Unable to create class vector of structs - c++

I am trying to create an empty vector of structs. I will be adding elements at runtime with push_back().
The overall structure is a separate class has a vector of Resource objects, and each Resource object is supposed to have this struct vector, pipeline. I don't understand why this declaration is not being treated as a regular class variable. In Resource.cpp, the hint vscode gives me mentions something about an allocator. I neither know what that is, nor know how it applies.
Resource.h
#include <vector>
class Resource {
public:
int typeSize;
typedef struct PipelineSlot{
bool isBusy;
uint32_t busyCycle;
Instruction *occupiedBy;
} pls_t;
std::vector<pls_t> pipeline; //why doesn't this create a class variable?
static bool pushFU(Instruction* instr, int cycle, std::vector<Resource> &fuVector);
};
Resource.cpp
#include <Resource.h>
typedef struct PipelineSlot pls_t;
static bool pushFU(Instruction* instr, int cycle, std::vector<Resource> &fuVector) {
for (auto fu : fuVector) {
std::vector<pls_t> pipe = fu.pipeline; //IDE doesn't like this
if (fu.pipeline.size() > 0) {
if (fu.pipeline.back().busyCycle != cycle && fu.pipeline.size() < Resource::resourceLatency.find(fu.type)->second) {
pls_t newInstr {true, cycle, instr};
fu.pipeline.push_back(newInstr); //IDE doesn't like this
return true;
}
} else if (fu.pipeline.size() == 0) {
pls_t newInstr {true, cycle, instr};
fu.pipeline.push_back(newInstr); //IDE doesn't like this
return true;
}
}
return false;
}
Not sure if it's relevant, but IDE only has an issue with the push_back() calls, not with the other vector methods (which I also don't understand). The end goal is to have a class vector of structs that I can modify at run time. How do I achieve this?
EDIT: VSCode gives me this hint when I hover over the push_back() lines:
no instance of overloaded function "std::vector<_Tp, _Alloc>push_back [with _Tp=Resource::pls_t, Alloc=std::allocator<Resource::pls_t]" matches the argument list -- argument types are: (pls_t) -- object type is: std::vector<Resource::pls_t, std::allocator<Resource::pls_t>>
Compiler tells me this (lots of these errors):
error: ‘class Resource’ has no member named ‘pipeline’; did you mean ‘typeSize’?
if (fu.pipeline.size() > 0) { behavior
Note: I am a college student with a background in c, but am VERY new with c++.

So here's the fundamental error
class Resource
{
typedef struct PipelineSlot {
bool isBusy;
uint32_t busyCycle;
Instruction *occupiedBy;
} pls_t;
};
Because PipelineSlot is inside the Resource class the names created here are Resource::PipelineSlot and Resource::pls_t, not (as you seem to think) PipelineSlot and pls_t.
Outside of the Resource class PipelineSlot and pls_t must be qualified with Resource::. So this code would work
std::vector<Resource::pls_t> pipe = fu.pipeline;
So would moving the struct outside of the Resource class. That's probably what you should do.
But then you've confused things even further by creating a new typedef typedef struct PipelineSlot pls_t;. This is a completely different definition from the previous one, because it is given outside the Resource class, and the types declared here PipelineSlot and pls_t have no relation at all to the previously declared types.

Use:
std::vector<Resource::pls_t> pipe = fu.pipeline;

Related

C++ Assign std::map values with enum class object

Consider following code.
In my real case scenario i have somthing like that:
typedef enum
{
vehicle,
computer,
} Article;
And that is what I'm trying to construct:
enum class status{
notPaid,
paid,
};
struct S {
status status_vehicle;
status status_computer;
std::map<Article, status> mymap =
{
{vehicle, S::status_vehicle},
{computer, S::status_computer},
};
};
int main ()
{
Article a1 = vehicle;
S::mymap.at(a1) = status::paid; // this line doesn't work
}
However, the last line (S::mymap.at(a1) = status::paid;) is not working. I've tried different approaches, using the find() function of std::map for example. I got the error "assignment of member std::pair<Article, status>::second in read only object".
Does someone know, how to do that? Also maybe how to design the whole in a better way? (the whole from the line "And that is what I'm trying to construct").
Also I would have prefer to use an unordered_map instead of a map but was not working. Thanks
Because mymap is not static.
You can do like this:
Article a1 = vehicle;
struct S mystruct;
mystruct.mymap.at(a1) = status::paid;
Or add static to your member in struct:
struct S {
status status_vehicle;
status status_computer;
static std::map<Article, status> mymap;
};
But when using static, you have to initialize mymap outside declaration of struct S and member that you can't use non-static members of struct
std::map<Article,status> S::mymap={
{vehicle,S::status_vehicle}
};
A static member is shared by all objects of the class. All static data
is initialized to zero when the first object is created, if no other
initialization is present
And logically is not good in your example
https://en.cppreference.com/w/cpp/language/static
Since myMap is non-static, it cannot be assigned as static variables are.
You can change your code like this:
int main ()
{
Article a1 = vehicle;
S ss;
ss.mymap.at(a1) = status::paid;
}

