::Float64
dt::Float64
timestep::Int64
t::Int64
Clock(epsilon=1e-14) = new(epsilon)
end
This leaves the rest of the fields incomplete. Since they have so-called bits types, they are actually initialized, but with undefined values (as opposed to C++, where they are uninitialized, IIUC), so accessing the fields without assignment does not error (it would be for non-bitstypes, such as arrays).
The struct has to be mutable, because otherwise you couldn't change the fields after you constructed the value and were left with a bunch of garbage forever.
But let it be said that incomplete initialization is not particularly idiomatic, or at least to be avoided whenever possible. I'd rather write the type as follows:
struct Clock
epsilon::Float64
dt::Float64
timestep::Int64
t::Int64
end
Clock(epsilon=1e-14) = Clock(epsilon=epsilon, 0.0, 0, 0)
(or with whatever defaults make sense for you), and stick to immutable functions manipulating it. That second variant uses an outer constructor, which is basically just a method on the type (special things like new and incomplete initialization are available only in inner constructors). This outer constructor call the default-provided inner constructor.

Related

How to Initialize all Variables in the program to zero without doing it explicitly in c++ [closed]

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 2 years ago.
Improve this question
I want to make all the variables which I create in my program to have initialization to zero without doing it explicitly.
For example suppose if I create a variable like below:
int i;
We know that it must contain any garbage value and to make it have value 0 by default we need to declare it like
int i=0;
but I want my all variables in the program to contain garbage value as 0 not any other value.
In my code I want my every variables (which include class variables, global variables, local variables) to automatically initialize to 0 without doing it explicitly.
So what logic I tried is that in C, I have written the "Hello World" program without using main() function. So what I have done in that time is to override the _start function which is the first function called by compiler to set up everything and then call to main(). So I think there must be a function which compiler calls during the creation of a variables and I thought we can set the value 0 to the all variables there. Please help me with this problem. If there exist some other logic to solve this problem you can share with me I am open to all solutions but please don't say to explicitly declare them with the value 0.
As a person who spends much of his working life looking at other people's broken code, I really have to say this, although I doubt it will be popular...
If it matters what the initial value of a variable is, then you should initialize it explicitly.
That's true even if you initialize it to what is, in fact, the default value. When I look at a statement like this:
int i = 0;
I immediately know (or think I know) that the programmer really thought about the value, and set it. If I read this:
int i;
then I assume that the programmer does not care about the value -- presumably because it will be assigned a value later.
So far as automatic variables are concerned, it would be easy enough for the compiler to generate code that zero'd the relevant part of the stack frame on entry to a function. I suspect it would be hard to do in application code; but why would you want to? Not only would it make the program behave in a way that appears to violate the language specifications, it would encourage slopping, unreadable programming practices.
Just initialize your variables, and have done with it. Or, if you don't want to initialize it because you know that the compiler will initialize it in the way you want, insert a comment to that effect. You'll thank yourself when you have to fix a bug five years later.
Default initialization and some words regarding the complexity of initialization in C++
To limit the scope of this discussion, let T be any kind of type (fundamental such as int, class types, aggregate as well as non-aggregate), and the t be a variable of automatic storage duration:
int main() {
T t; // default initialization
}
The declaration of t means t will be initialized by means of default initialization. Default initialization acts differently for different kind of types:
For fundamental types such as int, bool, float and so on, the effect is that t is left in an uninitialized state, and reading from it before explicitly initializing it (later) is undefined behavior
For class types, overload resolution resolve to a default constructor (which may be implicitly or implicitly generated), which will initialize the object but where its data member object could end up in an uninitialized state, depending on the definition of the default constructor selected
For array types, every element of the array is default-initialize, following the rules above
C++ initialization is complex, and there are many special rules and gotchas that can end up with uninitialized variable or data members of variables whence read results in UB.
Hence a long-standing recommendation is to always explicitly initialized you variables (with automatic storage duration), and not rely on the fact that default initialization may or may not result in a fully initialized variable. A common approach is (attempting) to use value initialization, by means of initialization of variable with empty braces:
int main() {
int i{}; // value-initialization -> zero-initialization
SomeAggregateClass ac{}; // aggregate initialization
}
However even this approach can fail for class types if one is not careful whether the class is an aggregate or not:
struct A {
A() = default; // not user-provided.
int a;
};
struct B {
B(); // user-provided.
int b;
};
// Out of line definition: a user-provided
// explicitly-defaulted constructor.
B::B() = default;
In this example (in C++11 through C++17), A is an aggregate, whereas B is not. This, in turn, means that initialization of B by means of an empty direct-list-init will result in its data member b being left in an uninitialized state. For A, however, the same initialization syntax will result in (via aggregate initialization of the A object and subsequent value initalization of its data member a) zero-initialization of its data member a:
A a{};
// Empty brace direct-list-init:
// -> A has no user-provided constructor
// -> aggregate initialization
// -> data member 'a' is value-initialized
// -> data member 'a' is zero-initialized
B b{};
// Empty brace direct-list-init:
// -> B has a user-provided constructor
// -> value-initialization
// -> default-initialization
// -> the explicitly-defaulted constructor will
// not initialize the data member 'b'
// -> data member 'b' is left in an unititialized state
This may come as a surprise, and with the obvious risk of reading the uninitialized data member b with the result of undefined behaviour:
A a{};
B b{}; // may appear as a sound and complete initialization of 'b'.
a.a = b.b; // reading uninitialized 'b.b': undefined behaviour.

