Problem passing function pointer to a class c++ - c++

I'm trying to implement a numerical ODE solver in c++ but I'm having troubles with function pointers (I'm still trying to understand how they works inside classes).
I have a parent class (ODEint) and subclasses in which I will implement different possible algorithms to solve an equation. I pass a function pointer to the parent class (the function represents the equation which is independent of the solver) but I need that function in the child class (different solvers threat that equation in different ways).
When I call the function via pointer in the child class I get the error
odeint.cpp:38:13: error: ‘((Euler*)this)->Euler::.ODEint::field’ cannot be used
as a member pointer, since it is of type ‘pfunc {aka std::vector ()(double)}’
(this->*field)(y);
Here are classes definitions
typedef vector<double> (*pfunc)(double*);
class ODEint {
protected:
double h;
int neq;
double* init_cond;
int nsteps;
string method;
vector<vector<double>> y;
pfunc field;
public:
ODEint(int neq, int nsteps, pfunc);
void setInitCond(double* init_cond);
void solveEq();
virtual vector<double> advance(double h, double *y);
};
class Euler: public ODEint {
public:
Euler(int neq, int nsteps, pfunc, double h);
vector<double> advance(double h, double *y);
};
And here is part of the classes implementation
ODEint::ODEint(int neq, int nsteps, pfunc field){
this->neq = neq;
this->nsteps = nsteps;
this->y.resize(nsteps);
this->field = field;
for (int i = 0; i < nsteps; i++){
this->y[i].resize(neq);
}
}
Euler::Euler(int neq, int nsteps, pfunc field, double h) : ODEint(neq, nsteps, field){
this->h = h;
}
void ODEint::solveEq(){
int n;
cout << "Strarting solver..." << endl;
vector<double> x;
for (n = 0; n < this->nsteps; n++){
x = y[n];
y[n+1] = this->advance(this->h, &x[0]);
}
cout << "Solution termined. Nsteps: " << n << endl;
}
vector<double> Euler::advance(double h, double *y){
vector<double> ynext; ynext.resize(this->neq);
vector<double> f; f.resize(this->neq);
(this->*field)(y); <---------------------------------------------- here is the problem
for (int i = 0; i < this->neq; i++){
ynext[i] = y[i] + h*f[i];
}
}
Finally here is the main
vector<double> field(double *y){
vector<double> vf;
vf[0] = -y[0];
vf[1] = -y[1];
return vf;
}
int main(){
double init_cond[2] = {1.0, 2.0};
const int neq = 1;
Euler prova(neq, (int)1e4, field, 1e-4);
prova.setInitCond(&init_cond[0]);
prova.solveEq();
return 0;
}
I know there may be other problems but I'm still learning c++ and actually the priority is to understand the reason of this error.
Thank you in advance and sorry if the code is a bit confused but as I said previously I'm a kind of beginner.

Your example is a bit large, I didn't use it as-is. But I can spot a fix, with a smaller repro: (I kept your style)
#include <vector>
typedef std::vector<double> (*pfunc)(double*);
class Foo
{
public:
pfunc field;
};
std::vector<double> Bar(double*)
{
return std::vector<double>{};
}
int main()
{
Foo f;
double x;
f.field = &Bar;
(&f)->field(&x);
}
The only meaningful change I needed is to remove the * in front of the call to field().
Now, I will advise not using this pattern at all. The OOP way, IMO would be way cleaner here:
class BaseODE
{
public:
virtual std::vector<double> field(double*) = 0;
// put the rest of the code here.
// when field is called, the Euler version will be called.
};
class Euler:public BaseODE
{
public:
virtual std::vector<double> field(double*) override;
};
Basically, you have no need yet for function pointers, lambdas, std::function or anything complex.

Related

What does Obj::* mean? [duplicate]

I came across this strange code snippet which compiles fine:
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
return 0;
}
Why does C++ have this pointer to a non-static data member of a class? What is the use of this strange pointer in real code?
It's a "pointer to member" - the following code illustrates its use:
#include <iostream>
using namespace std;
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
Car c1;
c1.speed = 1; // direct access
cout << "speed is " << c1.speed << endl;
c1.*pSpeed = 2; // access via pointer to member
cout << "speed is " << c1.speed << endl;
return 0;
}
As to why you would want to do that, well it gives you another level of indirection that can solve some tricky problems. But to be honest, I've never had to use them in my own code.
Edit: I can't think off-hand of a convincing use for pointers to member data. Pointer to member functions can be used in pluggable architectures, but once again producing an example in a small space defeats me. The following is my best (untested) try - an Apply function that would do some pre &post processing before applying a user-selected member function to an object:
void Apply( SomeClass * c, void (SomeClass::*func)() ) {
// do hefty pre-call processing
(c->*func)(); // call user specified function
// do hefty post-call processing
}
The parentheses around c->*func are necessary because the ->* operator has lower precedence than the function call operator.
This is the simplest example I can think of that conveys the rare cases where this feature is pertinent:
#include <iostream>
class bowl {
public:
int apples;
int oranges;
};
int count_fruit(bowl * begin, bowl * end, int bowl::*fruit)
{
int count = 0;
for (bowl * iterator = begin; iterator != end; ++ iterator)
count += iterator->*fruit;
return count;
}
int main()
{
bowl bowls[2] = {
{ 1, 2 },
{ 3, 5 }
};
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::apples) << " apples\n";
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::oranges) << " oranges\n";
return 0;
}
The thing to note here is the pointer passed in to count_fruit. This saves you having to write separate count_apples and count_oranges functions.