Is there a good way to combine or simplify these STL maps?

I'm writing a class that needs to store a bunch of different primitives and classes. I've decided to make a map for each different data type where the key in the map would be the name of the variable, and the value in the map would be the value of the variable. My maps are defined like this:
std::unordered_map<std::string, int> myInts;
std::unordered_map<std::string, float> myFloats;
std::unordered_map<std::string, Something> mySomethings;
For each map, I have to write two methods, one which will get the value of some variable and one which will set the value of some variable like so:
void setMyInt(const std::string &varName, int newVal) {
myInts[varName] = newVal;
}
int getMyInt(const std::string &varName) {
return myInts[varName];
}
This is all fine and easy, however, I ended up with 8 different maps, and 16 of these get set methods. This doesn't seem very efficient or clean to me, not to mention that every time I need to store a new data type I have to define a new map and write 2 new get-set methods.
I considered getting rid of the get set methods and instead writing 2 template methods which would take in the type of the variable which the user needs to get or set, and then accessing the proper set to perform the operation, like so:
template<class Type>
void getVariable<Type>(const std::string &varName) {
// if Type == int -> return myInts[varName];
// else if Type == float -> return myFloats[varName];
}
This seems like a really poor approach since the user could pass in types which are not supported by the class, and the method breaks C++'s rule of not being really generic.
Another idea I had was writing some Variable class which would have all of the fields that this class should store, along with some enum that defines what Variable the class is actually being used for, and then making a map of this Variable class like this:
enum Type {
TYPE_INT,
TYPE_FLOAT,
TYPE_SOMETHING
class Variable {
Type type;
int myInt;
float myFloat;
Something mySomething;
}
std::unordered_map<std::string, Variable> myVariables;
But this also seems like a really poor solution, or at least one which is difficult to understand. Is there some smart way to make this class store different types?
How about a template class like below:
template<typename ValueType>
class UnorderedStringMap : public std::unordered_map<std::string, ValueType> {
public:
...
void setValue(const std::string &varName, ValueType newVal) {
std::unordered_map::operator[](varName) = newVal;
}
const ValueType& getValue(const std::string &varName) {
return std::unordered_map::operator[](varName);
}
...
}
UnorderedStringMap<int> myInts;
UnorderedStringMap<float> myFloats;
You can then use it as a normal std::unordered_map as well.

