Thread Safe Integer Array? - c++

I have a situation where I have a legacy multi-threaded application I'm trying to move to a linux platform and convert into C++.
I have a fixed size array of integers:
int R[5000];
And I perform a lot of operations like:
R[5] = (R[10] + R[20]) / 50;
R[5]++;
I have one Foreground task that mostly reads the values....but on occasion can update one. And then I have a background worker that is updating the values constantly.
I need to make this structure thread safe.
I would rather only update the value if the value has actually changed. The worker is constantly collecting data and doing calculation and storing the data whether it changes or not.
So should I create a custom class MyInt which has the structure and then include an array of mutexes to lock for updating/reading each value and then overload the [], =, ++, +=, -=, etc? Or should I try to implement anatomic integer array?
Any suggestions as to what that would look like? I'd like to try and keep the above notation for doing the updates...but I get that it might not be possible.
Thanks,
WB

The first thing to do is make the program work reliably, and the easiest way to do that is to have a Mutex that is used to control access to the entire array. That is, whenever either thread needs to read or write to anything in the array, it should do:
the_mutex.lock();
// do all the array-reads, calculations, and array-writes it needs to do
the_mutex.unlock();
... then test your program and see if it still runs fast enough for your needs. If so, you're done; that's all you need to do.
If you find that the program isn't fast enough due to contention on the mutex, you can start trying optimizations to make things faster. For example, if you know that your threads' operations will only need to work on local segments of the array at one time, you could create multiple mutexes, and assign different subsets of the array to each mutex (e.g. mutex #1 is used to serialize access to the first 100 array items, mutex #2 for the second 100 array items, etc). That will greatly decrease the chances of one thread having to wait for the other thread to release a mutex before it can continue.
If things still aren't fast enough for you, you could then look in to having two different arrays, one for each thread, and occasionally copying from one array to the other. That way each thread could safely access its own private array without any serialization needed. The copying operation would need to be handled carefully, probably using some sort of inter-thread message-passing protocol.

Related

accessing and writing to array from different threads

I've an simple array of string of character, and I'm trying to access and write to them through different multiple threads. Infact I've fixed size char[10] each since I'll always have length of each string < 500. I know if I would access it, without modification in between, from different threads, there's going to be no problem with it.
The problem occurs when I'm writing to those strings from different threads and when I change some string at arr[2] from different threads, the results are kind of unpredictable, since threads might be running ahead of one another and output is unpredicatble and often mix of those 2 strings. This is because the strings are composed of multiple characters and different threads are accessing different chars of same string at same time producing a mix of strings.
I've looked into mutexes and atomic variables. Mutexes require to lock the variable and then write the string and then unlock it. Would this be a good approach to solving the problem? I tried to understand the atomic approach but it went straight over my mind :/
Another question would be, if the array was composed of real atomic operations like an array of bool, where I would just have to set true or false to each indices, would this problem occur there too? Since there are no multiple characters, the problem shouldn't be there, right?
My personal proposition would be: Have a mutex for each string, and threads aquiring the mutex for the string they want to write to before they do so.
Compared to having one global mutex for all strings, this allows parallel access to the different strings, so good chance that you get better performance.
Be aware, though, that multiple mutexes always bring the risk of dead locks, if you do not handle them correctly. One way to avoid such would be to implement each thread not holding more than one mutex at a time. Then you are save immediately.
If you ever need more than one mutex in a thread, then a simple strategy to avoid dead locks is always acquiring the mutex in the same order in every thread.

What is the best architecture to frequently communicate values between multiple threads?