Another application are intrusive lists. The element type can tell the list what its next/prev pointers are. So the list does not use hard-coded names but can still use existing pointers:
// say this is some existing structure. And we want to use
// a list. We can tell it that the next pointer
// is apple::next.
struct apple {
int data;
apple * next;
};
// simple example of a minimal intrusive list. Could specify the
// member pointer as template argument too, if we wanted:
// template<typename E, E *E::*next_ptr>
template<typename E>
struct List {
List(E *E::*next_ptr):head(0), next_ptr(next_ptr) { }
void add(E &e) {
// access its next pointer by the member pointer
e.*next_ptr = head;
head = &e;
}
E * head;
E *E::*next_ptr;
};
int main() {
List<apple> lst(&apple::next);
apple a;
lst.add(a);
}
Here's a real-world example I am working on right now, from signal processing / control systems:
Suppose you have some structure that represents the data you are collecting:
struct Sample {
time_t time;
double value1;
double value2;
double value3;
};
Now suppose that you stuff them into a vector:
std::vector<Sample> samples;
... fill the vector ...
Now suppose that you want to calculate some function (say the mean) of one of the variables over a range of samples, and you want to factor this mean calculation into a function. The pointer-to-member makes it easy:
double Mean(std::vector<Sample>::const_iterator begin,
std::vector<Sample>::const_iterator end,
double Sample::* var)
{
float mean = 0;
int samples = 0;
for(; begin != end; begin++) {
const Sample& s = *begin;
mean += s.*var;
samples++;
}
mean /= samples;
return mean;
}
...
double mean = Mean(samples.begin(), samples.end(), &Sample::value2);
Note Edited 2016/08/05 for a more concise template-function approach
And, of course, you can template it to compute a mean for any forward-iterator and any value type that supports addition with itself and division by size_t:
template<typename Titer, typename S>
S mean(Titer begin, const Titer& end, S std::iterator_traits<Titer>::value_type::* var) {
using T = typename std::iterator_traits<Titer>::value_type;
S sum = 0;
size_t samples = 0;
for( ; begin != end ; ++begin ) {
const T& s = *begin;
sum += s.*var;
samples++;
}
return sum / samples;
}
struct Sample {
double x;
}
std::vector<Sample> samples { {1.0}, {2.0}, {3.0} };
double m = mean(samples.begin(), samples.end(), &Sample::x);
EDIT - The above code has performance implications
You should note, as I soon discovered, that the code above has some serious performance implications. The summary is that if you're calculating a summary statistic on a time series, or calculating an FFT etc, then you should store the values for each variable contiguously in memory. Otherwise, iterating over the series will cause a cache miss for every value retrieved.
Consider the performance of this code:
struct Sample {
float w, x, y, z;
};
std::vector<Sample> series = ...;
float sum = 0;
int samples = 0;
for(auto it = series.begin(); it != series.end(); it++) {
sum += *it.x;
samples++;
}
float mean = sum / samples;
On many architectures, one instance of Sample will fill a cache line. So on each iteration of the loop, one sample will be pulled from memory into the cache. 4 bytes from the cache line will be used and the rest thrown away, and the next iteration will result in another cache miss, memory access and so on.
Much better to do this:
struct Samples {
std::vector<float> w, x, y, z;
};
Samples series = ...;
float sum = 0;
float samples = 0;
for(auto it = series.x.begin(); it != series.x.end(); it++) {
sum += *it;
samples++;
}
float mean = sum / samples;
Now when the first x value is loaded from memory, the next three will also be loaded into the cache (supposing suitable alignment), meaning you don't need any values loaded for the next three iterations.
The above algorithm can be improved somewhat further through the use of SIMD instructions on eg SSE2 architectures. However, these work much better if the values are all contiguous in memory and you can use a single instruction to load four samples together (more in later SSE versions).
YMMV - design your data structures to suit your algorithm.
You can later access this member, on any instance:
int main()
{
int Car::*pSpeed = &Car::speed;
Car myCar;
Car yourCar;
int mySpeed = myCar.*pSpeed;
int yourSpeed = yourCar.*pSpeed;
assert(mySpeed > yourSpeed); // ;-)
return 0;
}
Note that you do need an instance to call it on, so it does not work like a delegate.
It is used rarely, I've needed it maybe once or twice in all my years.
Normally using an interface (i.e. a pure base class in C++) is the better design choice.
IBM has some more documentation on how to use this. Briefly, you're using the pointer as an offset into the class. You can't use these pointers apart from the class they refer to, so:
int Car::*pSpeed = &Car::speed;
Car mycar;
mycar.*pSpeed = 65;
It seems a little obscure, but one possible application is if you're trying to write code for deserializing generic data into many different object types, and your code needs to handle object types that it knows absolutely nothing about (for example, your code is in a library, and the objects into which you deserialize were created by a user of your library). The member pointers give you a generic, semi-legible way of referring to the individual data member offsets, without having to resort to typeless void * tricks the way you might for C structs.
It makes it possible to bind member variables and functions in the uniform manner. The following is example with your Car class. More common usage would be binding std::pair::first and ::second when using in STL algorithms and Boost on a map.
#include <list>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
class Car {
public:
Car(int s): speed(s) {}
void drive() {
std::cout << "Driving at " << speed << " km/h" << std::endl;
}
int speed;
};
int main() {
using namespace std;
using namespace boost::lambda;
list<Car> l;
l.push_back(Car(10));
l.push_back(Car(140));
l.push_back(Car(130));
l.push_back(Car(60));
// Speeding cars
list<Car> s;
// Binding a value to a member variable.
// Find all cars with speed over 60 km/h.
remove_copy_if(l.begin(), l.end(),
back_inserter(s),
bind(&Car::speed, _1) <= 60);
// Binding a value to a member function.