Design Pattern for caching different derived types without using RTTI

Let's say I have a family of classes which all implement the same interface, perhaps for scheduling:
class Foo : public IScheduler {
public:
Foo (Descriptor d) : IScheduler (d) {}
/* methods */
};
class Bar : public IScheduler {
public:
Bar (Descriptor d) : IScheduler (d) {}
/* methods */
};
Now let's say I have a Scheduler class, which you can ask for an IScheduler-derived class to be started for a given descriptor. If it already exists, you'll be given a reference to it. If one doesn't exist, then it creates a new one.
One hypothetical invocation would be something like:
Foo & foo = scheduler->findOrCreate<Foo>(descriptor);
Implementing that would require a map whose keys were (descriptor, RTTI) mapped to base class pointers. Then you'd have to dynamic_cast. Something along these lines, I guess:
template<class ItemType>
ItemType & Scheduler::findOrCreate(Descriptor d)
{
auto it = _map.find(SchedulerKey (d, typeid(ItemType)));
if (it == _map.end()) {
ItemType * newItem = new ItemType (d);
_map[SchedulerKey (d, typeid(ItemType))] = newItem;
return *newItem;
}
ItemType * existingItem = dynamic_cast<ItemType>(it->second);
assert(existingItem != nullptr);
return *existingItem;
}
Wondering if anyone has a way to achieve a similar result without leaning on RTTI like this. Perhaps a way that each scheduled item type could have its own map instance? A design pattern, or... ?
The address of a function, or class static member, is guaranteed to be unique (as far as < can see), so you could use such an address as key.
template <typename T>
struct Id { static void Addressed(); };
template <typename ItemType>
ItemType const& Scheduler::Get(Descriptor d) {
using Identifier = std::pair<Descriptor, void(*)()>;
Identifier const key = std::make_pair(d, &Id<ItemType>::Addressed);
IScheduler*& s = _map[key];
if (s == nullptr) { s = new ItemType{d}; }
return static_cast<ItemType&>(*s);
}
Note the use of operator[] to avoid a double look-up and simplify the function body.
Here's one way.
Add a pure virtual method to IScheduler:
virtual const char *getId() const =0;
Then put every subclass to it's own .h or .cpp file, and define the function:
virtual const char *getId() const { return __FILE__; }
Additionally, for use from templates where you do have the exact type at compile time, in the same file define static method you can use without having class instance (AKA static polymorphism):
static const char *staticId() { return __FILE__; }
Then use this as cache map key. __FILE__ is in the C++ standard, so this is portable too.
Important note: use proper string compare instead of just comparing pointers. Perhaps return std::string instead of char* to avoid accidents. On the plus side, you can then compare with any string values, save them to file etc, you don't have to use only values returned by these methods.
If you want to compare pointers (like for efficiency), you need a bit more code to ensure you have exactly one pointer value per class (add private static member variable declaration in .h and definition+initialization with FILE in corresponding .cpp, and then return that), and only use the values returned by these methods.
Note about class hierarchy, if you have something like
A inherits IScheduler, must override getId()
A2 inherits A, compiler does not complain about forgetting getId()
Then if you want to make sure you don't accidentally forget to override getId(), you should instead have
abstract Abase inherits IScheduler, without defining getId()
final A inherits Abase, and must add getId()
final A2 inherits Abase, and must add getId(), in addition to changes to A
(Note: final keyword identifier with special meaning is C++11 feature, for earlier versions just leave it out...)
If Scheduler is a singleton this would work.
template<typename T>
T& Scheduler::findOrCreate(Descriptor d) {
static map<Descriptor, unique_ptr<T>> m;
auto& p = m[d];
if (!p) p = make_unique<T>(d);
return *p;
}
If Scheduler is not a singleton you could have a central registry using the same technique but mapping a Scheduler* / Descriptor pair to the unique_ptr.
If you know all your different subtypes of IsScheduler, then yes absolutely. Check out Boost.Fusion, it let's you create a map whose key is really a type. Thus for your example, we might do something like:
typedef boost::fusion::map<
boost::fusion::pair<Foo, std::map<Descriptor, Foo*>>,
boost::fusion::pair<Bar, std::map<Descriptor, Bar*>>,
....
> FullMap;
FullMap map_;
And we will use that map thuslly:
template <class ItemType>
ItemType& Scheduler::findOrCreate(Descriptor d)
{
// first, we get the map based on ItemType
std::map<Descriptor, ItemType*>& itemMap = boost::fusion::at_key<ItemType>(map_);
// then, we look it up in there as normal
ItemType*& item = itemMap[d];
if (!item) item = new ItemType(d);
return item;
}
If you try to findOrCreate an item that you didn't define in your FullMap, then at_key will fail to compile. So if you need something truly dynamic where you can ad hoc add new schedulers, this won't work. But if that's not a requirement, this works great.
static_cast the ItemType* to void* and store that in the map.
Then, in findOrCreate, just get the void* and static_cast it back to ItemType*.
static_casting T* -> void* -> T* is guaranteed to get you back the original pointer. You already use typeid(ItemType) as part of your key, so it's guaranteed that the lookup will only succeed if the exact same type is requested. So that should be safe.
If you also need the IScheduler* in the scheduler map just store both pointers.