I am writing an application in C++14 that consists of a master thread and multiple slave threads. The master thread coordinates the slave threads which coordinately perform a search, each exploring a part of the search space. A slave thread sometimes encounters a bound on the search. Then it communicates this bound to the master thread which sends the bound to all other slave threads so that they can possibly narrow their searches.
A slave thread must very frequently check whether there is a new bound available, possibly at the entrance of a loop.
What would be the best way to communicate the bound to the slave threads? I can think of using std::atomic<int>, but I am afraid of the performance implications this has whenever the variable is read inside the loop.
The simplest way here is IMO to not overthink this. Just use a std::mutex for each thread, protecting a std::queue that the boundary information is in. Have the main thread wait on a std::condition_variable that each child can lock, write to a "new boundary" queue , then signals te cv, which the main thread then wakes up and copies the value to each child one at at time. As you said in your question, at the top of their loops, the child threads can check their thread-specific queue to see if there's additional bounding conditions.
You actually don't NEED the "main thread" in this. You could have the children write to all other children's queues directly (still mutex-protected), as long as you're careful to avoid deadlock, it would work that way too.
All of these classes can be seen in the thread support library, with decent documentation here.
Yes there's interrupt-based ways of doing things, but in this case polling is relatively cheap because it's not a lot of threads smashing on one mutex, but mostly thread-specific mutexes, and mutexes aren't all that expensive to lock, check, unlock quickly. You're not "holding" on to them for long periods, and thus it's OK. It's a bit of a test really: do you NEED the additional complexity of lock-free? If it's only a dozen (or less) threads, then probably not.
Basically you could make a bet with your architecture that a single write to a primitive datatype is atomic. As you only have one writer, your program would not break if you use the volatile keyword to prevent compiler optimizations that might perform updates to it only in local caches.
However everybody serious about doing things right(tm) will tell you otherwise. Have a look at this article to get a pretty good riskassessment: http://preshing.com/20130618/atomic-vs-non-atomic-operations/
So if you want to be on the safe side, which I recommend, you need to follow the C++ standard. As the C++ standard does not guarantee any atomicity even for the simplest operations, you are stuck with using std::atomic. But honestly, I don't think it is too bad. Sure there is a lock involved, but you can balance out the reading frequency with the benefit of knowing the new boundary early.
To prevent polling the atomic variable, you could use the POSIX signal mechanism to notify slave threads of an update (make sure it works with the platform you are programming for). If that benefits performance or not needs to be seen.
This is actually very simple. You only have to be aware of how things work to be confident the simple solution is not broken. So, what you need is two things:
1. Be sure the variable is written/read to/from memory every time you access it.
2. Be sure you read it in an atomic way, which means you have to read the full value in one go, or if it is not done naturally, have a cheap test to verify it.
To address #1, you have to declare it volatile. Make sure the volatile keyword is applied to the variable itself. Not it's pointer of anything like that.
To address #2, it depends on the type. On x86/64 accesses to integer types is atomic as long as they are aligned to their size. That is, int32_t has to be aligned to 4 bit boundary, and int64_t has to be aligned to 8 byte boundary.
So you may have something like this:
struct Params {
volatile uint64_t bound __attribute__((aligned(8)));
};
If your bounds variable is more complex (a struct) but still fits in 64 bits, you may union it with uint64_t and use the same attribute and volatile as above.
If it's too big for 64 bit, you will need some sort of a lock to ensure you did not read half stale value. The best lock for your circumstances (single writer, multiple readers) is a sequence lock. A sequence lock is simply an volatile int, like above, that serves as the version of the data. Its value starts from 0 and advances 2 on every update. You increment it by 1 before updating the protected value, and again afterwards. The net result is that even numbers are stable states and odd numbers are transient (value updating). In the readers you do this:
1. Read the version. If not changed - return
2. Read till you get an even number
3. Read the protected variable
4. Read the version again. If you get the same number as before - you're good
5. Otherwise - back to step 2
This is actually one of the topics in my next article. I'll implement that in C++ and let you know. Meanwhile, you can look at the seqlock in the linux kernel.
Another word of caution - you need compiler barriers between your memory accesses so that the compiler does not reorder things it should really not. That's how you do it in gcc:
asm volatile ("":::"memory");

Is it necessary to lock an array that is *only written to* from one thread and *only read from* another?