What is the difference bettwen using "()" and "{}" to initialize a variable? [duplicate]

The C++ reference pages say that () is for value initialisation, {} is for value and aggregate and list initialisation. So, if I just want value initialisation, which one do I use? () or {}? I'm asking because in the book "A Tour of C++" by Bjarne himself, he seems to prefer using {}, even for value initialisation (see for example pages 6 and 7), and so I thought it was good practice to always use {}, even for value initialisation. However, I've been badly bitten by the following bug recently. Consider the following code.
auto p = std::make_shared<int>(3);
auto q{ p };
auto r(p);
Now according to the compiler (Visual Studio 2013), q has type std::initializer_list<std::shared_ptr<int>>, which is not what I intended. What I actually intended for q is actually what r is, which is std::shared_ptr<int>. So in this case, I should not use {} for value initialisation, but use (). Given this, why does Bjarne in his book still seem to prefer to use {} for value initialisation? For example, he uses double d2{2.3} at the bottom of page 6.
To definitively answer my questions, when should I use () and when should I use {}? And is it a matter of syntax correctness or a matter of good programming practice?
Oh and uh, plain English if possible please.
EDIT:
It seems that I've slightly misunderstood value initialisation (see answers below). However the questions above still stands by and large.
Scott Meyers has a fair amount to say about the difference between the two methods of initialization in his book Effective Modern C++.
He summarizes both approaches like this:
Most developers end up choosing one kind of delimiter as a default, using
the other only when they have to. Braces-by-default folks are
attracted by their unrivaled breadth of applicability, their
prohibition of narrowing conversions, and their immunity to C++’s most
vexing parse. Such folks understand that in some cases (e.g., creation
of a std::vector with a given size and initial element value),
parentheses are required. On the other hand, the go-parentheses-go
crowd embraces parentheses as their default argument delimiter.
They’re attracted to its consistency with the C++98 syntactic
tradition, its avoidance of the auto-deduced-a-std::initializer_list
problem, and the knowledge that their object creation calls won’t be
inadvertently waylaid by std::initializer_list constructors. They
concede that sometimes only braces will do (e.g., when creating a
container with particular values). There’s no consensus that either
approach is better than the other, so my advice is to pick one and
apply it consistently.
This is my opinion.
When using auto as type specifier, it's cleaner to use:
auto q = p; // Type of q is same as type of p
auto r = {p}; // Type of r is std::initializer_list<...>
When using explicit type specifier, it's better to use {} instead of ().
int a{}; // Value initialized to 0
int b(); // Declares a function (the most vexing parse)
One could use
int a = 0; // Value initialized to 0
However, the form
int a{};
can be used to value initialize objects of user defined types too. E.g.
struct Foo
{
int a;
double b;
};
Foo f1 = 0; // Not allowed.
Foo f1{}; // Zero initialized.
First off, there seems to a terminology mixup. What you have is not value initialisation. Value initialisation happens when you do not provide any explicit initialisation arguments. int x; uses default initialisation, the value of x will be unspecified. int x{}; uses value initialisation, x will be 0. int x(); declares a function—that's why {} is preferred for value initialisation.
The code you've shown does not use value initialisation. With auto, the safest thing is to use copy initialisation:
auto q = p;
There is another important difference: The brace initializer requires that the given type can actually hold the given value. In other words, it forbids narrowing of the value, like rounding or truncation.
int a(2.3); // ok? a will hold the value 2, no error, maybe compiler warning
uint8_t c(256); // ok? the compiler should warn about something fishy going on
As compared to the brace initialization
int A{2.3}; // compiler error, because int can NOT hold a floating point value
double B{2.3}; // ok, double can hold this value
uint8_t C{256}; // compiler error, because 8bit is not wide enough for this number
Especially in generic programming with templates you should therefore use brace initialization to avoid nasty surprises when the underlying type does something unexpected to your input values.
{} is value initialization if empty, if not it is list/aggregate initialization.
From the draft, 7.1.6.4 auto specifier, 7/... Example,
auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
Rules are a little bit complex to explain here (even hard to read from the source!).
Herb Sutter seems to be making an argument in CppCon 2014 (39:25 into the talk) for using auto and brace initializers, like so:
auto x = MyType { initializers };
whenever you want to coerce the type, for left-to-right consistency in definitions:
Type-deduced: auto x = getSomething()
Type-coerced: auto x = MyType { blah }
User-defined literals auto x = "Hello, world."s
Function declaration: auto f { some; commands; } -> MyType
Named Lambda: using auto f = [=]( { some; commands; } -> MyType
C++11-style typedef: using AnotherType = SomeTemplate<MyTemplateArg>
Scott Mayers just posted a relevant blog entry Thoughts on the Vagaries of C++ Initialization. It seems that C++ still has a way to go before achieving a truly uniform initialization syntax.

