Prim’s MST for Adjacency List Representation - c++

I was trying to implement Prim's algorithm using min Heap.
here is the link I was referring to
https://www.geeksforgeeks.org/prims-mst-for-adjacency-list-representation-greedy-algo-6/
I was wondering why can we use a vector and sort it using std::sort function in place of min heap.

You could, but remember that every time a new node is added to the MST you have to update the set of edges that cross the partition (edges to nodes that are not yet in the MST), so you would have to sort your vector at every iteration of the algorithm, which would waste time, since you just need to know which of the edges that cross the partition has the minimum value at that iteration, the min-heap is optimal for that operation since its time complexity for extracting the minimum value is O(log n) while the sort is O(n log n) which can make the algorithm run slower on large or dense graphs.

Related

Find the median of binary search tree, C++

Once I was interviewed by "One well known company" and the interviewer asked me to find the median of BST.
int median(treeNode* root)
{
}
I started to implement the first brute-force solution that I came up with. I fill all the data into a std::vector<int> with inorder traversal (to get everything sorted in the vector) and got the middle element.
So my algo is O(N) for inserting every element in the vector and query of middle element with O(1), + O(N) of memory.
So is there more effective way (in terms of memory or in terms of complexity) to do the same thing.
Thanks in advance.
It can be done in O(n) time and O(logN) space by doing an in-order traversal and stopping when you reach the n/2th node, just carry a counter that tells you how many nodes have been already traversed - no need to actually populate any vector.
If you can modify your tree to ranks-tree (each node also has information about the number of nodes in the subtree it's a root of) - you can easily solve it in O(logN) time, by simply moving torward the direction of n/2 elements.
Since you know that the median is the middle element of a sorted list of elements, you can just take the middle element of your inorder traversal and stop there, without storing the values in a vector. You might need two traversals if you don't know the number of nodes, but it will make the solution use less memory (O(h) where h is the height of your tree; h = O(log n) for balanced search trees).
If you can augment the tree, you can use the solution I gave here to get an O(log n) algorithm.
The binary tree offers a sorted view for your data but in order to take advantage of it, you need to know how many elements are in each subtree. So without this knowledge your algorithm is fast enough.
If you know the size of each subtree, you select each time to visit the left or the right subtree, and this gives an O(log n) algorithm if the binary tree is balanced.

Performance of vector sort/unique/erase vs. copy to unordered_set

I have a function that gets all neighbours of a list of points in a grid out to a certain distance, which involves a lot of duplicates (my neighbour's neighbour == me again).
I've been experimenting with a couple of different solutions, but I have no idea which is the more efficient. Below is some code demonstrating two solutions running side by side, one using std::vector sort-unique-erase, the other using std::copy into a std::unordered_set.
I also tried another solution, which is to pass the vector containing the neighbours so far to the neighbour function, which will use std::find to ensure a neighbour doesn't already exist before adding it.
So three solutions, but I can't quite wrap my head around which is gonna be faster. Any ideas anyone?
Code snippet follows:
// Vector of all neighbours of all modified phi points, which may initially include duplicates.
std::vector<VecDi> aneighs;
// Hash function, mapping points to their norm distance.
auto hasher = [&] (const VecDi& a) {
return std::hash<UINT>()(a.squaredNorm() >> 2);
};
// Unordered set for storing neighbours without duplication.
std::unordered_set<VecDi, UINT (*) (const VecDi& a)> sneighs(phi.dims().squaredNorm() >> 2, hasher);
... compute big long list of points including many duplicates ...
// Insert neighbours into unordered_set to remove duplicates.
std::copy(aneighs.begin(), aneighs.end(), std::inserter(sneighs, sneighs.end()));
// De-dupe neighbours list.
// TODO: is this method faster or slower than unordered_set?
std::sort(aneighs.begin(), aneighs.end(), [&] (const VecDi& a, const VecDi&b) {
const UINT aidx = Grid<VecDi, D>::index(a, phi.dims(), phi.offset());
const UINT bidx = Grid<VecDi, D>::index(b, phi.dims(), phi.offset());
return aidx < bidx;
});
aneighs.erase(std::unique(aneighs.begin(), aneighs.end()), aneighs.end());
A great deal here is likely to depend on the size of the output set (which, in turn, will depend on how distant of neighbors you sample).
If it's small, (no more than a few dozen items or so) your hand-rolled set implementation using std::vector and std::find will probably remain fairly competitive. Its problem is that it's an O(N2) algorithm -- each time you insert an item, you have to search all the existing items, so each insertion is linear on the number of items already in the set. Therefore, as the set grows larger, its time to insert items grows roughly quadratically.
Using std::set you each insertion has to only do approximately log2(N) comparisons instead of N comparison. That reduces the overall complexity from O(N2) to O(N log N). The major shortcoming is that it's (at least normally) implemented as a tree built up of individually allocated nodes. That typically reduces its locality of reference -- i.e., each item you insert will consist of the data itself plus some pointers, and traversing the tree means following pointers around. Since they're allocated individually, chances are pretty good that nodes that are (currently) adjacent in the tree won't be adjacent in memory, so you'll see a fair number of cache misses. Bottom line: while its speed grows fairly slowly as the number of items increases, the constants involved are fairly large -- for a small number of items, it'll start out fairly slow (typically quite a bit slower than your hand-rolled version).
Using a vector/sort/unique combines some of the advantages of each of the preceding. Storing the items in a vector (without extra pointers for each) typically leads to better cache usage -- items at adjacent indexes are also at adjacent memory locations, so when you insert a new item, chances are that the location for the new item will already be in the cache. The major disadvantage is that if you're dealing with a really large set, this could use quite a bit more memory. Where a set eliminates duplicates as you insert each item (i.e., an item will only be inserted if it's different from anything already in the set) this will insert all the items, then at the end delete all the duplicates. Given current memory availability and the number of neighbors I'd guess you're probably visiting, I doubt this is a major disadvantage in practice, but under the wrong circumstances, it could lead to a serious problem -- nearly any use of virtual memory would almost certainly make it a net loss.
Looking at the last from a complexity viewpoint, it's going to O(N log N), sort of like the set. The difference is that with the set it's really more like O(N log M), where N is the total number of neighbors, and M is the number of unique neighbors. With the vector, it's really O(N log N), where N is (again) the total number of neighbors. As such, if the number of duplicates is extremely large, a set could have a significant algorithmic advantage.
It's also possible to implement a set-like structure in purely linear sequences. This retains the set's advantage of only storing unique items, but also the vector's locality of reference advantage. The idea is to keep most of the current set sorted, so you can search it in log(N) complexity. When you insert a new item, however, you just put it in the separate vector (or an unsorted portion of the existing vector). When you do a new insertion you also do a linear search on those unsorted items.
When that unsorted part gets too large (for some definition of "too large") you sort those items and merge them into the main group, then start the same sequence again. If you define "too large" in terms of "log N" (where N is the number of items in the sorted group) you can retain O(N log N) complexity for the data structure as a whole. When I've played with it, I've found that the unsorted portion can be larger than I'd have expected before it starts to cause a problem though.
Unsorted set has a constant time complexity o(1) for insertion (on average), so the operation will be o(n) where n is the number is elements before removal.
sorting a list of element of size n is o(n log n), going over the list to remove duplicates is o(n). o(n log n) + o(n) = o(n log n)
The unsorted set (which is similar to an hash table in performance) is better.
data about unsorted set times:
http://en.cppreference.com/w/cpp/container/unordered_set