I have two threads running. They share an array. One of the threads adds new elements to the array (and removes them) and the other uses this array (read operations only).
Is it necessary for me to lock the array before I add/remove to/from it or read from it?
Further details:
I will need to keep iterating over the entire array in the other thread. No write operations over there as previously mentioned. "Just scanning something like a fixed-size circular buffer"
The easy thing to do in such cases is to use a lock. However locks can be very slow. I did not want to use locks if their use can be avoided. Also, as it came out from the discussions, it might not be necessary (it actually isn't) to lock all operations on the array. Just locking the management of an iterator for the array (count variable that will be used by the other thread) is enough
I don't think the question is "too broad". If it still comes out to be so, please let me know. I know the question isn't perfect. I had to combine at least 3 answers in order to be able to solve the question - which suggests most people were not able to fully understand all the issues and were forced to do some guess work. But most of it came out through the comments which I have tried to incorporate in the question. The answers helped me solve my problem quite objectively and I think the answers provided here are quite a helpful resource for someone starting out with multithreading.
If two threads perform an operation on the same memory location, and at least one operation is a write operation, you have a so-called data race. According to C11 and C++11, the behaviour of programs with data races is undefined.
So, you have to use some kind of synchronization mechanism, for example:
std::atomic
std::mutex
If you are writing and reading from the same location from multiple threads you will need to to perform locking or use atomics. We can see this by looking at the C11 draft standard(The C++11 standard looks almost identical, the equivalent section would be 1.10) says the following in section 5.1.2.4 Multi-threaded executions and data races:
Two expression evaluations conflict if one of them modifies a memory
location and the other one reads or modifies the same memory location.
and:
The execution of a program contains a data race if it contains two
conflicting actions in different threads, at least one of which is not
atomic, and neither happens before the other. Any such data race
results in undefined behavior.
and:
Compiler transformations that introduce assignments to a potentially
shared memory location that would not be modified by the abstract
machine are generally precluded by this standard, since such an
assignment might overwrite another assignment by a different thread in
cases in which an abstract machine execution would not have
encountered a data race. This includes implementations of data member
assignment that overwrite adjacent members in separate memory
locations. We also generally preclude reordering of atomic loads in
cases in which the atomics in question may alias, since this may
violate the "visible sequence" rules.
If you were just adding data to the array then in the C++ world a std::atomic index would be sufficient since you can add more elements and then atomically increment the index. But since you want to grow and shrink the array then you will need to use a mutex, in the C++ world std::lock_guard would be a typical choice.
To answer your question: maybe.
Simply put, the way that the question is framed doesn't provide enough information about whether or not a lock is required.
In most standard use cases, the answer would be yes. And most of the answers here are covering that case pretty well.
I'll cover the other case.
When would you not need a lock given the information you have provided?
There are some other questions here that would help better define whether you need a lock, whether you can use a lock-free synchronization method, or whether or not you can get away with no explicit synchronization.
Will writing data ever be non-atomic? Meaning, will writing data ever result in "torn data"? If your data is a single 32 bit value on an x86 system, and your data is aligned, then you would have a case where writing your data is already atomic. It's safe to assume that if your data is of any size larger than the size of a pointer (4 bytes on x86, 8 on x64), then your writes cannot be atomic without a lock.
Will the size of your array ever change in a way that requires reallocation? If your reader is walking through your data, will the data suddenly be "gone" (memory has been "delete"d)? Unless your reader takes this into account (unlikely), you'll need a lock if reallocation is possible.
When you write data to your array, is it ok if the reader "sees" old data?
If your data can be written atomically, your array won't suddenly not be there, and it's ok for the reader to see old data... then you won't need a lock. Even with those conditions being met, it would be appropriate to use the built in atomic functions for reading and storing. But, that's a case where you wouldn't need a lock :)
Probably safest to use a lock since you were unsure enough to ask this question. But, if you want to play around with the edge case of where you don't need a lock... there you go :)
One of the threads adds new elements to the array [...] and the other [reads] this array
In order to add and remove elements to/from an array, you will need an index that specifies the last place of the array where the valid data is stored. Such index is necessary, because arrays cannot be resized without potential reallocation (which is a different story altogether). You may also need a second index to mark the initial location from which the reading is allowed.
If you have an index or two like this, and assuming that you never re-allocate the array, it is not necessary to lock when you write to the array itself, as long as you lock the writes of valid indexes.
int lastValid = 0;
int shared[MAX];
...
int count = toAddCount;
// Add the new data
for (int i = lastValid ; count != 0 ; count--, i++) {
shared[i] = new_data(...);
}
// Lock a mutex before modifying lastValid
// You need to use the same mutex to protect the read of lastValid variable
lock_mutex(lastValid_mutex);
lastValid += toAddCount;
unlock_mutex(lastValid_mutex);
The reason this works is that when you perform writes to shared[] outside the locked region, the reader does not "look" past the lastValid index. Once the writing is complete, you lock the mutex, which normally causes a flush of the CPU cache, so the writes to shared[] would be complete before the reader is allowed to see the data.
Lock? No. But you do need some synchronization mechanism.
What you're describing sounds an awful like a "SPSC" (Single Producer Single Consumer) queue, of which there are tons of lockfree implementations out there including one in the Boost.Lockfree
The general way these work is that underneath the covers you have a circular buffer containing your objects and an index. The writer knows the last index it wrote to, and if it needs to write new data it (1) writes to the next slot, (2) updates the index by setting the index to the previous slot + 1, and then (3) signals the reader. The reader then reads until it hits an index that doesn't contain the index it expects and waits for the next signal. Deletes are implicit since new items in the buffer overwrite previous ones.
You need a way to atomically update the index, which is provided by atomic<> and has direct hardware support. You need a way for a writer to signal the reader. You also might need memory fences depending on the platform s.t. (1-3) occur in order. You don't need anything as heavy as a lock.
"Classical" POSIX would indeed need a lock for such a situation, but this is overkill. You just have to ensure that the reads and writes are atomic. C and C++ have that in the language since their 2011 versions of their standards. Compilers start to implement it, at least the latest versions of Clang and GCC have it.
It depends. One situation where it could be bad is if you are removing an item in one thread then reading the last item by its index in your read thread. That read thread would throw an OOB error.
As far as I know, this is exactly the usecase for a lock. Two threads which access one array concurrently must ensure that one thread is ready with its work.
Thread B might read unfinished data if thread A did not finish work.
If it's a fixed-size array, and you don't need to communicate anything extra like indices written/updated, then you can avoid mutual exclusion with the caveat that the reader may see:
no updates at all
If your memory ordering is relaxed enough that this happens, you need a store fence in the writer and a load fence in the consumer to fix it
partial writes
if the stored type is not atomic on your platform (int generally should be)
or your values are un-aligned, and especially if they may span cache lines
This is all dependent on your platform though - hardware, OS and compiler can all affect it. You haven't told us what they are.
The portable C++11 solution is to use an array of atomic<int>. You still need to decide what memory ordering constraints you require, and what that means for correctness and performance on your platform.
If you use e.g. vector for your array (so that it can dynamically grow), then reallocation may occur during the writes, you lose.
If you use data entries larger than is always written and read atomically (virtually any complex data type), you lose.
If the compiler / optimizer decides to keep certain things in registers (such as the counter holding the number of valid entries in the array) during some operations, you lose.
Or even if the compiler / optimizer decides to switch order of execution for your array element assignments and counter increments/decrements, you lose.
So you certianly do need some sort of synchronization. What is the best way to do so (for example it may be worth while to lock only parts of the array), depends on your specifics (how often and in what pattern do the threads access the array).

