Haskell rotate list of lists - list

I'm trying to implement the following function in Haskell, its a recursive traversal that receives an Int and a list of lists [[Int]] and shifts the elements of the inner lists to the right without altering the size of the lists. I was able to get a list with the numbers in the right order but I couldn't insert them back into their proper sublists.
shift_right::Int->[[Int]]->[[Int]]
example #1:
shift_right 1 [[1,2,3],[4,5,6]] => [[6,1,2],[3,4,5]]
example #2:
shift_right 3 [[],[1],[2,3],[4,5,6]] => [[],[4],[5,6],[1,2,3]]

Assuming that the empty lists only appear at the beginning and never in the middle then one approach could be, first to find a way to make a single rotation and then to repeat the same action n times for n rotations. I think we can use mapAccumL for this purpose.
m = [[],[1],[2,3],[4,5,6]]
s l = es ++ (rem ++ ls) : lss
where
(rem, (ls:lss)) = mapAccumL shifter [] fs
shifter a bs = ([last bs], a ++ (init bs))
(es,fs) = span (== []) l -- split empties and fulls
λ> s m
[[],[6],[1,2],[3,4,5]]
λ> s [[],[6],[1,2],[3,4,5]] -- carry from previous answer
[[],[5],[6,1],[2,3,4]]
λ> s [[],[5],[6,1],[2,3,4]] -- carry from previous answer
[[],[4],[5,6],[1,2,3]]
So now... since you show no attempt at all, it is your duty to come up with a code that invokes this function (or a part of this function) n times for n rotations Hint: preferablly without concatenating the empties.

Related

how to add a number in a 2D list with specific index in haskell

I'm beginner in haskell and I tried to add a number in a 2D list with specific index in haskell but I don't know how to do
example i have this:
[[],[],[]]
and I would like to put a number (3) in the index 1 like this
[[],[3],[]]
I tried this
[array !! 1] ++ [[3]]
but it doesn't work
As you may have noticed in your foray so far, Haskell isn't like many other languages in that it is generally immutable, so trying to change a value, especially in a deeply nested structure like that, isn't the easiest thing. [array !! 1] would give you a nested list [[]] but this is not mutable, so any manipulations you do this structure won't be reflected in the original array, it'll be a separate copy.
(There are specialized environments where you can do local mutability, as with e.g. Vectors in the ST monad, but these are an exception.)
For what you're trying to do, you'll have to deconstruct the list to get it to a point where you can easily make the modification, then reconstruct the final structure from the (modified) parts.
The splitAt function looks like it will help you with this: it takes a list and separates it into two parts at the index you give it.
let array = [[],[],[]]
splitAt 1 array
will give you
([[]], [[],[]])
This helps you by getting you closer to the list you want, the middle nested list.
Let's do a destructuring bind to be able to reconstruct your final list later:
let array = [[],[],[]]
(beginning, end) = splitAt 1 array
Next, you'll need to get at the sub-list you want, which is the first item in the end list:
desired = head end
Now you can make your modification -- note, this will produce a new list, it won't modify the one that's there:
desired' = 3:desired
Now we need to put this back into the end list. Unfortunately, the end list is still the original value of [[],[]], so we'll have to replace the head of this with our desired' to make it right:
end' = desired' : (tail end)
This drops the empty sub-list at the beginning and affixes the modified list in its place.
Now all that's left is to recombine the modified end' with the original beginning:
in beginning ++ end'
making the whole snippet:
let array = [[],[],[]]
(beginning, end) = splitAt 1 array
desired = head end
desired' = 3:desired
end' = desired' : (tail end)
in beginning ++ end'
or, if you're entering all these as commands in the REPL:
let array = [[],[],[]]
let (beginning, end) = splitAt 1 array
let desired = head end
let desired' = 3:desired
let end' = desired' : (tail end)
beginning ++ end'
As paul mentions, things in Haskell are immutable. What you want to do must be done not be modifying the list in place, but by destructuring the list, transforming one of its parts, and restructuring the list with this changed part. One way of destructuring (via splitAt) is put forth there; I'd like to offer another.
Lists in Haskell are defined as follows:
data [] a = [] | a : [a]
This reads "A list of a is either empty or an a followed by a list of a". (:) is pronounced "cons" for "constructor", and with it, you can create nonempty lists.
1 : [] -> [1]
1 : [2,3] -> [1,2,3]
1 : 2 : 3 : [] -> [1,2,3]
This goes both ways, thanks to pattern matching. If you have a list [1,2,3], matching it to x : xs will bind its head 1 to the name x and its tail [2,3] to xs. As you can see, we've destructured the list into the two pieces that were initially used to create it. We can then operate on those pieces before putting the list back together:
λ> let x : xs = [1,2,3]
λ> let y = x - 5
λ> y : xs
[-4,2,3]
So in your case, we can match the initial list to x : y : z : [], compute w = y ++ [3], and construct our new list:
λ> let x : y : z : [] = [[],[],[]]
λ> let w = y ++ [3]
λ> [x,w,z]
[[],[3],[]]
But that's not very extensible, and it doesn't solve the problem you pose ("with specific index"). What if later on we want to change the thousandth item of a list? I'm not too keen on matching that many pieces. Fortunately, we know a little something about lists—index n in list xs is index n+1 in list x:xs. So we can recurse, moving one step along the list and decrementing our index each step of the way:
foo :: Int -> [[Int]] -> [[Int]]
foo 0 (x:xs) = TODO -- Index 0 is x. We have arrived; here, we concatenate with [3] before restructuring the list.
foo n (x:xs) = x : foo (n-1) xs
foo n [] = TODO -- Up to you how you would like to handle invalid indices. Consider the function error.
Implement the first of those three yourself, assuming you're operating on index zero. Make sure you understand the recursive call in the second. Then read on.
Now, this works. It's not all that useful, though—it performs a predetermined computation on a specified item in a list of one particular type. It's time to generalize. What we want is a function of the following type signature:
bar :: (a -> a) -> Int -> [a] -> [a]
where bar f n xs applies the transformation f to the value at index n in the list xs. With this, we can implement the function from before:
foo n xs = bar (++[3]) n xs
foo = bar (++[3]) -- Alternatively, with partial application
And believe it or not, changing the foo you already wrote into the much more useful bar is a very simple task. Give it a try!

