Circular inclusion with function inside namespace - c++

I'm starting to learn C++ and recently encountered a problem with circular dependency of two headers.
I've already tried forward declaring the Class and namespace, also played around with it in a seperate project but didn't find any solution. Whatever I do the function doesn't get access to the class private members.
Here i simplified the problem a little bit.
A.h
#pragma once
#include "B.h"
class Player {
private:
int m_number;
public:
friend void Byte::getDataChunk(Player& p);
};
B.h
#pragma once
#include <iostream>
#include "A.h"
class Player;
namespace Byte {
void doOtherStuff() {
//other Stuff
}
void getDataChunk(Player& p) {
std::cout << p.m_number;
doOtherStuff();
}
}
I would really like to keep the class and namespace in seperate files, but I don't see any way of doing it. Thanks for your help in advance!

You need to change A.h to include a forward declaration of getDataChunk() in namespace Byte:
#pragma once
#include "B.h"
class Player;
namespace Byte {
void getDataChunk(Player& p);
}
class Player {
private:
int m_number;
public:
friend void Byte::getDataChunk(Player& p);
};
Please note also that including function definitions in header files (i.e. getDataChunk() in B.h) is going to cause you headaches.

Related

Getting 'undeclared identifier' when using vector of type class

Having trouble understanding why I'm getting an 'undeclared identifier' error when I've made sure to include the header file that has the declaration of the class I'm making a vector of.
#pragma once
#include <vector>
#include "Member.h"
class Party {
private:
std::vector<Member> members;
public:
Party();
int get_party_size();
void add_member(Member new_member);
Member& get_member(int num);
};
Here's "Member.h"
#pragma once
#include <vector>
#include <string>
#include "Party.h"
class Member
{
private:
int hp;
bool is_stunned;
bool is_alive;
public:
Member();
~Member();
int get_hp();
bool get_is_stunned();
bool get_is_alive();
void take_damage(int amt);
void stun();
virtual void turn(std::vector<Party>& parties, int my_party, int my_member_number);
virtual std::string get_class_name();
};
Pretty new to the language, so sure I'm missing something obvious.
You have circular dependency between Member and Party
Remove the line
virtual void turn(
std::vector<Party>& parties,
int my_party,
int my_member_number);
in Member and remove the #include "Party.h" in Member.h
Instead think along the lines that a Party is just a collection of Members so there is no need for an individual Member to know about the container
So after input from #some-programmer-dude you could also solve it by adding a forward declaration in your Member.h instead of including the Party.h
class Party;
class Member { ... }

Member function definition outside the class

Firstly, I am giving the codes. Then I am explaining the problem I am facing.
main.cpp
#include <iostream>
#include "acc.h"
using namespace std;
class mem;
int main()
{
show();
return 0;
}
acc.h
#ifndef ACC_H
#define ACC_H
#include "acc.cpp"
void show();
class mem{
int a;
public:
void showa();
void seta(int A);
};
#endif
acc.cpp
#include <iostream>
using namespace std;
void mem::showa(){cout<<a<<endl;}
void mem::seta(int A){a = A;}
void show()
{
mem m;
m.seta(22);
string ss;
cin>>ss;
cout<<"MY name is "<<ss<<" ";
m.showa();
}
"mem" class I declared in "acc.h" file already and added that "acc.h" into acc.cpp file also. But when I am calling that class from a function. It can't response. Showing "a" and "mem" not declared. How can I perfectly link that class definition and member functions of that class so that calling member functions of that class from another function can't create any problem?
If you remove the #include "acc.cpp" from the acc.h file it should compile without any errors. I tried and it compiles for me. I am using Visual Studio 2010 for the same.
Other than this, few more comments:
You can use #pragma once in you header file instead of #ifndef/#define macros. The former is more cleaner.
You dont need to forward declare class mem before main() as you are already including acc.h.
the show() can be moved to where main() is defined making the acc.h/acc.cppfiles dedicated for the mem class.
A header file should always be named after the class it is holding i.e. mem.h/mem.cpp in your case. This informs which file contains which class even without opening the file.