// Call a function on each car.
for_each(s.begin(), s.end(), bind(&Car::drive, _1));
return 0;
}
You can use an array of pointer to (homogeneous) member data to enable a dual, named-member (i.e. x.data) and array-subscript (i.e. x[idx]) interface.
#include <cassert>
#include <cstddef>
struct vector3 {
float x;
float y;
float z;
float& operator[](std::size_t idx) {
static float vector3::*component[3] = {
&vector3::x, &vector3::y, &vector3::z
};
return this->*component[idx];
}
};
int main()
{
vector3 v = { 0.0f, 1.0f, 2.0f };
assert(&v[0] == &v.x);
assert(&v[1] == &v.y);
assert(&v[2] == &v.z);
for (std::size_t i = 0; i < 3; ++i) {
v[i] += 1.0f;
}
assert(v.x == 1.0f);
assert(v.y == 2.0f);
assert(v.z == 3.0f);
return 0;
}
One way I've used it is if I have two implementations of how to do something in a class and I want to choose one at run-time without having to continually go through an if statement i.e.
class Algorithm
{
public:
Algorithm() : m_impFn( &Algorithm::implementationA ) {}
void frequentlyCalled()
{
// Avoid if ( using A ) else if ( using B ) type of thing
(this->*m_impFn)();
}
private:
void implementationA() { /*...*/ }
void implementationB() { /*...*/ }
typedef void ( Algorithm::*IMP_FN ) ();
IMP_FN m_impFn;
};
Obviously this is only practically useful if you feel the code is being hammered enough that the if statement is slowing things done eg. deep in the guts of some intensive algorithm somewhere. I still think it's more elegant than the if statement even in situations where it has no practical use but that's just my opnion.
Pointers to classes are not real pointers; a class is a logical construct and has no physical existence in memory, however, when you construct a pointer to a member of a class it gives an offset into an object of the member's class where the member can be found; This gives an important conclusion: Since static members are not associated with any object so a pointer to a member CANNOT point to a static member(data or functions) whatsoever
Consider the following:
class x {
public:
int val;
x(int i) { val = i;}
int get_val() { return val; }
int d_val(int i) {return i+i; }
};
int main() {
int (x::* data) = &x::val; //pointer to data member
int (x::* func)(int) = &x::d_val; //pointer to function member
x ob1(1), ob2(2);
cout <<ob1.*data;
cout <<ob2.*data;
cout <<(ob1.*func)(ob1.*data);
cout <<(ob2.*func)(ob2.*data);
return 0;
}
Source: The Complete Reference C++ - Herbert Schildt 4th Edition
Here is an example where pointer to data members could be useful:
#include <iostream>
#include <list>
#include <string>
template <typename Container, typename T, typename DataPtr>
typename Container::value_type searchByDataMember (const Container& container, const T& t, DataPtr ptr) {
for (const typename Container::value_type& x : container) {
if (x->*ptr == t)
return x;
}
return typename Container::value_type{};
}
struct Object {
int ID, value;
std::string name;
Object (int i, int v, const std::string& n) : ID(i), value(v), name(n) {}
};
std::list<Object*> objects { new Object(5,6,"Sam"), new Object(11,7,"Mark"), new Object(9,12,"Rob"),
new Object(2,11,"Tom"), new Object(15,16,"John") };
int main() {
const Object* object = searchByDataMember (objects, 11, &Object::value);
std::cout << object->name << '\n'; // Tom
}
Suppose you have a structure. Inside of that structure are
* some sort of name
* two variables of the same type but with different meaning
struct foo {
std::string a;
std::string b;
};
Okay, now let's say you have a bunch of foos in a container:
// key: some sort of name, value: a foo instance
std::map<std::string, foo> container;
Okay, now suppose you load the data from separate sources, but the data is presented in the same fashion (eg, you need the same parsing method).
You could do something like this:
void readDataFromText(std::istream & input, std::map<std::string, foo> & container, std::string foo::*storage) {
std::string line, name, value;
// while lines are successfully retrieved
while (std::getline(input, line)) {
std::stringstream linestr(line);
if ( line.empty() ) {
continue;
}
// retrieve name and value
linestr >> name >> value;
// store value into correct storage, whichever one is correct
container[name].*storage = value;
}
}
std::map<std::string, foo> readValues() {
std::map<std::string, foo> foos;
std::ifstream a("input-a");
readDataFromText(a, foos, &foo::a);
std::ifstream b("input-b");
readDataFromText(b, foos, &foo::b);
return foos;
}
At this point, calling readValues() will return a container with a unison of "input-a" and "input-b"; all keys will be present, and foos with have either a or b or both.
Just to add some use cases for #anon's & #Oktalist's answer, here's a great reading material about pointer-to-member-function and pointer-to-member-data.
https://www.dre.vanderbilt.edu/~schmidt/PDF/C++-ptmf4.pdf
with pointer to member, we can write generic code like this
template<typename T, typename U>
struct alpha{
T U::*p_some_member;
};
struct beta{
int foo;
};
int main()
{
beta b{};
alpha<int, beta> a{&beta::foo};
b.*(a.p_some_member) = 4;
return 0;
}
I love the * and & operators:
struct X
{
int a {0};
int *ptr {NULL};
int &fa() { return a; }
int *&fptr() { return ptr; }
};
int main(void)
{
X x;
int X::*p1 = &X::a; // pointer-to-member 'int X::a'. Type of p1 = 'int X::*'
x.*p1 = 10;
int *X::*p2 = &X::ptr; // pointer-to-member-pointer 'int *X::ptr'. Type of p2 = 'int *X::*'
x.*p2 = nullptr;
X *xx;
xx->*p2 = nullptr;
int& (X::*p3)() = X::fa; // pointer-to-member-function 'X::fa'. Type of p3 = 'int &(X::*)()'
(x.*p3)() = 20;
(xx->*p3)() = 30;
int *&(X::*p4)() = X::fptr; // pointer-to-member-function 'X::fptr'. Type of p4 = 'int *&(X::*)()'
(x.*p4)() = nullptr;
(xx->*p4)() = nullptr;
}
Indeed all is true as long as the members are public, or static
I think you'd only want to do this if the member data was pretty large (e.g., an object of another pretty hefty class), and you have some external routine which only works on references to objects of that class. You don't want to copy the member object, so this lets you pass it around.