Trying to understand how not to add elements to a list

As a followup to this question, I'm attempting to understand how not to add elements to a list using ++.
From this answer:
Again if you only want to append a single element to the list, that is
not a problem. This is a problem if you want to append n elements that
way to a list, so if you each time append a single element to the
list, and you do that n times, then the algorithm will be O(n2).
So from my understanding, this means you shouldn't do this:
let numbers = [1,3,5,10,15]
newNumbers = numbers ++ [27]
listofnumbers = newNumbers ++ [39]
Is this what the bold text in the quoted answer telling you not to do? If not, using code, what is the bold text warning you not to do?
The answer talks about a bad time complexity when it comes to appending elements to the end of the list. When you concat a list xs of length m and a list ys of length n together using (++) then xs ++ ys will have time complexity O(m) (under the assumption you evaluate xs ++ ys for a number of steps in proportion to m).
So if your list ys consists of a single element y (that is ys == [y]) then [y] ++ xs will be O(1) because you add it to the beginning but xs ++ [y] will be O(m) because you add it to the end of another list. So when you repeatedly add elements to the end of another list you will end up with O(m^2). So better do it within one go so you will have O(m).
Note that lists in Haskell are actually stacks which could have an infinite number of elements.
Try these two functions with a large list (like [1..10000]) and see if you notice any difference:
func1 a [] = a
func1 a (x:rest) = func (a ++ [x]) rest
func2 a b = a ++ b