Multithreading - In an array what should I protect?

I'm working on some code that has a global array that can be accessed by two threads for reading writing purposes.
There will be no batch processing where a range of indexes are read or written, so I'm trying to figure out if I should lock the entire array or only the array index I am currently using.
The easiest solution would be to consider the array a CS and put a big fat lock around it, but can I avoid this and just lock an index?
Cheers.
Locking one index implies that you can keep track of which thread is accessing what part of the array. Keeping track of this information, which is shared between the reading and the writing thread, implies that you have one lock around this information. So, you still end up with a global lock.
In this situation, I think that the most efficient approaches are:
- using a reader/writer lock
- or dividing the big array into a few subsets, each subset using a distinct lock.
If this is C++ i suggest you to use STL containers. std::vector or something else which suits your job. They are fast, easy to use, no memory leaks.
If you want to do it all by your self, then of course one method will be to use a single mutex ( which is bad ).
or you can use some reader writer thingy for the whole array.
I think its not feasible to make each element of an array thread safe with its own lock!! that would eat your memory. Check the link and there are 3 solutions with different out comes. Test them out and use the best for your case. ( don't think like "ok i think my program needs the readers preference algorithm". try using it in your system and decide. because we really cant assume such things sometimes )
There is no way of knowing what will be optimal unless you profile under realistic running conditions. I would suggest implementing an array-like class, where you can lock a varying number of elements in groups. Then you fine-tune the size of these groups.
Another option would be to enqueue all read/write operations using an active object. This would make all access sequential, and means you could use a non-concurrent array type to store the data. It would require some sort of concurrent queue data structure under the hood.