C++ initialization of reference variable

I spotted a "mistake" in my code today... But I'm not sure if the "mistake" actually changes the resulting compiled code.
Consider initialization of the following reference to a double, x.
double &x{*_data->x_double}; // x_double is a member variable of the struct
// _data, it is a pointer to another double
// eg, I have this somewhere else...
struct data
{
double *x_double;
};
data *_data = new data; // edit: duh, this has to be a pointer...
double another_x = 10.0;
_data->x_double = &another_x; // edit: pointer here too!
However I made the following "mistake"... (notice the extra = sign)
double &x={*_data->x_double};
This code is a minimal example copied from my actual code, in which I don't have references to doubles, but references to large objects such as std::vector's.
The reason for the reference variables is that they are used in an algorithm, and the variable names are very long, so I create shorted aliases for those variables using references. Hope it makes sense why I did that...
So, I've "corrected" the "mistake" but has my output compiled code actually changed?
They're both list initialization. For your cases:
double &x={*_data->x_double};
Is :
6) initialization of a named variable with a braced-init-list after an
equals sign
And
double &x{*_data->x_double};
Is :
1) initialization of a named variable with a braced-init-list (that
is, a possibly empty brace-enclosed list of expressions or nested
braced-init-lists)
Their effects are in this case exactly the same.

Enum class C++11 by reference or value

I have basically two questions may be they are related so I'll put them into one.
Should we pass enum class in C++11 by reference or value when passing to function. It is sort of inheriting primitive type but is it the whole object that is passed? in since enum classes are type safe;
enum class MyEnumClass : unsigned short {
Flag1 = 0,
Flag2 = 1,
Flag3 = 2,
Flag4 = 4,
};
Now lets say we have function sig
const char* findVal(const MyEnumClass& enumClass);
^
should this be by const ref? __|
my other question is here -
SHOULD IT BE BY MOVE like (MyEnumClass&&) - I am still learning/understanding
move semantics and rvalue so I am not sure if move semantics are only for
constructors or can be for member or static funcs -
It is not inheriting the primitive type but rather it tells the implementation to use the specified type(unsigned short) as the underlying type for the enumerators.
You can just simply treat the enum class object as any other class object and apply the same rules while passing it to functions.
If you want to modify the enum class object inside function, pass it by reference.
If you just want to read the object inside function pass it by constant reference.
Move semantics are a language run-time performance enhancing feature which makes use of opportunities to move from rvalues instead of applying copy semantics which are performance intensive. r-value references and move semantics are not only limited to move constructor and move assignment operator but they can also be used with other functions. If you have scenarios which can make use of this optimization it is perfectly fine to make use of them.
Considering that the enumerators use the specified type unsigned short as an underlying type, as Alok Save pointed out, it is probably a good idea to pass such objects by value (unless you want to change their value in the function as a side effect, in which case you should use a reference.)