A realworld example of a pointer-to-member could be a more narrow aliasing constructor for std::shared_ptr:
template <typename T>
template <typename U>
shared_ptr<T>::shared_ptr(const shared_ptr<U>, T U::*member);
What that constructor would be good for
assume you have a struct foo:
struct foo {
int ival;
float fval;
};
If you have given a shared_ptr to a foo, you could then retrieve shared_ptr's to its members ival or fval using that constructor:
auto foo_shared = std::make_shared<foo>();
auto ival_shared = std::shared_ptr<int>(foo_shared, &foo::ival);
This would be useful if want to pass the pointer foo_shared->ival to some function which expects a shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr/shared_ptr
Pointer to members are C++'s type safe equivalent for C's offsetof(), which is defined in stddef.h: Both return the information, where a certain field is located within a class or struct. While offsetof() may be used with certain simple enough classes also in C++, it fails miserably for the general case, especially with virtual base classes. So pointer to members were added to the standard. They also provide easier syntax to reference an actual field:
struct C { int a; int b; } c;
int C::* intptr = &C::a; // or &C::b, depending on the field wanted
c.*intptr += 1;
is much easier than:
struct C { int a; int b; } c;
int intoffset = offsetof(struct C, a);
* (int *) (((char *) (void *) &c) + intoffset) += 1;
As to why one wants to use offsetof() (or pointer to members), there are good answers elsewhere on stackoverflow. One example is here: How does the C offsetof macro work?

C++ Using member functions from a similar virtual public class

Suppose I have a bunch of inherited classes like this:
...and they all serve the purpose of making all sorts of polynomials. Class X is mainly a variable tank, classes A, B, etc are all virtual public X and each creates ont type of polynomial, class Y makes the calls. Besides A and B, any other class can be added.
Now, everything works but for a newly added "virtual public" class I need to reuse some member function(s) from other classes, here from A inside class B. I tried to make the simplest example:
#include <iostream>
#include <cmath>
#include <functional>
// variable tank
class X
{
protected:
// general variables
double *m_c;
int m_n;
double m_w;
// funcX related
double m_r;
int m_i {0};
public:
~X() = default;
/* Simple bracketed root-finding. This is called from more than
* one "virtual public" classes.
*/
const double funcX(const double &x, const double &y, \
std::function<const double(const double&, const int&)> fp, \
const int &k)
{
double a {x}, b {y}, fmid;
while (m_i<100)
{
m_r = 0.5*(a + b);
fmid = fp(m_r, k);
if (fabs(b-a) <= 1e-3)
break;
if (fmid < 0)
b = m_r;
else
a = m_r;
++m_i;
}
return m_r;
}
};
// one of the many classes that generate polynomials
class A: virtual public X
{
public:
void funcA(const int &n)
{
// set order
m_n = n;
// calculate X::m_c[i]
m_c = new double[m_n+1];
for (short i=0; i<=m_n>>1; ++i)
{
int sgn {i%2 ? -1 : 1};
m_c[i<<1] = sgn/((i + 1.0)*(i + 1.0));
}
// The polynomial is zero somewhere, use funcX() to find where.
m_w = funcX(5.0, 0.0, \
[this](const double &x, const int &n) \
{ return calcA(x, n); }, \
m_n);
}
// calculates the value of the polynomial of order n, at x
const double calcA(const double &x, const int &n) const
{
double out {static_cast<double>(m_c[0])};
for (short i=1; i<=n; ++i)
out = m_c[i] + x*out;
return out;
}
};
class B: virtual public X
{
private:
A m_a; // otherwise the lambda function does not "catch" it
public:
void funcB(const int &n)
{
// same as in A
m_n = n;
// same as in A, calculate coefficients
m_c = new double[m_n+1];
for (short i=0; i<=m_n; ++i)
{
int sgn {i%2 ? -1 : 1};
m_c[i] = sgn/((i + 1)<<1);
}
/* Here I need A::calcA(). Instead of duplicating the code,
* I want to call it through X::funcX(). The code compiles,
* but it crashes.
*/
m_w = funcX(0.5, 1.0, \
[this](const double &x, const int &n) \
{ return m_a.calcA(x, n); }, \
m_n);
}
const double getW() const { return m_w; }
};
class Y: public A, public B
{
public:
Y(const int &n, const int &i)
{
// call one of the "virtual public" classes through i
switch (i)
{
case 1: funcA(n); break;
case 2: funcB(n); break;
}
}
void printC() { for (short i=0; i<=m_n; ++i) std::cout << m_c[i] << '\n'; }
void printW() { std::cout << m_w << '\n'; }
void printA(const double &x, const double &n) { std::cout << A::calcA(x, n) << '\n'; }
};
int main(int argc, char *argv[])
{
int N {6};
Y *y;
for (short i=1; i<=2; ++i)
{
y = new Y(N, i);
y->printC();
y->printW();
y->printA(1.2, N);
}
return 0;
}
class X:
X::funcX() is a simple root-finding algorithm which gets called in more than one virtual public classes (A, B, etc). m_c, m_n, m_w are shared variables.
classes A and B:
their main function is funcA() (and funcB(), and so on) and it creates the polynomial (in the body, there's a for loop), based on the calculated order, X::m_n. Evaluating the polynomial is A::calcA(). This needs to be either called by class B, too, or redefined. I'd rather avoid the latter because of the code bloating. It also doesn't look very "professional" for my fairly beginner level...
class Y
This calls any of the virtual public classes based on argument i (the switch/case).