Standard ML recursive function error

So i just got in ML programming and I found this excercise in a book. The excercise says to build a recursive function that takes an integer and a list. If L=[a1,a2,a3] then the desired result is [ai+1,ai+2,...,an,a1,a2,...,ai]. So I wrote a function and after a lot of hours I narrowed the errors down to one which I can't understand. Here is my function:
fun cycle L i =
if i = 0 then L
else (cycle tl(L) (i-1)) # [hd(L)];
I will upload an image with the error that i get so someone can explain to me what the interpreter is trying to say to me.
The numbers next to the "a" just show the order of these elements in the list.So for L=[1,2,3,4,5] and for i = 2, the desire result is the List L=[3,4,5,1,2]. I don't think that the type of list is essential in this problem. Hope this further explanation helped
It's a syntactic problem with the recursive call cycle tl(L) (i-1).
In SML, the syntax for function application is juxtaposition, not parentheses. In your case tl(L) indeed calls the function tl with argument L, but that's equivalent to just tl L. The parentheses are redundant and, as such, ignored.
Now, if you replace the minimal version within your original call, you'll get this: cycle tl L (i-1). It's calling cycle with three arguments, instead of just two.
The correct way of writing it would be: cycle (tl L) (i-1).
Ionuț already gave a sufficient answer to the syntax problem; here are some further suggestions:
Use pattern matching rather than hd and tl.
Consider the base cases; what are the simplest sub-problems you can think of? E.g. cycling the empty list will always give the empty list regardless of n, and cycling L 0 times will always give L back. Having both base cases as patterns helps.
Consider the recursive case; the top element (assuming it exists) is cycled and i is reduced by one, until eventually i is 0 or L is empty. Because the second base case catches the empty list, we can freely assume that L is non-empty here, in which case it will match the pattern x::xs.
fun cycle 0 xs = xs
| cycle i [] = []
| cycle i (x::xs) = cycle (i-1) (xs # [x])
Depending on whether 0 <= i and i <= length xs are preconditions for the function or not, you may want to handle these once before activating the main recursion, e.g. by wrapping the function above:
fun cycle i ys =
let fun fun cycle' 0 xs = xs
| cycle' i [] = []
| cycle' i (x::xs) = cycle' (i-1) (xs # [x])
in
if 0 <= i andalso i <= length xs
then cycle' i ys
else raise Domain
end
The main operation, namely xs # [x] is terribly inefficient, since its running time is proportional to the length of xs and is activated n times. So the running time of cycle becomes O(n • |L|) when something like O(min(n,|L|)) should be achievable.
You could probably make a much faster version if you store the cycled elements in a separate list, without using #, and combine the remaining elements with this list after the elements have been cycled. Depending on what you felt about 0 <= i and i <= length xs, you may run into problems with the following test case:
val cycle_test_1 = (cycle 5 [1,2,3,4] = [2,3,4,1])

Inserting an integer into a list at specific place

I want to make a program insertAt where z is the place in the list, and y is the number being inserted into the list xs. Im new to haskell and this is what I have so far.
insertAt :: Int-> Int-> [Int]-> [Int]
insertAt z y xs
| z==1 = y:xs
but I'm not sure where to go from there.
I have an elementAt function, where
elementAt v xs
| v==1 = head xs
| otherwise = elementAt (v-1) (tail xs)
but I'm not sure how I can fit it in or if I even need to. If possible, I'd like to avoid append.
If this isn't homework: let (ys,zs) = splitAt n xs in ys ++ [new_element] ++ zs
For the rest of this post I'm going to assume you're doing this problem as homework or to teach yourself how to do this kind of thing.
The key to this kind of problem is to break it down into its natural cases. You're processing two pieces of data: the list you're inserting into, and the position in that list. In this case, each piece of data has two natural cases: the list you're procssing can be empty or not, and the number you're processing can be zero or not. So the first step is to write out all four cases:
insertAt 0 val [] = ...
insertAt 0 val (x:xs) = ...
insertAt n val [] = ...
insertAt n val (x:xs) = ...
Now, for each of these four cases, you need to think about what the answer should be given that you're in that case.
For the first two cases, the answer is easy: if you want to insert into the front of a list, just stick the value you're interested in at the beginning, whether the list is empty or not.
The third case demonstrates that there's actually an ambiguity in the question: what happens if you're asked to insert into, say, the third position of a list that's empty? Sounds like an error to me, but you'll have to answer what you want to do in that case for yourself.
The fourth case is most interesting: Suppose you want to insert a value into not-the-first position of a list that's not empty. In this case, remember that you can use recursion to solve smaller instances of your problem. In this case, you can use recursion to solve, for instance, insertAt (n-1) val xs -- that is, the result of inserting your same value into the tail of your input list at the n-1th position. For example, if you were trying to insert 5 into position 3 (the fourth position) of the list [100,200,300], you can use recursion to insert 5 into position 2 (the third position) of the list [200,300], which means the recursive call would produce [200,300,5].
We can just assume that the recursive call will work; our only job now is to convert the answer to that smaller problem into the answer to the original problem we were given. The answer we want in the example is [100,200,300,5] (the result of inserting 5 into position 4 of the list [100,200,300], and what we have is the list [200,300,5]. So how can we get the result we want? Just add back on the first element! (Think about why this is true.)
With that case finished, we've covered all the possible cases for combinations of lists and positions to update. Since our function will work correctly for all possibilities, and our possibilities cover all possible inputs, that means our function will always work correctly. So we're done!
I'll leave it to you to translate these ideas into Haskell since the point of the exercise is for you to learn it, but hopefully that lets you know how to solve the problem.
You could split the list at index z and then concatenate the first part of the list with the element (using ++ [y]) and then with the second part of the list. However, this would create a new list as data is immutable by default. The first element of the list by convention has the index 0 (so adjust z accordingly if you want the meaning of fist elemnt is indexed by 1).
insertAt :: Int -> Int-> [Int] -> [Int]
insertAt z y xs = as ++ (y:bs)
where (as,bs) = splitAt z xs
While above answers are correct, I think this is more concise:
insertAt :: Int -> Int-> [Int]-> [Int]
insertAt z y xs = (take z xs) ++ y:(drop z xs)