C++ Can a class pass itself by reference?

Trying to pass a parent class object to a child class object so that the child class object has control over the parent class object's methods.
This is however resulting in header related issues.
I've tried forward declaring one of the classes but it seems whatever class is declared first always has trouble reading from the class declared below.
Both errors refer to Device' constructor where try to call dm's hello world method, they are:
Use of undefined type 'DeviceManager'
Left of '->HelloWorld' must point to class/struct/union/generic type
...
//main.cpp
#include "parent.h"
void main()
{
cout << "Created DeviceManager\n";
DeviceManager* deviceManager = 0;
deviceManager = new DeviceManager;
cout << "Giving DeviceManager a device\n";
deviceManager->p = new Device(deviceManager);
cout << "Giving Device a reference to DevicenManager\n";
deviceManager->Share();
}
...
class DeviceManager;
class Device
{
public:
Device(DeviceManager* manager)
{
dm = 0;
this->dm = manager;
this->dm->HelloWorld();
}
DeviceManager* dm;
};
//device manager
class DeviceManager
{
public:
DeviceManager()
{
p = 0;
}
void HelloWorld()
{
//if this calls we know the child has control over the parent.
cout << "Hello World";
}
Device* p;
};
Yes.
To solve circular dependencies with class member and function declarations, you can forward-declare a class:
class A;
class B {
A *a;
};
class A {
B *b;
};
To define class member functions that access members of the other class, you must define the function after the other class has been defined:
class B;
class A {
public:
void f(B &arg);
};
class B {
public:
void g(A &arg);
};
void A::f(B &arg) {
arg.g(*this);
}
void B::g(A &arg) {
arg.f(*this);
}
Usually, in a C++ project, you wouldn't even encounter this problem: You would put function definitions, i.e. implementations, into .cpp files, while putting the class definitions into header files. Class forward declarations, if neccesary, could be put into their own header files that are included by all headers that need them.
A full example of how you would split the above code into multiple files:
a.cpp
#include "a.h"
#include "b.h"
void A::f(B &arg) {
arg.g(*this);
}
b.cpp
#include "b.h"
#include "a.h"
void B::g(A &arg) {
arg.f(*this);
}
a.h
#ifndef _A_H_
#define _A_H_
#include "forward_declarations.h"
class A {
public:
void f(B &arg);
};
#endif //_A_H_
b.h
#ifndef _B_H_
#define _B_H_
#include "forward_declarations.h"
class B {
public:
void g(A &arg);
};
#endif //_B_H_
forward_declarations.h
#ifndef _FORWARD_DECLARATIONS_H_
#define _FORWARD_DECLARATIONS_H_
class A;
class B;
#endif //_FORWARD_DECLARATIONS_H_
As a general rule of thumb, if you need to forward-declare a class, you might have misdesigned something and should think about whether there is a better way (but there also are perfectly valid use cases that require class forward declarations).
If you don't understand my #ifndef, #define and #endif preprocessor lines: These are header guards, and should be used with all files that are included somewhere else, exception you know precisely what you're doing. Believe me. You'll regret ommiting one.
If your problem is cyclic dependancy, like this:
// DeviceManager.h
#include "device.h"
class DeviceManager
{
DeviceManager(Device& device) {}
};
// Device.h
#include "DeviceManager.h"
class Device
{
Device(DeviceManager& manager) {}
};
You can solve the problem be forward declaring one of the classes, and passing the object by pointer.
// Device.h
//#include "DeviceManager.h"
class DeviceManager;
class Device
{
Device(DeviceManager* manager) {}
};