The code compiles, but crashes. It prints the case for. This example points to A::funcA() as the culprit, but in the original program I can see that the coeficients, m_c[i], are not even initialized with dynamic memory, as in trying to print out m_c[0] crashes. I tried moving the new double[] insode the function in A, but that doesn't work.
I don't know how to make it. Does this make sense, is it possible? If yes, how?
Edit: Forgot to add that I can't just move calcA() from A to the top, in X, because each polynomial is evaluated differently, as in there are shortcuts, changes, in every one that makes it possible to have different, optimized evaluations for each polynomial. I could make X::calcA() a universal one, but there will be a performance penalty, which I'd rather not pay.
It seems that your problem is induced by problems with design. When you need to use methods from other class that may mean:
The is a problem with "single responsibility" principle. Class does too much. For example numerical equation solving algorithms are self-sufficient entities and shouldn't be part of polynomial. They can work with any polynomial.
There is a problem with inheritance tree. For example a common ancestor should be created and that common methods should be in it. Note, that if you can't find short and understandable name for that ancestor, then this is not the solution.
Inheritance is not used properly. For example I can't see virtual methods in your code which is strange.
Let's get closer to your example. You are using virtual multiple inheritance which is considered to be very heavy pattern and usually should not be used. Moreover, there are no virtual methods in your code, so you actually do not use inheritance at all. You either must drop inheritance, or think of common methods which make sense for all your classes. For functions this seems to be an ability to calculate function value in specified point. Then move all code, that is not describing polynomials or functions out of the classes. Move out numerical solvers. This will allow to reuse them for all your classes, that support needed interface. Get rid of Y class at all. It seems, that it is needed to emulate virtual methods with switches and enums. You don't need it, rename funcA and funcB just to func if they are semantically the same and do the same thing for different types of polynomials.

What does Class::* do? [duplicate]

I came across this strange code snippet which compiles fine:
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
return 0;
}
Why does C++ have this pointer to a non-static data member of a class? What is the use of this strange pointer in real code?
It's a "pointer to member" - the following code illustrates its use:
#include <iostream>
using namespace std;
class Car
{
public:
int speed;
};
int main()
{
int Car::*pSpeed = &Car::speed;
Car c1;
c1.speed = 1; // direct access
cout << "speed is " << c1.speed << endl;
c1.*pSpeed = 2; // access via pointer to member
cout << "speed is " << c1.speed << endl;
return 0;
}
As to why you would want to do that, well it gives you another level of indirection that can solve some tricky problems. But to be honest, I've never had to use them in my own code.
Edit: I can't think off-hand of a convincing use for pointers to member data. Pointer to member functions can be used in pluggable architectures, but once again producing an example in a small space defeats me. The following is my best (untested) try - an Apply function that would do some pre &post processing before applying a user-selected member function to an object:
void Apply( SomeClass * c, void (SomeClass::*func)() ) {
// do hefty pre-call processing
(c->*func)(); // call user specified function
// do hefty post-call processing
}
The parentheses around c->*func are necessary because the ->* operator has lower precedence than the function call operator.
This is the simplest example I can think of that conveys the rare cases where this feature is pertinent:
#include <iostream>
class bowl {
public:
int apples;
int oranges;
};
int count_fruit(bowl * begin, bowl * end, int bowl::*fruit)
{
int count = 0;
for (bowl * iterator = begin; iterator != end; ++ iterator)
count += iterator->*fruit;
return count;
}
int main()
{
bowl bowls[2] = {
{ 1, 2 },
{ 3, 5 }
};
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::apples) << " apples\n";
std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::oranges) << " oranges\n";
return 0;
}
The thing to note here is the pointer passed in to count_fruit. This saves you having to write separate count_apples and count_oranges functions.
Another application are intrusive lists. The element type can tell the list what its next/prev pointers are. So the list does not use hard-coded names but can still use existing pointers:
// say this is some existing structure. And we want to use
// a list. We can tell it that the next pointer
// is apple::next.
struct apple {
int data;
apple * next;
};
// simple example of a minimal intrusive list. Could specify the
// member pointer as template argument too, if we wanted:
// template<typename E, E *E::*next_ptr>
template<typename E>
struct List {
List(E *E::*next_ptr):head(0), next_ptr(next_ptr) { }
void add(E &e) {
// access its next pointer by the member pointer
e.*next_ptr = head;
head = &e;
}
E * head;
E *E::*next_ptr;
};
int main() {
List<apple> lst(&apple::next);
apple a;
lst.add(a);
}
Here's a real-world example I am working on right now, from signal processing / control systems:
Suppose you have some structure that represents the data you are collecting:
struct Sample {
time_t time;
double value1;
double value2;
double value3;
};
Now suppose that you stuff them into a vector:
std::vector<Sample> samples;
... fill the vector ...
