Finding Perpendicular Points Given An Angle With Piece-wise Hermite Splines - c++

I am given a Hermite spline from which I want to create another spline with every point on that spline being exactly x distance away.
Here's an example of what I want to do:
.
I can find every derivative and point on the original spline. I also know all the coefficients of each polynomial.
Here's the code that I've came up with that does this for every control point of the original spline. Where controlPath[i] is a vector of control points that makeup the spline, and Point is a struct representing a 2D point with its facing angle.
double x, y, a;
a = controlPath[i].Angle + 90;
x = x * cosf(a * (PI / 180)) + controlPath[i].X;
y = x * sinf(a * (PI / 180)) + controlPath[i].Y;
Point l(x, y, a - 90);
a = controlPath[i].Angle - 90;
x = x * cosf(a * (PI / 180)) + controlPath[i].X;
y = x * sinf(a * (PI / 180)) + controlPath[i].Y;
Point r(x, y, a + 90);
This method work to an extent, but its results are subpar.
Result of this method using input:
The inaccuracy is not good. How do I confront this issue?

If you build normals of given length in every point of Hermite spline and connect endpoint of these normals, resulting curve (so-called parallel curve) is not Hermit spline in general case. The same is true for Bezier curve and the most of pther curve (only circle arc generates self-similar curve and some exotic curves).
So to generate reliable result, it is worth to subdivide curve into small pieces, build normals in all intermediate points and generate smooth piecewise splines through "parallel points"
Also note doubtful using x in the right part of formulas - should be some distance.
Also you don't need to calculate sin/cos twice
double x, y, a, d, c, s;
a = controlPath[i].Angle + 90;
c = d * cosf(a * (PI / 180));
s = d * sinf(a * (PI / 180))
x = c + controlPath[i].X;
y = s + controlPath[i].Y;
Point l(x, y, controlPath[i].Angle);
x = -c + controlPath[i].X;
y = -s + controlPath[i].Y;
Point l(x, y, controlPath[i].Angle);

Related

Drawing a circle with cos() sin(), no repeat pixel, no gaps?

I'm interested in drawing a circle of a vary radius using sin() and cos() functions.
Is there a golden rule to increment the radians so that there isn't multiple plots to the same location and no gaps in the circle drawn on a pixel based display?
x = cos(r) * radius
y = sin(r) * radius
r = r + s
My guess would be that s is something to do with dividing 2 × PI by the a number derived from the radius?
I'm sure this is either really simple or impossible due to the limitations of floating point calculations.
Thanks for your time
Anthony
The length of arc is simply s = r * delta_fi where r is the radius of the circle, fi is the angle and delta_fi is the change of the angle.
The projection of this arc to x-axis is delta_x = s * sin(fi) and to y-axis it is delta_y = s * cos(fi)
You want such delta_fi that either delta_x or delta_y is 1.
Obviously, the problem is symmetrical and we can solve it for fi from -45° to 45° and for delta y and then apply the same solution in other quadrants. We have:
r * delta_fi * cos(fi) = 1
Hence:
delta_fi = 1/cos(fi)/r
The coordinates of a circle can indeed be completely defined using the trigonometric functions sine and cosine:
x = cos(angle)
y = sin(angle)
If the radius is any other value than 1 (which happens to define the unit circle), the underlying principles of trigonometric functions still apply and, therefore, the following equations can be derived:
x = cos(angle) * radius
y = sin(angle) * radius
To implement this in Python (with the kind help of Numpy) all that is necessary in addition to what we have already defined is a suitable vector (or 1-dimensional array) for the angle, which will be evaluated by the function x and y.
import numpy as np
r = 2 # An arbitrary value for the radius
angle = np.linspace(0, 2*np.pi, 1000) # A vector covering all angles from
# 0 to 2*pi (the full circle in radians)
# with an arbitrary number of
# elements, 1000 in this example
x = np.cos(angle)*r
y = np.sin(angle)*r
On plotting this circle don't forget to adjust the size of the figure to a square, otherwise the circle will be distorted.
import matplotlib.pyplot as plt
plt.figure(figsize=(3, 3))
plt.plot(x, y)