Fastest way to run prim's on a growing range of coordinates

I was hoping someone could give me a general method for computing the MST for a problem that works from input that is formatted as such:
<number of vertices>
<x> <y>
<x> <y>
...
I understand how to implement prim's algorithm, but I was looking for a method that (using prim's algorithm) will require the least amount of memory/time to execute. Should I store everything in an adjacency matrix? If the number of vertices grows to say, 10,000, what is the optimal way to solve this problem (assuming prim's is used)?
You really need to use Prim's?
A simple way is use Kruskal algorithm to recompute the spanning tree (using only previously selected edges) every time you add a node. Since Kruskal is O(E log E) and in every iteration you'll have exactly 2*V-1 edges to compute (V-1 from previous tree + V from newly added node). You'll need O(V log V) for each insertion.
Prim's algoritm is faster if you have a dense graph (a graph that has a lot of edges). If you use an adjacency matrix, the complexity of Prim's algoritm would be O(|V|^2).
This can be improved by using a binary heap data structure with the graph represented by an adjacency list. Using this method, the complexity would be O(|E|log|V|).
Using a fibonacci heap data structure with an adjacency list would be even faster with a complexity of O(|E| + |V|log|V|).
Note: E refers to the number of edges in the graph, while V refers to the number of vertexes in the graph.
The STL has already implemented a binary heap data structure, std::priority_queue. A std::priority_queue calls the heap algoritms in the algoritm library. You could also use a std::vector (or any other container that has random access iterators) and call make_heap, push_heap, pop_heap, etc. These are all in the algoritm library. More info here: http://www.cplusplus.com/reference/algorithm/.
You could also implement your own heap data structure, but that may be too complicated and not worth the performance benefits.

An efficient sorting algorithm for almost sorted list containing time data?