Now suppose that you want to calculate some function (say the mean) of one of the variables over a range of samples, and you want to factor this mean calculation into a function. The pointer-to-member makes it easy:
double Mean(std::vector<Sample>::const_iterator begin,
std::vector<Sample>::const_iterator end,
double Sample::* var)
{
float mean = 0;
int samples = 0;
for(; begin != end; begin++) {
const Sample& s = *begin;
mean += s.*var;
samples++;
}
mean /= samples;
return mean;
}
...
double mean = Mean(samples.begin(), samples.end(), &Sample::value2);
Note Edited 2016/08/05 for a more concise template-function approach
And, of course, you can template it to compute a mean for any forward-iterator and any value type that supports addition with itself and division by size_t:
template<typename Titer, typename S>
S mean(Titer begin, const Titer& end, S std::iterator_traits<Titer>::value_type::* var) {
using T = typename std::iterator_traits<Titer>::value_type;
S sum = 0;
size_t samples = 0;
for( ; begin != end ; ++begin ) {
const T& s = *begin;
sum += s.*var;
samples++;
}
return sum / samples;
}
struct Sample {
double x;
}
std::vector<Sample> samples { {1.0}, {2.0}, {3.0} };
double m = mean(samples.begin(), samples.end(), &Sample::x);
EDIT - The above code has performance implications
You should note, as I soon discovered, that the code above has some serious performance implications. The summary is that if you're calculating a summary statistic on a time series, or calculating an FFT etc, then you should store the values for each variable contiguously in memory. Otherwise, iterating over the series will cause a cache miss for every value retrieved.
Consider the performance of this code:
struct Sample {
float w, x, y, z;
};
std::vector<Sample> series = ...;
float sum = 0;
int samples = 0;
for(auto it = series.begin(); it != series.end(); it++) {
sum += *it.x;
samples++;
}
float mean = sum / samples;
On many architectures, one instance of Sample will fill a cache line. So on each iteration of the loop, one sample will be pulled from memory into the cache. 4 bytes from the cache line will be used and the rest thrown away, and the next iteration will result in another cache miss, memory access and so on.
Much better to do this:
struct Samples {
std::vector<float> w, x, y, z;
};
Samples series = ...;
float sum = 0;
float samples = 0;
for(auto it = series.x.begin(); it != series.x.end(); it++) {
sum += *it;
samples++;
}
float mean = sum / samples;
Now when the first x value is loaded from memory, the next three will also be loaded into the cache (supposing suitable alignment), meaning you don't need any values loaded for the next three iterations.
The above algorithm can be improved somewhat further through the use of SIMD instructions on eg SSE2 architectures. However, these work much better if the values are all contiguous in memory and you can use a single instruction to load four samples together (more in later SSE versions).
YMMV - design your data structures to suit your algorithm.
You can later access this member, on any instance:
int main()
{
int Car::*pSpeed = &Car::speed;
Car myCar;
Car yourCar;
int mySpeed = myCar.*pSpeed;
int yourSpeed = yourCar.*pSpeed;
assert(mySpeed > yourSpeed); // ;-)
return 0;
}
Note that you do need an instance to call it on, so it does not work like a delegate.
It is used rarely, I've needed it maybe once or twice in all my years.
Normally using an interface (i.e. a pure base class in C++) is the better design choice.
IBM has some more documentation on how to use this. Briefly, you're using the pointer as an offset into the class. You can't use these pointers apart from the class they refer to, so:
int Car::*pSpeed = &Car::speed;
Car mycar;
mycar.*pSpeed = 65;
It seems a little obscure, but one possible application is if you're trying to write code for deserializing generic data into many different object types, and your code needs to handle object types that it knows absolutely nothing about (for example, your code is in a library, and the objects into which you deserialize were created by a user of your library). The member pointers give you a generic, semi-legible way of referring to the individual data member offsets, without having to resort to typeless void * tricks the way you might for C structs.
It makes it possible to bind member variables and functions in the uniform manner. The following is example with your Car class. More common usage would be binding std::pair::first and ::second when using in STL algorithms and Boost on a map.
#include <list>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
class Car {
public:
Car(int s): speed(s) {}
void drive() {
std::cout << "Driving at " << speed << " km/h" << std::endl;
}
int speed;
};
int main() {
using namespace std;
using namespace boost::lambda;
list<Car> l;
l.push_back(Car(10));
l.push_back(Car(140));
l.push_back(Car(130));
l.push_back(Car(60));
// Speeding cars
list<Car> s;
// Binding a value to a member variable.
// Find all cars with speed over 60 km/h.
remove_copy_if(l.begin(), l.end(),
back_inserter(s),
bind(&Car::speed, _1) <= 60);
// Binding a value to a member function.
// Call a function on each car.
for_each(s.begin(), s.end(), bind(&Car::drive, _1));
return 0;
}
You can use an array of pointer to (homogeneous) member data to enable a dual, named-member (i.e. x.data) and array-subscript (i.e. x[idx]) interface.
#include <cassert>
#include <cstddef>
struct vector3 {
float x;
float y;
float z;
float& operator[](std::size_t idx) {
static float vector3::*component[3] = {
&vector3::x, &vector3::y, &vector3::z
};
return this->*component[idx];
}
};
int main()
{
vector3 v = { 0.0f, 1.0f, 2.0f };
assert(&v[0] == &v.x);
assert(&v[1] == &v.y);
assert(&v[2] == &v.z);
for (std::size_t i = 0; i < 3; ++i) {
v[i] += 1.0f;
}
assert(v.x == 1.0f);
assert(v.y == 2.0f);
assert(v.z == 3.0f);
return 0;
}
One way I've used it is if I have two implementations of how to do something in a class and I want to choose one at run-time without having to continually go through an if statement i.e.
class Algorithm
{
public:
Algorithm() : m_impFn( &Algorithm::implementationA ) {}
void frequentlyCalled()
{
// Avoid if ( using A ) else if ( using B ) type of thing
(this->*m_impFn)();
}
private:
void implementationA() { /*...*/ }
void implementationB() { /*...*/ }
typedef void ( Algorithm::*IMP_FN ) ();
IMP_FN m_impFn;
};
Obviously this is only practically useful if you feel the code is being hammered enough that the if statement is slowing things done eg. deep in the guts of some intensive algorithm somewhere. I still think it's more elegant than the if statement even in situations where it has no practical use but that's just my opnion.