C++ : nameable objects belonging to an instance of a class, and stored in it

I am trying to make it possible for a programmer (who uses my library) to create nameable instances of type X that are stored inside an instance of class C (or at least are exclusive to that instance).
These are the only two (ugly) solutions I have managed to come up with (needless to say, I am just picking up C++)
1)
class C
{
public:
class XofC
{
public:
XofC() = delete;
XofC(C& mom)
{
mom.Xlist.emplace_front();
ref = Xlist.front();
}
X& access()
{
return ref;
}
private:
X& ref;
};
//etc
private:
std::forward_list<X> Xlist;
friend class XofC;
//etc
}
Problem:
Having to pass everywhere XofC instances.
2)
class C
{
public:
void newX(std::string);
X& getX(std::string);
//etc.
private:
/*possible run-time mapping implementation
std::vector<X> Xvec;
std::unordered_map<std::string, decltype(Xvec.size())> NameMap;
*/
//etc
}
Problem:
This does the job, but since all names of X (std::string) are known at compilation, the overhead of using run-time std::unordered_map<std::string, decltype(Xvec.size())> kind-of bugs me for something this simple.
Possible(?) solution: compile-time replacing of std::string with automatic index (int). Then I could use:
class C
{
public:
void newX(int); //int: unique index calculated at compile time from std::string
X& getX(int); //int: unique index calculated at compile time from std::string
//etc.
private:
std::vector<X> Xvec;
}
Questions:
Is there a 3)?
Is a compile time solution possible for 2)?
This is the real-life situation: I was starting my first C++ "project" and I thought I could use the practice and utility from an awesome user-friendly, simple and fast argument management library. I plan to make an ArgMan class which can parse the argV based on some specified switches. Switches would be named by the programmer descriptively and the trigger strings be specified (e.g. a switch named recurse could have "-r" and "-recursive" as triggers). When necessary, you should be easily able to get the setting of the switch. Implementation detail: ArgMan would have a std::unordered_map<std::string/*a trigger*/, ??/*something linking to the switch to set on*/>. This ensures an almost linear parse of argV relative to argC. How should I approach this?
You could 'abuse' non-type template arguments to get compiletime named instances:
Live on Coliru
Assume we have a data class X:
#include <string>
struct X
{
int has_some_properties;
std::string data;
};
Now, for our named instances, we define some name constants. The trick is, to give them external linkage, so we can use the address as a non-type template argument.
// define some character arrays **with external linkage**
namespace Names
{
extern const char Vanilla[] = "Vanilla";
extern const char Banana [] = "Banana";
extern const char Coconut[] = "Coconut";
extern const char Shoarma[] = "Shoarma";
}
Now, we make a NamedX wrapper that takes a const char* non-type template argument. The wrapper holds a static instance of X (the value).
// now we can "adorn" a `namedX` with the name constants (above)
template <const char* Name>
struct NamedX
{
static X value;
};
template <const char* Name> X NamedX<Name>::value;
Now you can use it like this:
int main()
{
X& vanilla = NamedX<Names::Vanilla>::value;
vanilla = { 42, "Woot!" };
return vanilla.has_some_properties;
}
Note that due to the fact that the template arguments are addresses, no actual string comparison is done. You cannot, e.g. use
X& vanilla = NamedX<"Vanilla">::value;
becuase "Vanilla" is a prvalue without external linkage. So, in fact you could do without some of the complexity and use tag structs instead: Live on Coliru
While Neil's solution did what I asked for, it was too gimmicky to use in my library. Also, sehe's trick is surely useful, but, if I understood correctly, but doesn't seem related to my question. I have decided to emulate the desired behavior using method 1), here is a less broken attempt at it:
class C
{
private:
class X
{
//std::string member;
//etc
};
public:
class XofC
{
public:
XofC(C & _mom) : mom(_mom)
{
mom.Xlist.emplace_front();
tehX = &(Xlist.front());
}
X & get(maybe)
{
if (&maybe != &mom) throw std::/*etc*/;
return &tehX;
}
private:
X * tehX;
C & mom;
};
private:
//etc
std::forward_list<X> Xlist;
friend class XofC;
//etc
};
Usage:
C foo;
bar = C::XofC(foo); //acts like an instance of X, but stored in C, but you have to use:
bar.get(foo)/*reference to the actual X*/.member = "_1_";
Of course, the downside is you have to make sure you pass bar everywhere you need it, but works decently.
This is how it looks like in my tiny argument manager library:
https://raw.github.com/vuplea/arg_manager.h/master/arg_manager.h

