How can I test overdispersion in STATA when using xtpoisson and xtnbreg? - stata

I have balanced panel data and my dependent variable is count one which distribution has lots of zero(0).
therefore I think it might be suitable for using negative binomial regression rather than poisson one. However, I cannot find how can I test whether xtnbreg or xtpoisson is suitable for my data.
If someone can help how can I test overdispersion to choose poisson model or nbmodel.
Thank you in advance!

Related

Weka can I train a model to minimize or maximize an input value?

Is it possible in Weka to train a model minimizing a cost factor?
I have a data set containing a cost factor in each sample. It defines what using this sample would cost. Now, I would like to select as much of the samples as possible while minimizing this cost factor.
E.g. with Multilayer perceptron, I want to train the neurons in a way, that it chooses as many samples as possible while minimizing the sum of the cost factor.
I've checked all the model options and also searched the package manager for something like that, but I was unable to find anything. Could someone tell me whether this can be done using Weka?
What you are describing sounds more like an optimization problem rather than a classification or regression problem (for which you would use a Weka classifier).
Weka does have some limited support for optimization through its abstract weka.core.Optimization class (e.g., used internally by weka.classifiers.functions.Logistic). But that requires implementing some methods.
To cast your net wider, you might want to take a look at the following article that describes various optimization techniques:
https://machinelearningmastery.com/tour-of-optimization-algorithms/

How to use uncertainties to weight residuals in a Savitzky-Golay filter.

Is there a way to incorporate the uncertainties on my data set into the result of the Savitzky Golay fit? Since I am not passing this information into the function, I asume that it is simply calcuating the 'best fit' via an unweighted least-squares process. I am currently working with data that has non-uniform uncertainty, and so the fit of the data could be improved by including the errors that I have for my main dataset.
The wikipedia page for the Savitzky-Golay filter suggests how I might go about alter the process of calculating the coefficients of the fit, and I am staring at the code for scipy.signal.savgol_filter, but I cannot get my head around what I need to adjust so that this will do what I want it to.
Are there any ready-made weighted SG filters floating about? I find it hard to believe that no-one else has ever needed this tool in Python, but maybe I have missed something.
Check out this Python module: https://github.com/surhudm/savitzky_golay_with_errors
This python script improves upon the traditional Savitzky-Golay filter
by accounting for errors or covariance in the data. The inputs and
arguments are all modelled after scipy.signal.savgol_filter
Matlab function sgolayfilt supports weights. Check the documentation.

How to detect and delete noise in rapidminer?

I am new in rapid miner 5, just want to know how to find noise in my data and show them in chart and how to delete them?
A complex problem because it depends what you mean by noise.
If you mean finding individual attributes whose values are plain wrong then you could plot a histogram view and work out some sort of limits on what constitutes a valid value. You could then impose that rule by using Filter Examples to remove them.
If you mean finding attributes that have some sort of random jitter applied to them it would be difficult to detect these. Only by knowing beforehand what the expected shape of the distribution is could you compare with observation and do something about it. However, the action to take is by no means obvious.
If you mean finding examples within an example set that are obviously different from other examples then you could consider using the various outlier functions. The simplest one to get started is Detect Outlier (Distances). This finds a set number of outliers (default 10) based on a distance calculation that uses all the attributes for examples. It creates a new attribute called outlier that is set to true or false. You could then use the Filter Examples operator to remove those that are set to true.
Hope that helps at least as a start.

Weka: Classifier and ReplaceMissingValues

I am relatively new to the data mining area and have been experimenting with Weka.
I have a dataset which consists of almost 8000 records related to customers and items they have purchased. 58% of this data set has missing values for the "Gender" attribute.
I want to find the missing gender values based on the other data I do have.
I first thought I could do this using a classifier algorithm in Weka using a training set to build a model. Based on examples I saw online, I tried this with pretty much all the available algorithms available in Weka using a training set that consisted of 60-80% of the data which did not have missing values. This gave me a lower accuracy rate than I wanted (80-86% depending on the algorithm used)
Did I go about this correctly? Is there a way to improve this accuracy? I experimented with using different attributes, different pre-processing of the data etc.
I also tried using the ReplaceMissingValues filter on the complete dataset to see how that would handle the missing values. However, it just changed all the missing values to "Female" which obviously cannot be the case. So I'm wondering also wondering if I need to use this filter in my situation or not.
It sounds like you went about it in the correct way. The ReplaceMissingValues filter replaces the missing values with the most frequent of the non-missing values I think, so it is not what you want in this case.
A better way to get an idea of the true accuracy of your gender-predictor would be to use cross-validation instead of the training/test split (Weka has a separate option for that). 80-86% may seem low, but keep in mind that random guessing will only get you about 50%, so it's still a lot better than that. To try to get better performance, pick a classifier that performs well and then play with its parameters until you get better performance. This is likely to be quite labour-intensive (although you could of course use automated methods for tuning, see e.g. Auto-WEKA), but the only way to improve the performance.
You can also combine the algorithm you choose with a separate feature selection step (Weka has a special meta-classifier for this). This may improve performance, but again you'll have to experiment to find the particular configuration that works for you.

Regression Tree Forest in Weka

I'm using Weka and would like to perform regression with random forests. Specifically, I have a dataset:
Feature1,Feature2,...,FeatureN,Class
1.0,X,...,1.4,Good
1.2,Y,...,1.5,Good
1.2,F,...,1.6,Bad
1.1,R,...,1.5,Great
0.9,J,...,1.1,Horrible
0.5,K,...,1.5,Terrific
.
.
.
Rather than learning to predict the most likely class, I want to learn the probability distribution over the classes for a given feature vector. My intuition is that using just the RandomForest model in Weka would not be appropriate, since it would be attempting to minimize its absolute error (maximum likelihood) rather than its squared error (conditional probability distribution). Is that intuition right? Is there a better model to be using if I want to perform regression rather than classification?
Edit: I'm actually thinking now that in fact it may not be a problem. Presumably, classifiers are learning the conditional probability P(Class | Feature1,...,FeatureN) and the resulting classification is just finding the c in Class that maximizes that probability distribution. Therefore, a RandomForest classifier should be able to give me the conditional probability distribution. I just had to think about it some more. If that's wrong, please correct me.
If you want to predict the probabilities for each class explicitly, you need different input data. That is, you would need to replace the value to predict. Instead of one data set with the class label, you would need n data sets (for n different labels) with aggregated data for each unique feature vector. Your data would look something like
Feature1,...,Good
1.0,...,0.5
0.3,...,1.0
and
Feature1,...,Bad
1.0,...,0.8
0.3,...,0.1
and so on. You would need to learn one model for each class and run them separately on any data to be classified. That is, for each label you learn a model to predict a number that is the probability of being in that class, given a feature vector.
If you don't need the probabilities to be predicted explicitly, have a look at the Bayesian classifiers in Weka, which make use of probabilities in the models that they learn.