The name says it all really. I suspect that insertion sort is best, since it's the best sort for mostly-sorted data in general. However, since I know more about the data there is a chance there are other sorts woth looking at. So the other relevant pieces of information are:
1) this is time data, which means I presumable could create an effective hash for ordering of data.
2) The data won't all exist at one time. instead I'll be reading in records which may contain a single vector, or dozen or hundreds of vectors. I want to output all time within a 5 second window. So it's possible that a sort that does the sorting as I insert the data would be a better option.
3) memory is not a big issue, but CPU speed is as this may be a bottleneck of the system.
Given these conditions can anyone suggest an algorithm that may be worth considering in addition to insertion sort? Also, How does one defined 'mostly sorted' to decide what is a good sort option? What I mean by that is how do I look at my data and decided 'this isn't as sorted as I thought it as, maybe insertion sort is no longer the best option'? Any link to an article which considered process complexity which better defines the complexity relative to the degree data is sorted would be appreciated.
Thanks
Edit:
thank you everyone for your information. I will be going with an easy insertion or merge sort (whichever I have already pre-written) for now. However, I'll be trying some of the other methods once were closer to the optimization phase (since they take more effort to implement). I appreciate the help
You could adopt option (2) you suggested - sort the data while you insert elements.
Use a skip list, sorted according to time, ascending to maintain your data.
Once a new entree arrives - check if it is larger then the last
element (easy and quick) if it is - simply append it (easy to do in a skip list). The
skip list will need to add 2 nodes on average for these cases, and will be O(1) on
average for these cases.
If the element is not larger then the last element - add it to the
skip list as a standard insert op, which will be O(logn).
This approach will yield you O(n+klogn) algorithm, where k is the number of elements inserted out of order.
I would throw in merge sort if you implement the natural version you get a best case of O(N) with a typical and worst case of O(N log N) if you have any problems. Insertion you get a worst case of O(N^2) and a best case of O(N).
You can sort a list of size n with k elements out of place in O(n + k lg k) time.
See: http://www.quora.com/How-can-I-quickly-sort-an-array-of-elements-that-is-already-sorted-except-for-a-small-number-of-elements-say-up-to-1-4-of-the-total-whose-positions-are-known/answer/Mark-Gordon-6?share=1
The basic idea is this:
Iterate over the elements of the array, building an increasing subsequence (if the current element is greater than or equal to the last element of the subsequence, append it to the end of the subsequence. Otherwise, discard both the current element and the last element of the subsequence). This takes O(n) time.
You will have discarded no more than 2k elements since k elements are out of place.
Sort the 2k elements that were discarded using an O(k lg k) sorting algorithm like merge sort or heapsort.
You now have two sorted lists. Merge the lists in O(n) time like you would in the merge step of merge sort.
Overall time complexity = O(n + k lg k)
Overall space complexity = O(n)
(this can be modified to run in O(1) space if you can merge in O(1) space, but it's by no means trivial)
Without fully understanding the problem, Timsort may fit the bill as you're alleging that your data is mostly sorted already.
There are many adaptive sorting algorithms out there that are specifically designed to sort mostly-sorted data. Ignoring the fact that you're storing dates, you might want to look at smoothsort or Cartesian tree sort as algorithms that can sort data that is reasonable sorted in worst-case O(n log n) time and best-case O(n) time. Smoothsort also has the advantage of requiring only O(1) space, like insertion sort.
Using the fact that everything is a date and therefore can be converted into an integer, you might want to look at binary quicksort (MSD radix sort) using a median-of-three pivot selection. This algorithm has best-case O(n log n) performance, but has a very low constant factor that makes it pretty competitive. Its worst case is O(n log U), where U is the number of bits in each date (probably 64), which isn't too bad.
Hope this helps!
If your OS or C library provides a mergesort function, it is very likely that it already handles the case where the data given is partially ordered (in any direction) running in O(N) time.
Otherwise, you can just copy the mergesort available from your favorite BSD operating system.

Weighted random numbers V2 (Dynamic case)

This question is extension of the question below the link.
Weighted random numbers
My question is sampling weighted random number with additional condition that the weights of each element are dynamically changed frequently.
EDIT
Suppose there are N elements to pick with different weights.
For static weights, Walker's alias method requires O(N) time to setup the alias but sampling cost is O(1) so it is one of the best to achieve my goal.
And binary search method requires also O(N) to make cumulative array and sampling cost is log(N)
However in my case, because the weights are frequently changed, the time complexity to modifying weights is also important.
So I want to know there are existing library or algorithm with the time complexity for both modifying the data structure and sampling less than O(N).
EDIT While I read the comments, I realize I need to impose additional conditions. Each modification phase, only few numbers(mostly two) of weights are modified, also those modifications does not change the total sum of weight(normalization condition).
If there is a solution, I also want to know if it can be used when the weights are real numbers too.
I'm facing the same problem. I will describe my current plan for solving it, but will be grateful for any other suggestions and/or implementation pointers.
My current plan is to adapt the algorithm for Dynamic Order Statistics, as described in Section 14.1 of "Introduction to Algorithms" by Cormen/Leiserson/Rivest. You put your elements into a balanced binary tree, such as a red-black tree, with weights as keys. You augment the tree so that each node stores the sum of the weights in its subtree. The root then stores the sum of weights in the whole tree, say S. The subtree sums can be updated during tree operations in the same way as subtree sizes for dynamic order statistics. To do weighted sampling, you sample a number in [0..S] uniformly, say x; then search down tree for the node N such that the sum of weights of nodes preceding N in in-order traversal is <x, but the sum plus N's weight is >x -- similar to the OS-Select operation for dynamic order statistics.