Pointers to classes are not real pointers; a class is a logical construct and has no physical existence in memory, however, when you construct a pointer to a member of a class it gives an offset into an object of the member's class where the member can be found; This gives an important conclusion: Since static members are not associated with any object so a pointer to a member CANNOT point to a static member(data or functions) whatsoever
Consider the following:
class x {
public:
int val;
x(int i) { val = i;}
int get_val() { return val; }
int d_val(int i) {return i+i; }
};
int main() {
int (x::* data) = &x::val; //pointer to data member
int (x::* func)(int) = &x::d_val; //pointer to function member
x ob1(1), ob2(2);
cout <<ob1.*data;
cout <<ob2.*data;
cout <<(ob1.*func)(ob1.*data);
cout <<(ob2.*func)(ob2.*data);
return 0;
}
Source: The Complete Reference C++ - Herbert Schildt 4th Edition
Here is an example where pointer to data members could be useful:
#include <iostream>
#include <list>
#include <string>
template <typename Container, typename T, typename DataPtr>
typename Container::value_type searchByDataMember (const Container& container, const T& t, DataPtr ptr) {
for (const typename Container::value_type& x : container) {
if (x->*ptr == t)
return x;
}
return typename Container::value_type{};
}
struct Object {
int ID, value;
std::string name;
Object (int i, int v, const std::string& n) : ID(i), value(v), name(n) {}
};
std::list<Object*> objects { new Object(5,6,"Sam"), new Object(11,7,"Mark"), new Object(9,12,"Rob"),
new Object(2,11,"Tom"), new Object(15,16,"John") };
int main() {
const Object* object = searchByDataMember (objects, 11, &Object::value);
std::cout << object->name << '\n'; // Tom
}
Suppose you have a structure. Inside of that structure are
* some sort of name
* two variables of the same type but with different meaning
struct foo {
std::string a;
std::string b;
};
Okay, now let's say you have a bunch of foos in a container:
// key: some sort of name, value: a foo instance
std::map<std::string, foo> container;
Okay, now suppose you load the data from separate sources, but the data is presented in the same fashion (eg, you need the same parsing method).
You could do something like this:
void readDataFromText(std::istream & input, std::map<std::string, foo> & container, std::string foo::*storage) {
std::string line, name, value;
// while lines are successfully retrieved
while (std::getline(input, line)) {
std::stringstream linestr(line);
if ( line.empty() ) {
continue;
}
// retrieve name and value
linestr >> name >> value;
// store value into correct storage, whichever one is correct
container[name].*storage = value;
}
}
std::map<std::string, foo> readValues() {
std::map<std::string, foo> foos;
std::ifstream a("input-a");
readDataFromText(a, foos, &foo::a);
std::ifstream b("input-b");
readDataFromText(b, foos, &foo::b);
return foos;
}
At this point, calling readValues() will return a container with a unison of "input-a" and "input-b"; all keys will be present, and foos with have either a or b or both.
Just to add some use cases for #anon's & #Oktalist's answer, here's a great reading material about pointer-to-member-function and pointer-to-member-data.
https://www.dre.vanderbilt.edu/~schmidt/PDF/C++-ptmf4.pdf
with pointer to member, we can write generic code like this
template<typename T, typename U>
struct alpha{
T U::*p_some_member;
};
struct beta{
int foo;
};
int main()
{
beta b{};
alpha<int, beta> a{&beta::foo};
b.*(a.p_some_member) = 4;
return 0;
}
I love the * and & operators:
struct X
{
int a {0};
int *ptr {NULL};
int &fa() { return a; }
int *&fptr() { return ptr; }
};
int main(void)
{
X x;
int X::*p1 = &X::a; // pointer-to-member 'int X::a'. Type of p1 = 'int X::*'
x.*p1 = 10;
int *X::*p2 = &X::ptr; // pointer-to-member-pointer 'int *X::ptr'. Type of p2 = 'int *X::*'
x.*p2 = nullptr;
X *xx;
xx->*p2 = nullptr;
int& (X::*p3)() = X::fa; // pointer-to-member-function 'X::fa'. Type of p3 = 'int &(X::*)()'
(x.*p3)() = 20;
(xx->*p3)() = 30;
int *&(X::*p4)() = X::fptr; // pointer-to-member-function 'X::fptr'. Type of p4 = 'int *&(X::*)()'
(x.*p4)() = nullptr;
(xx->*p4)() = nullptr;
}
Indeed all is true as long as the members are public, or static
I think you'd only want to do this if the member data was pretty large (e.g., an object of another pretty hefty class), and you have some external routine which only works on references to objects of that class. You don't want to copy the member object, so this lets you pass it around.
A realworld example of a pointer-to-member could be a more narrow aliasing constructor for std::shared_ptr:
template <typename T>
template <typename U>
shared_ptr<T>::shared_ptr(const shared_ptr<U>, T U::*member);
What that constructor would be good for
assume you have a struct foo:
struct foo {
int ival;
float fval;
};
If you have given a shared_ptr to a foo, you could then retrieve shared_ptr's to its members ival or fval using that constructor:
auto foo_shared = std::make_shared<foo>();
auto ival_shared = std::shared_ptr<int>(foo_shared, &foo::ival);
This would be useful if want to pass the pointer foo_shared->ival to some function which expects a shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr/shared_ptr
Pointer to members are C++'s type safe equivalent for C's offsetof(), which is defined in stddef.h: Both return the information, where a certain field is located within a class or struct. While offsetof() may be used with certain simple enough classes also in C++, it fails miserably for the general case, especially with virtual base classes. So pointer to members were added to the standard. They also provide easier syntax to reference an actual field:
struct C { int a; int b; } c;
int C::* intptr = &C::a; // or &C::b, depending on the field wanted
c.*intptr += 1;
is much easier than:
struct C { int a; int b; } c;
int intoffset = offsetof(struct C, a);
* (int *) (((char *) (void *) &c) + intoffset) += 1;
As to why one wants to use offsetof() (or pointer to members), there are good answers elsewhere on stackoverflow. One example is here: How does the C offsetof macro work?