C++ Method declaration using another class

I'm starting to learn C++ (coming from Java), so bear with me.
I can't seem to get my method declaration to accept a class I've made.
'Context' has not been declared
I think I'm not understanding a fundamental concept, but I don't know what.
Expression.h
#include "Context.h"
class Expression {
public:
void interpret(Context *); // This line has the error
Expression();
virtual ~Expression();
};
Context.h
#include <stack>
#include <vector>
#include "Expression.h"
class Context {
private:
std::stack<Expression*,std::vector<Expression*> > theStack;
public:
Context();
virtual ~Context();
};
You have to forward declare Expression in Context or vice versa (or both), otherwise you have a cyclic dependency. For example,
Expression.h:
class Context; // no include, we only have Context*.
class Expression {
public:
void interpret(Context *); // This line has the error
Expression();
virtual ~Expression();
};
Context.h:
#include <stack>
#include <vector>
class Expression; // No include, we only have Expression*
class Context {
private:
std::stack<Expression*,std::vector<Expression*> > theStack;
public:
Context();
virtual ~Context();
};
You can perform the forward declarations because the full definition of the classes isn't needed, since you are only referring to pointers to the other class in each case. It is likely that you will need the includes in the implementation files (that is, #include "Context.h" in Expression.cpp and #include Expression.h in Context.cpp).
Finally, remember to put include guards in your header files.
In C++, class definitions always have to end with a semi-colon ;
so example:
class foo {};
Java and C# doesn't require that, so I can see your confusion.
Also it looks like both your header files include each other. Thus it's kind of like a snake eating it's tail: Where does it start? Thus in your Expression.h you can replace the 'include' with a forward declaration instead:
class Context;
class Expression {
public:
void interpret(Context *); // This line has the error
Expression();
virtual ~Expression();
}
And last but not least, you should put a compiler guard to prevent the header from getting included more than once into a .cpp file. You can put a #pragma once in the top of the header file. That is useful if you are using visual studio and the microsoft compiler. I don't know if GCC supports it or not. Or you can wrap your header file like this:
#ifndef EXPRESSION_H_
#define EXPRESSION_H_
class Context;
class Expression {
public:
void interpret(Context *); // This line has the error
Expression();
virtual ~Expression();
}
#endif
you might need to forward declare the classes Context and Expression in the header files before the #include
e.g.
#include <stack>
#include <vector>
// forward declaration
class Context;
class Expression;
#include "Expression.h"
class Context {
private:
std::stack<Expression*,std::vector<Expression*> > theStack;
public:
Context();
virtual ~Context();
}

Using friend function in C++

Just read about friend functions and I'm trying to access private variable "number" in class A with friend function "Print" from class B. I'm working with Visual Studio. Compilation of my code gives me plenty of various errors like:
C2011: 'A' : 'class' type redefinition
C2653: 'B' : is not a class or namespace name
Please be patient with me me and show a proper way of achieving my goal.
Here are my files
A.h:
class A
{
public:
A(int a);
friend void B::Print(A &obj);
private:
int number;
};
A.cpp:
#include "A.h"
A::A(int a)
{
number=a;
}
B.h:
#include <iostream>
using namespace std;
#include "A.h"
class B
{
public:
B(void);
void Print(A &obj);
};
B.cpp:
#include "B.h"
B::B(void){}
void B::Print(A &obj)
{
cout<<obj.number<<endl;
}
main.cpp:
#include <iostream>
#include <conio.h>
#include "B.h"
#include "A.h"
void main()
{
A a_object(10);
B b_object;
b_object.Print(A &obj);
_getch();
}
... Second you might need a forward declaration of class B in the A.h header file to refer B as a friend:
#ifndef _A_H_
#define _A_H_
class B;
class A
{
friend class B;
};
#endif
UPDATE
I'm currently not so sure if it's possible to declare member functions as friends, I'll have a look.
It's not possible to create member function friend declarations, you can either declare global functions or whole classes as friend, see also: C++ ref, Friendship and inheritance.
In general it's not a good design idea to use friend at all, because it strongly couples the classes together. The better solution will be to couple interfaces (which don't need to be publicly visible anyways).
In rare cases it might be a good design decision but that almost always applies to internal details.
First you need to put
#ifndef A_H
#define A_H
.... your A-class definition
#endif
in your A.h and analogous in B.h, so that multiple includes of the same file is prevented (that is your duplicate definition error)...