Polar Rose 2D offset

I'm having some trouble trying to plot a polar rose with a offset C of the equation r(theta) = cos(k*theta) + C.
I'm trying to plot this polar rose: http://en.wikipedia.org/wiki/Polar_coordinate_system#/media/File:Cartesian_to_polar.gif
The polar equation can be:
r(theta) = cos(k * theta)
or
r(theta) = sin(k * theta)
The equation of the polar rose I want to draw is:
r(theta) = 2 + sin(6 * theta)
Ok, and the parametric equations will be:
x = C + sin(k * theta) * cos(theta)
y = C + sin(k * theta) * sin(theta)
In my Canvas(drawing area), my origin is not at the center of the screen, so I need to translate the rose to it. Ok, no big deal. Another point is that I need to scale the rose for it to be visible or it will be too small, but still no problem, this explains the: 100*. Here is my code, it is on C++ btw:
for ( float t = 0; t < PI_2; t+= 0.01 )
{
r = Origin.get_x() + 100*(2+(sin(6*t) * cos(t)));
h = Origin.get_y() + 100*(2+(sin(6*t) * sin(t)));
point(r,h);
}
I know that I'm doing it wrong, because when I add the +2 which should be the C constant is not working the way I want to, It's just translating more and drawing a polar rose without an offset. How do I prevent the "extra translation" and draw it properly?
x = r cos(theta), y = r sin(theta) so your parametric equations should be x(theta) = C * cos(theta) + sin(k*theta) * cos(theta) and y(theta) = C * sin(theta) + sin(k*theta) * sin(theta). You just forgot to multiply C by cos(theta) and by sin(theta) respectively.

OpenGL - Creating a circle, change radius?

I must be the worst person on the planet when it comes to math because i can't figure out how to change this circle radius:
from math import *
posx, posy = 0,0
sides = 32
glBegin(GL_POLYGON)
for i in range(100):
cosine=cos(i*2*pi/sides)+posx
sine=sin(i*2*pi/sides)+posy
glVertex2f(cosine,sine)
I'm not entirely sure how or why this becomes a circle because the *2 confuses me a bit.
Note that this is done in Pyglet under Python2.6 calling OpenGL libraries.
Followed Example 4-1: http://fly.cc.fer.hr/~unreal/theredbook/chapter04.html
Clarification: This works, i'm interested in why and how to modify the radius.
This should do the trick :)
from math import *
posx, posy = 0,0
sides = 32
radius = 1
glBegin(GL_POLYGON)
for i in range(100):
cosine= radius * cos(i*2*pi/sides) + posx
sine = radius * sin(i*2*pi/sides) + posy
glVertex2f(cosine,sine)
But I would pick another names for variables. cosine and sine is not exactly what these variables are.
And as far as I see, you son't need a loop from 1 to 100 (or from 0 to 99, I'm not too good at Python), you just need a loop from 1 to sides.
Explanation:
When you calculate
x = cos (angle)
y = sin(angle)
you get a point on a circle with radius = 1, and centre in the point (0; 0) (because sin^2(angle) + cos^2(angle) = 1).
If you want to change a radius to R, you simply multiply cos and sin by R.
x = R * cos (angle)
y = R * sin(angle)
If you want to transfer the circle to another location (for example, you want the circle to have it's centre at (X_centre, Y_centre), you add X_centre and Y_xentre to x and y accordingly:
x = R * cos (angle) + X_centre
y = R * sin(angle) + Y_centre
When you need to loop through N points (in your case N = sides) on your circle, you should change the angle on each iteration. All those angles should be equal and their sum should be 2 * pi. So each angle should be equal to 2 * pi/ N. And to get i-th angle you multiply this value by i: i * 2 * pi / N.
math : P=pr^2=p*r*r= p*r*2 programming i*2*pi/sides
together : i = p i*2, *2=r^2 this should help you

Finding Y given X on a Cubic Bezier Curve?