Split list into two equal lists in F#

I'm really new to F#, and I need a bit of help with an F# problem.
I need to implement a cut function that splits a list in half so that the output would be...
cut [1;2;3;4;5;6];;
val it : int list * int list = ([1; 2; 3], [4; 5; 6])
I can assume that the length of the list is even.
I'm also expected to define an auxiliary function gencut(n, xs) that cuts xs into two pieces, where n gives the size of the first piece:
gencut(2, [1;3;4;2;7;0;9]);;
val it : int list * int list = ([1; 3], [4; 2; 7; 0; 9])
I wouldn't normally ask for exercise help here, but I'm really at a loss as to where to even start. Any help, even if it's just a nudge in the right direction, would help.
Thanks!
Since your list has an even length, and you're cutting it cleanly in half, I recommend the following (psuedocode first):
Start with two pointers: slow and fast.
slow steps through the list one element at a time, fast steps two elements at a time.
slow adds each element to an accumulator variable, while fast moves foward.
When the fast pointer reaches the end of the list, the slow pointer will have only stepped half the number of elements, so its in the middle of the array.
Return the elements slow stepped over + the elements remaining. This should be two lists cut neatly in half.
The process above requires one traversal over the list and runs in O(n) time.
Since this is homework, I won't give a complete answer, but just to get you partway started, here's what it takes to cut the list cleanly in half:
let cut l =
let rec cut = function
| xs, ([] | [_]) -> xs
| [], _ -> []
| x::xs, y::y'::ys -> cut (xs, ys)
cut (l, l)
Note x::xs steps 1 element, y::y'::ys steps two.
This function returns the second half of the list. It is very easy to modify it so it returns the first half of the list as well.
You are looking for list slicing in F#. There was a great answer by #Juliet in this SO Thread: Slice like functionality from a List in F#
Basically it comes down to - this is not built in since there is no constant time index access in F# lists, but you can work around this as detailed. Her approach applied to your problem would yield a (not so efficient but working) solution:
let gencut(n, list) =
let firstList = list |> Seq.take n |> Seq.toList
let secondList = list |> Seq.skip n |> Seq.toList
(firstList, secondList)
(I didn't like my previous answer so I deleted it)
The first place to start when attacking list problems is to look at the List module which is filled with higher order functions which generalize many common problems and can give you succinct solutions. If you can't find anything suitable there, then you can look at the Seq module for solutions like #BrokenGlass demonstrated (but you can run into performance issues there). Next you'll want to consider recursion and pattern matching. There are two kinds of recursion you'll have to consider when processing lists: tail and non-tail. There are trade-offs. Tail-recursive solutions involve using an accumulator to pass state around, allowing you to place the recursive call in the tail position and avoid stack-overflows with large lists. But then you'll typically end up with a reversed list! For example,
Tail-recursive gencut solution:
let gencutTailRecursive n input =
let rec gencut cur acc = function
| hd::tl when cur < n ->
gencut (cur+1) (hd::acc) tl
| rest -> (List.rev acc), rest //need to reverse accumulator!
gencut 0 [] input
Non-tail-recursive gencut solution:
let gencutNonTailRecursive n input =
let rec gencut cur = function
| hd::tl when cur < n ->
let x, y = gencut (cur+1) tl //stackoverflow with big lists!
hd::x, y
| rest -> [], rest
gencut 0 input
Once you have your gencut solution, it's really easy to define cut:
let cut input = gencut ((List.length input)/2) input