Any issues with large numbers of critical sections?

I have a large array of structures, like this:
typedef struct
{
int a;
int b;
int c;
etc...
}
data_type;
data_type data[100000];
I have a bunch of separate threads, each of which will want to make alterations to elements within data[]. I need to make sure that no to threads attempt to access the same data element at the same time. To be precise: one thread performing data[475].a = 3; and another thread performing data[475].b = 7; at the same time is not allowed, but one thread performing data[475].a = 3; while another thread performs data[476].a = 7; is allowed. The program is highly speed critical. My plan is to make a separate critical section for each data element like so:
typedef struct
{
CRITICAL_SECTION critsec;
int a;
int b;
int c;
etc...
}
data_type;
In one way I guess it should all work and I should have no real questions, but not having had much experience in multithreaded programming I am just feeling a little uneasy about having so many critical sections. I'm wondering if the sheer number of them could be creating some sort of inefficiency. I'm also wondering if perhaps some other multithreading technique could be faster? Should I just relax and go ahead with plan A?
With this many objects, most of their critical sections will be unlocked, and there will be almost no contention. As you already know (other comment), critical sections don't require a kernel-mode transition if they're unowned. That makes critical sections efficient for this situation.
The only other consideration would be whether you would want the critical sections inside your objects or in another array. Locality of reference is a good reason to put the critical sections inside the object. When you've entered the critical section, an entire cacheline (e.g. 16 or 32 bytes) will be in memory. With a bit of padding, you can make sure each object starts on a cacheline. As a result, the object will be (partially) in cache once its critical section is entered.
Your plan is worth trying, but I think you will find that Windows is unhappy creating that many Critical Sections. Each CS contains some kernel handle(s) and you are using up precious kernel space. I think, depending on your version of Windows, you will run out of handle memory and InitializeCriticalSection() or some other function will start to fail.
What you might want to do is have a pool of CSs available for use, and store a pointer to the 'in use' CS inside your struct. But then this gets tricky quite quickly and you will need to use Atomic operations to set/clear the CS pointer (to atomically flag the array entry as 'in use'). Might also need some reference counting, etc...
Gets complicated.
So try your way first, and see what happens. We had a similar situation once, and we had to go with a pool, but maybe things have changed since then.
Depending on the data member types in your data_type structure (and also depending on the operations you want to perform on those members), you might be able to forgo using a separate synchronization object, using the Interlocked functions instead.
In your sample code, all the data members are integers, and all the operations are assignments (and presumably reads), so you could use InterlockedExchange() to set the values atomically and InterlockedCompareExchange() to read the values atomically.
If you need to use non-integer data member types, or if you need to perform more complex operations, or if you need to coordinate atomic access to more than one operation at a time (e.g., read data[1].a and then write data[1].b), then you will have to use a synchronization object, such as a CRITICAL_SECTION.
If you must use a synchronization object, I recommend that you consider partitioning your data set into subsets and use a single synchronization object per subset. For example, you might consider using one CRITICAL_SECTION for each span of 1000 elements in the data array.
You could also consider MUTEX.
This is nice method.
Each client could reserve the resource by itself with mutex (mutual-exclusion).
This is more common, some libraries also support this with threads.
Read about boost::thread and it's mutexes
With Your approach:
data_type data[100000];
I'd be afraid of stack overflow, unless You're allocating it at the heap.
EDIT:
Boost::MUTEX
uses win32 Critical Sections
As others have pointed out, yes there is an issue and it is called too fine-grained locking.. it's resource wasteful and even though the chances are small you will start creating a lot of backing primitives and data when the things do get an occasional, call it longer than usual or whatever, contention. Plus you are wasting resources as it is not really a trivial data structure as for example in VM impls..
If I recall correctly you will have a higher chance of a SEH exception from that point onwards on Win32 or just higher memory usage. Partitioning and pooling them is probably the way to go but it is a more complex implementation. Paritioning on something else (re:action) and expecting some short-lived contention is another way to deal with it.
In any case, it is a problem of resource management with what you have right now.