I need a method that allows me to find the Y-coordinate on a Cubic Bezier Curve, given an x-coordinate.
I've come across lots of places telling me to treat it as a cubic function then attempt to find the roots, which I understand. HOWEVER the equation for a Cubic Bezier curve is (for x-coords):
X(t) = (1-t)^3 * X0 + 3*(1-t)^2 * t * X1 + 3*(1-t) * t^2 * X2 + t^3 * X3
What confuses me is the addition of the (1-t) values. For instance, if I fill in the X values with some random numbers:
400 = (1-t)^3 * 100 + 3*(1-t)^2 * t * 600 + 3*(1-t) * t^2 * 800 + t^3 * 800
then rearrange it:
800t^3 + 3*(1-t)*800t^2 + 3*(1-t)^2*600t + (1-t)^3*100 -400 = 0
I still don't know the value of the (1-t) coefficients. How I am I supposed to solve the equation when (1-t) is still unknown?
There are three common ways of expressing a cubic bezier curve.
First x as a function of t
x(t) = sum( f_i(t) x_i )
= (1-t)^3 * x0 + 3*(1-t)^2 * t * x1 + 3*(1-t) * t^2 * x2 + t^3 * x3
Secondly y as a function of x
y(x) = sum( f_i(x) a_i )
= (1-x)^3 * y0 + 3*(1-x)^2 * x * y1 + 3*(1-x) * x^2 * y2 + x^3 * y3
These first two are mathematically the same, just using different names for the variables.
Judging by your description "find the Y-coordinate on a Cubic Bezier Curve, given an x-coordinate on it." I'm guessing that you've got a question using the second equation are are trying to rearrange the first equation to help you solve it, where as you should be using the second equation. If thats the case, then no rearranging or solving is required - just plug your x value in and you have the solution.
Its possible that you have an equation of the third kind case, which is the ugly and hard case.
This is both the x and y parameters are cubic Beziers of a third variable t.
x(t) = sum( f_i(t) x_i )
y(t) = sum( f_i(t) y_i )
If this is your case. Let me know and I can detail what you need to do to solve it.
I think this is a fair CS question, so I'm going to attempt to show how I solved this. Note that a given x may have more than 1 y value associated with it. In the case where I needed this, that was guaranteed not to be the case, so you'll have to figure out how to determine which one you want.
I iterated over t generating an array of x and y values. I did it at a fairly high resolution for my purposes. (I was looking to generate an 8-bit look-up table, so I used ~1000 points.) I just plugged t into the bezier equation for the next x and the next y coordinates to store in the array. Once I had the entire thing generated, I scanned through the array to find the 2 nearest x values. (Or if there was an exact match, used that.) I then did a linear interpolation on that very small line segment to get the y-value I needed.
Developing the expression further should get you rid of the (1 - t) factors
If you run:
expand(800*t^3 + 3*(1-t)*800*t^2 + 3*(1-t)^2*600*t + (1-t)^3*100 -400 = 0);
In either wxMaxima or Maple (you have to add the parameter t in this one though), you get:
100*t^3 - 900*t^2 + 1500*t - 300 = 0
Solve the new cubic equation for t (you can use the cubic equation formula for that), after you got t, you can find x doing:
x = (x4 - x0) * t (asuming x4 > x0)
Equation for Bezier curve (getting x value):
Bx = (-t^3 + 3*t^2 - 3*t + 1) * P0x +
(3*t^3 - 6*t^2 + 3*t) * P1x +
(-3*t^3 + 3*t^2) * P2x +
(t^3) * P3x
Rearrange in the form of a cubic of t
0 = (-P0x + 3*P1x - 3*P2x + P3x) * t^3+
(3*P0x - 6*P1x + 3*P2x) * t^2 +
(-3*P0x + 3*P1x) * t +
(P0x) * P3x - Bx
Solve this using the cubic formula to find values for t. There may be multiple real values of t (if your curve crosses the same x point twice). In my case I was dealing with a situation where there was only ever a single y value for any value of x. So I was able to just take the only real root as the value of t.
a = -P0x + 3.0 * P1x - 3.0 * P2x + P3x;
b = 3.0 * P0x - 6.0 * P1x + 3.0 * P2x;
c = -3.0 * P0x + 3.0 * P1x;
d = P0x;
t = CubicFormula(a, b, c, d);
Next put the value of t back into the Bezier curve for y
By = (1-t)^3 * P0x +
3t(1-t)^2 * P1x +
3t^2(1-t) * P2x +
t^3 * P3x
So I've been looking around for some sort of method to allow me to find the Y-coordinate on a Cubic Bezier Curve, given an x-coordinate on it.
Consider a cubic bezier curve between points (0, 0) and (0, 100), with control points at (0, 33) and (0, 66). There are an infinite number of Y's there for a given X. So there's no equation that's going to solve Y given X for an arbitrary cubic bezier.
For a robust solution, you'll likely want to start with De Casteljau's algorithm
Split the curve recursively until individual segments approximate a straight line. You can then detect whether and where these various line segments intercept your x or whether they are vertical line segments whose x corresponds to the x you're looking for (my example above).