Here's yet another way to do it using inbuilt library functions, which may or may not be easier to understand than some of the other answers. This solution also only requires one traversal across the input. My first thought after I looked at your problem was that you want something along the lines of List.partition, which splits a list into two lists based on a given predicate. However, in your case this predicate would be based on the index of the current element, which partition cannot handle, short of looking up the index for each element.
We can accomplish creating our own equivalent of this behavior using a fold or foldBack. I will use foldBack here as it means you won't have to reverse the lists afterward (see Stephens excellent answer). What we are going to do here is use the fold to provide our own index, along with the two output lists, all as the accumulator. Here is the generic function that will split your list into two lists based on n index:
let gencut n input =
//calculate the length of the list first so we can work out the index
let inputLength = input |> List.length
let results =
List.foldBack( fun elem acc->
let a,b,index = acc //decompose accumulator
if (inputLength - index) <= n then (elem::a,b,index+1)
else (a,elem::b,index+1) ) input ([],[],0)
let a,b,c = results
(a,b) //dump the index, leaving the two lists as output.
So here you see we start the foldBack with an initial accumulator value of ([],[],0). However, because we are starting at the end of the list, the 0 representing the current index needs to be subtracted from the total length of the list to get the actual index of the current element.
Then we simply check if the current index falls within the range of n. If it does, we update the accumulator by adding the current element to list a, leave list b alone, and increase the index by 1 : (elem::a,b,index+1). In all other cases, we do exactly the same but add the element to list b instead: (a,elem::b,index+1).
Now you can easily create your function that splits a list in half by creating another function over this one like so:
let cut input =
let half = (input |> List.length) / 2
input |> gencut half
I hope that can help you somewhat!
> cut data;;
val it : int list * int list = ([1; 2; 3], [4; 5; 6])
> gencut 5 data;;
val it : int list * int list = ([1; 2; 3; 4; 5], [6])
EDIT: you could avoid the index negation by supplying the length as the initial accumulator value and negating it on each cycle instead of increasing it - probably simpler that way :)
let gencut n input =
let results =
List.foldBack( fun elem acc->
let a,b,index = acc //decompose accumulator
if index <= n then (elem::a,b,index-1)
else (a,elem::b,index-1) ) input ([],[],List.length input)
let a,b,c = results
(a,b) //dump the index, leaving the two lists as output.
I have the same Homework, this was my solution. I'm just a student and new in F#
let rec gencut(n, listb) =
let rec cut n (lista : int list) (listb : int list) =
match (n , listb ) with
| 0, _ -> lista, listb
| _, [] -> lista, listb
| _, b :: listb -> cut (n - 1) (List.rev (b :: lista )) listb
cut n [] listb
let cut xs = gencut((List.length xs) / 2, xs)
Probably is not the best recursive solution, but it works. I think
You can use List.nth for random access and list comprehensions to generate a helper function:
let Sublist x y data = [ for z in x..(y - 1) -> List.nth data z ]
This will return items [x..y] from data. Using this you can easily generate gencut and cut functions (remember to check bounds on x and y) :)
check this one out:
let gencut s xs =
([for i in 0 .. s - 1 -> List.nth xs i], [for i in s .. (List.length xs) - 1 -> List.nth xs i])
the you just call
let cut xs =
gencut ((List.length xs) / 2) xs
with n durationn only one iteration split in two