Accomplish this task in C++; Migration from AS3.0

I've got way too much information to work with, so for now I'll consider this question answered until I can sort it all out and decide on the final implementation! Thanks a ton gf and Simon Buchan. I wish I could accept both of your answers, since they're both definite possibilities!
Additional / Revised Conceptual Information as suggested:
What I am aiming to do;
I am making a game. In this game every object used is an instance of the DOBJ class. The TUR class extends the DOBJ class. The SHO class extends the TUR class.
Each TUR class has an array of SHO's stored in it's SHOARR array. Each SHO instance needs to be given a set of instructions.
I know for a fact I could make 1000's of different SHO classes that have their instructions set during construction.
However, considering I will have so many different acting SHO instances, I was interested in another way to pass a set of instructions. Through the contruction of the SHO would be the ideal.
The instructions I am attempting to pass to each SHO are simple if statements;
if(frame > 64) { rotation += 4; };
if(state == 0 && frame < 32) { xs = 12; ys = 12; state = 1; };
Original question
Migration from ActionScript3.0 to C++ is proving to be a trial indeed. Thanks to those who have answered my questions thus far and also to those who opened stackoverflow in the first place. Onto the question... (TL;DR near the bottom to get straight to the question)
I'm attempting to apply the same logic that I could apply in AS3.0 to my project in C++ and it's just not going very well.
In AS3.0 I was used to slapping any and every datatype into an Array. It made things pretty simple. Now that I've run into C++ dev, I realized that I can't exactly do that anymore.
So now I'm stuck with this problem of rewriting a little AI system in a new language, where the driving point of the system isn't even compatible!
Here's an example of a piece of the code I was writing in AS3.0;
AI[NUM][1]( OBJ, AI[NUM][2], AI[NUM][3] );
AI being an array, NUM being an integer, OBJ being an instance of a class.
This line obviously called the function in the second element of the first array in the main array with the arguments being a class in which to perform the function on, whatever was in the third element of the first array of the main array, and likewise the fourth element.
In this case;
AI[NUM][1] would be a function
AI[NUM][2] would be a variable
AI[NUM][3] would be a number
Generally, my AI was run on calling a function to change or compare the variable with a number.
An example would be;
CompareST( someObject, "x", 500 );
and return true if someObject's x variable was smaller than (ST) 500.
The AI array itself was just filled with arrays of calls similar to this.
Quite new to C++ I had no idea how to go about this, so I did a bit of searching and reading of many different websites and came to the conclusion that I should look into function pointers.
However, after reading a bit into them, I've come to the conclusion that it won't help me realize my goal. While it did help me call functions like I wanted to call them, it doesn't help me stack different datatypes into one large array of arrays.
TL;DR
EDIT++:
What I need for each object is a set of instructions to be checked every frame. However, for each instance of the class, the instructions have to be different.
I plan on having a LOT of different instances, so making a class for each one is unreasonable.
Thus, I needed a way to pass a set of instructions to each one through it's constructor and read + execute them at any time their think() function is called.
My ultimate goal (aside from finding out about a better way to go about this) would be to be able to have an array of function calls, like;
A[n][0]( O, A[n][1], A[n][2] );
Where;
O is the instance the function is altering
A[n][0] is a function (Equality or Comparison)
A[n][1] is the variable, eg; "x", O["x"] (or a pointer to that variable in the case of C++)
A[n][2] is the value to alter the variable by, or compare it to.
And I'm not sure how I would rewrite this into C++, or alter it to work in another way.
Aftermath / Additional Information
What I'm actually aiming to do is be able to give an object a set of instructions at the time of it's creation, through the constructor. For example upon creation give an object instructions to wait 64 frames, and then rotate in the opposite direction, would have been something like this;
t.AI = [ [ 1, AIF.CompareET, "STATE", 0, AIF.CompareGT, "FRAME", 64, 0, AIF.EqualityAT, "baseRotation", 180, AIF.EqualityET, "STATE", 1 ] ];
In pseudocode;
(The 1 in the array denotes how to read the rest of the array, in this case everything before the odd 0 [ The one that comes after 64 ] is a comparison. If any of those fail, anything after the 0 will not be looked at )
Compare STATE is equal to (ET) 0, if true
Compare FRAME is greather than (GT) 64, if true
Add 180 to (AT) baseRotation, Set STATE equal to 1
Sorry that this turned out really long. I hope it's understandable, and I'm not asking something stupidly difficult to explain.
You can store functions using function pointers or functors. Variant types though are not natively supported by C++, you have to use custom solutions there.
One possibility would be to use Boost.Any (or better, Boost.Variant if you only use a fixed set of types):