(C++) Need to figure out all points within a radius using reg. 2D windows coord. system

Sorry in advance, I'm struggling a bit with how to explain this... :)
Essentially, I've got a typical windows coordinate system (the Top, Left is 0,0). If anybody's familiar with the haversine query, like in SQL, it can get all points in a radius based on latitude and longitude coordinates.
I need something much simpler, but my math skills ain't all up to par! Basically, I've got random points scattered throughout about a 600x400 space. I have a need to, for any X,Y point on the map, run a query to determine how many other points are within a given radius of that one.
If that's not descriptive enough, just let me know!
Straightforward approach:
You can calculate the distance between to points using the Pythagorean theorem:
deltaX = x1 - x2
deltaY = y1 - y2
distance = square root of (deltaX * deltaX + deltaY * deltaY)
Given point x1,y1, do this for every other point (x2,y2) to see if the calculated distance is within (less than or equal to) your radius.
If you want to make it speedier, calculate and store the square of the radius and just compare against (deltaX * deltaX + deltaY * deltaY), avoiding the square root.
Before doing the Pythagoras, you could also quickly eliminate any point that falls outside of the square that can fully contain the target circle.
// Is (x1, y1) in the circle defined by center (x,y) and radius r
bool IsPointInCircle(x1, y1, x, y, r)
{
if (x1 < x-r || x1 > x+r)
return false;
if (y1 < y-r || y1 > y+r)
return false;
return (x1-x)*(x1-x) + (y1-y)*(y1-y) <= r*r
}
Use Pythagoras:
distance = sqrt(xDifference^2 + yDifference^2)
Note that '^' in this example means "to the power of" and not C's bitwise XOR operator. In other words the idea is to square both differences.
If you only care about relative distance you shouldn't use square root you can do something like:
rSquared = radius * radius #square the radius
foreach x, y in Points do
dX = (x - centerX) * (x - centerX) #delta X
dY = (y - centerY) * (y - centerY) #delta Y
if ( dX + dY <= rSquared ) then
#Point is within Circle
end
end
Using the equation for a circle:
radius ** 2 = (x - centerX) ** 2 + (y - centerY) ** 2
We want to find if a point (x, y) is inside of the circle. We perform the test using this equation:
radius ** 2 < (x - centerX) ** 2 + (y - centerY) ** 2
// (Or use <= if you want the circumference of the circle to be included as well)
Simply substitute your values into that equation. If it works (the inequality is true), the point is inside of the circle. Otherwise, it isn't.