Can I pass an array of a class that is within/or is a subcomponent of an array of classes to a function in C++?

Can I pass an array (contactsLonN ..) of a class that is within/or a subcomponent of an array of classes (chainref) to a function in C++?
// ChainNetwork.cpp
void build_contact_map(Chain *chain, int num_chains,Contact *map) {
//accept 1 of contactsLonN, contactsLonS, contactsLatW, contactsLatE;
}
// ChainNetwork.h
class Vector {
public:
double x;
double y;
double z;
Vector (); // Constructor declared.
};
inline Vector::Vector() {
x = 0.0;
y = 0.0;
z = 0.0;
}
class Contact {
public:
int cresid;
double distance;
Contact (); // Constructor declared.
};
inline Contact::Contact() {
cresid = -1;
distance = 0.0;
}
class ChainNetwork {
public:
struct Contact contactsLonN[1000][20];
struct Contact contactsLonS[1000][20];
struct Contact contactsLatW[1000][20];
struct Contact contactsLatE[1000][20];
}
// declarations in ChainNetwork.h
void build_contact_map(ChainNetwork *chain, int num_chains,Contact *map);
double distance ( Vector v1, Vector v2 );
// main.cpp main()
ChainNetwork *chainref;
try {
chainref = new ChainNetwork [num_chains];
} catch (std::bad_alloc xa) {
std::cout << "Allocation Failure\n";
return 1;
}
// 1 generic function I would like to call .. but seems to grow uncontrollably if I try to use switch(s)
build_contact_map(chainref,chains_to_use,chainref[i].contactsLonN);
build_contact_map(chainref,chains_to_use,chainref[i].contactsLonS);
build_contact_map(chainref,chains_to_use,chainref[i].contactsLatW);
build_contact_map(chainref,chains_to_use,chainref[i].contactsLatE);
Note: Related results usually employed simpler structures like ints, float, or struct, but not an array or double index array of a class within a class.
Note2: I have made extensive use of functions receiving "Vector" correctly, by reference or address; how about contactsLonN ..
Contact[1000][20] cannot be converted to Contact*; they are different types. You could change build_contact_contact_map() to accept Contact (*map)[20], or, better yet, use a std::vector<std::vector<Contact>> instead of raw arrays.

Question on using class member function as template parameter

I'm reading the book by Daoqi Yang "C++ and Object Oriented Numeric Computing for Scientists and Engineers". He has a similar example to what I am showing below, but the exceptions are the class "P" I define and the second to last line (which doesn't work). My question is: why does my compiler generate and error when I supply the function member f.integrand? What can I do to correct this? The errors being generated are C3867, C2440, and C2973.
Here is the code:
class P{
public:
double integrand(double x){
return (exp(-x*x));
}
};
template<double F(double)>
double trapezoidal(double a, double b, int n)
{
double h=(b-a)/n;
double sum=F(a)*0.5;
for(int i=1;i<n;i++)
{
sum+=F(a+i*h);
}
sum+=F(b)*0.5;
return (sum*h);
}
double integrand2(double x){
return (exp(-x*x));
}
int main(){
P f;
cout<< trapezoidal<integrand2>(0,1,100)<<endl; // this works
cout<< trapezoidal<f.integrand>(0,1,100)<<endl; // this doesn't work
}
Template arguments must be compile-time constant expressions or types, and member functions require special handling anyway. Instead of doing this, use boost::function<> as an argument, and boost::bind to create the functor, e.g.
double trapezoidal(double, double, boost::function<double(double)>);
// ...
P f;
trapezoidal(0, 1, 100, integrand2);
trapezoidal(0, 1, 100, boost::bind(&P::integrand, boost::ref(f)));
If you have 0x-capable compiler, you can use std::function and std::bind instead.
Cat Plus Plus is correct - boost::bind is a good way to do this easily. I've also included an alternate solution with the following snippet of code:
class P{
private:
double a;
public:
double integrand(double x){
return (a*exp(-x*x));
}
void setA(double y){
a = y;
}
void getA(){
cout<<a<<endl;
}
struct integrand_caller {
P* p;
integrand_caller(P& aP) : p(&aP) {};
double operator()(double x) const {
return p->integrand(x);
};
};
};
template <typename Evaluator, typename VectorType>
VectorType trapezoidal(Evaluator f, const VectorType& a, const VectorType& b, int n)
{
VectorType h=(b-a)/n;
VectorType sum=f(a)*0.5;
for(int i=1;i<n;i++)
{
sum+=f(a+i*h);
}
sum += f(b)*0.5;
return (sum*h);
}
double integrand2(double x){
return (exp(-x*x));
}
int main(){
P f[5];
for(int i=0;i<5;i++){
f[i].setA(5*i);
f[i].getA();
cout<< trapezoidal(P::integrand_caller(f[i]),(double)0, (double)1, 100) << endl;
cout<<trapezoidal(boost::bind(&P::integrand,f[i],_1), 0.0, 1.0, 100)<<"\n"<<endl;
}
}