C++ - value of uninitialized vector<int>

I understand from the answer to this question that values of global/static uninitialized int will be 0. The answer to this one says that for vectors, the default constructor for the object type will be called.
I am unable to figure out - what happens when I have vector<int> v(10) in a local function. What is the default constructor for int? What if I have vector<int> v(10) declared globally?
What I am seeing is that vector<int> v(10) in a local function is resulting in variables being 0 - but I am not sure if that is just because of my compiler or is the fixed expected behaviour.
The zero initialization is specified in the standard as default zero initialization/value initialization for builtin types, primarily to support just this type of case in template use.
Note that this behavior is different from a local variable such as int x; which leaves the value uninitialized (as in the C language that behavior is inherited from).
It is not undefined behaviour, a vector automatically initialises all its elements. You can select a different default if you want.
The constructor is:
vector( size_type, T t = T() )
and for int, the default type (returned by int()) is 0.
In a local function this:
int x;
is not guaranteed to initialise the variable to 0.
int x = int();
would do so.
int x();
sadly does neither but declares a function.
The constructor you are using actually takes two arguments, the second of which is optional. Its declaration looks like this:
explicit vector(size_type n, const T& value = T())
The first argument is the number of elements to create in the vector initially; the second argument is the value to copy into each of those elements.
For any object type T, T() is called "value initialization." For numeric types, it gives you 0. For a class type with a default constructor, it gives you an object that has been default constructed using that constructor.
For more details on the "magic parentheses," I'd recommend reading Michael Burr's excellent answer to the question "Do the parentheses after the type name make a difference with new?" It discusses value initialization when used with new specifically, but for the most part is applicable to value initialization wherever else it can be used.
By default, vector elements are zero-initialized and not default-initialized. Those are two different but related concepts:
zero-initialization is what is done for static objects not having an explicit initialization and what is done for a member given in the initialized list with an initializer of (). For basic types, the value used is 0 converted to the type.
default-initialization is what is done for not explicitly initialized non static variables and members. For basic types it stay uninitialized.
(And C++0X introduces value-initialization which is still different).
As mentioned by others, what happens is the zero initialization kicks in. I actually use that a lot in my code (outside of vectors and other classes):
some_type my_var = some_type();
This allows me to make sure that my variables are always properly initialized since by default C/C++ do not initialize basic types (char, short, int, long, float, double, etc.)
Since C++11, you also can do so in your class definitions:
class MyClass
{
...
int my_field_ = 123; // explicit initialization
int your_field_ = int(); // zero initialization
};
For vectors, the std library uses T(). Whatever T() is, it will use that default initialization. For a class, it calls the default constructor. For a basic type, it uses zero ('\0', 0, 0.0f, 0.0, nullptr`).
As mentioned by James McNellis and Nawaz, it is possible to set the value used to initialize the vector as in:
std::vector<int> foo(100, 1234);
That feature is also available when you resize your vector (if the vector shrinks, the default value is ignored):
foo.resize(200, 1234);
So that way you can have a default initialization value. However, it's a be tricky since you have to make sure that all your definitions and resize() calls use that default value. That's when you want to write your own class which ensures that the default value is always passed to the vector functions.
However, if you want to have a way to auto-initialize to a specific value, you can mix both features this way:
struct my_value {
int v = 123;
};
std::vector<my_value> foo(100);
// here foo[n].v == 123 for n in [0, 100)
This is my preferred way of dealing with this issue (i.e. if I don't want zero by default). It's an extra .v, but much less prone to mistakes and you don't need to know of the default value when you create a vector of my_value.
Also, for those who think this will be slow, it won't. The struct is like syntactic sugar as far as C++ is concerned. One optimized, it will be exactly the same as a simple std::vector<int> foo(100, 123).
The default initialization for an int type is to initialize it to 0.
This is true of most (if not all) primitive types: char will initialize to (char)0 (or '\0' if you prefer), float will initialize to 0.0f, and any pointer initializes to NULL. For other types, the parameterless constructor is invoked.
In general, the default initialization should happen pretty much whenever you aren't able to specify a constructor (or choose not to).