typedef void (*Function)(Object*, const std::string&, boost::any&);
std::vector<Function> functions;
Given some function:
void f(Object* obj, const std::string& name, boost::any& value) {
// ...
}
you could store and call it similar to your example:
functions.push_back(&f);
functions[0](obj, "x", boost::any(500));
To utilize a declarative syntax, there are three options that come to my mind:
you use a similar approach and have central "interpreter" function, e.g. based on a switch (don't forget to switch to integers or pointers-to-members instead of strings if you need performance)
you invent your own language and generate C++ code from description files
you compose function objects in a declarative way
To do composition, you could use Boost.Bind or something like custom objects that represent operations:
struct Operation {
virtual ~Operation() {}
virtual bool operator()(Object&) = 0;
};
template<class T>
struct GreaterThen : Operation {
typedef T Object::*Member;
Member member;
const T value;
CompareGT(Member member, const T& value) : member(member), value(value) {}
bool operator()(Object& obj) { return (obj.*member > value); }
};
template<class T>
struct SetTo : Operation {
typedef T Object::*member;
Member member;
const T value;
SetTo(Member member, const T& value) : member(member), value(value) {}
bool operator()(Object& obj) { obj.*member = value; return true; }
};
Now we can build operation lists:
typedef std::vector<Operation*> OpList;
OpList operation;
operations.push_back(new GreaterThen<int>(&Object::Frame, 64));
operations.push_back(new SetTo<int>(&Object::State, 1));
We can use helper functions to avoid having to specify the template types:
template<class T>
Operation* opGreaterThen(T Object::*mem, const T& val) {
return new GreaterThen<T>(mem, val);
}
Assuming a similar helper for SetTo and using Boost.Assign the above becomes:
OpList operations = boost::assign::list_of
(opGreaterThen(&Object::Frame, 64))
(opSetTo (&Object::State, 1));
Executing the operations becomes the following then:
OpList::iterator it = operation.begin();
for( ; it != operations.end(); ++it) {
Operation& op = *it; // just for readability
if(!op(someObject)) break; // stop if operation returns false
}
Wow.
Reading through that slowly suggests what you're trying to end up with is an array of function calls and you can choose a different function with the same parameters (but different implementation) for different actions and choose the correct one for the correct case.
If that is the case, you're looking for function pointers. Try this tutorial.
You should be able to use a function pointer with an argument set and point it to the correct function based on your needs. You won't need an array of function pointers for this either - any function that matches the definition should do. From the tutorial, declare a function pointer like this:
int (TMyClass::*functptr)(classname, int, int) = NULL; // C++
Then assign it later:
this.functptr = &TMyClass::doitthisway;
While it is possible (although a pain) to have an array of arbitrary types, you pretty much never need it, since you have to know something about what is where to do anything interesting with it: for example, your 'TL;DR' example seems to look something like:
struct AIRule {
// Can only handle comparing ints, see later for more general solution.
typedef bool compare_type(AIObject*, AIObject::*int, int);
compare_type* compare;
AIObject* object;
AIObject::int* member;
int comparand;
};
So now you can do something like:
bool ai_equal(AIObject* object, AIObject::int* member, int comparand) {
return object->*member == comparand;
}
...
ai[n].compare = &ai_equal;
ai[n].object = some_object;
ai[n].member = &AIObject::some_member;
ai[n].comparand = 50;
...
if (ai[n].compare(ai[n].object, ai[n].member, ai[n].comparand)) {
...
}
This just moves the any type problem from the rules array to member though. C++ needs to know at least how many bytes a member is, and a string (for example) can be much bigger than an int. You can get around this by using pointers: which essentially is C++'s version of any, but you then need to delete it yourself (or you will leak memory!), at which point the interface method below becomes simpler.
If I was doing what you seem to want, I would use inheritance:
struct Sprite {
int frame;
double rotation;
Sprite() {
frame = 0;
rotation = 0.0;
}
virtual ~Sprite() {}
virtual void think() {
++frame;
}
virtual void draw() {
...
}
};
struct RotatingSprite : public Sprite {
int state;
MyShape() {
state = 0;
}
void think() {
Sprite::think();
if (state == 0 && frame > 64) {
state = 1;
rotation += 180.0;
}
}
};
Or a function pointer:
struct Sprite {
int frame;
double rotation;
void (*think)(Sprite*);
Sprite() {
frame = 0;
rotation = 0.0;
}
};
void rotate_think(Sprite* sprite) {
if (sprite->state == 0 && sprite->frame > 64) {
sprite->state = 1;
sprite->rotation += 180.0;
}
}
...
sprite->think = &rotate_think;
If you really need to do it dynamically I would recommend using the ++ part of C++. For the predicates (a predicate is just something that returns a boolean, like isLowerCase()) create an AIPredicate interface, and the actions an AIAction interface:
struct AIPredicate {
// "When you delete an AIPredicate, delete the full type, not just this interface."
virtual ~AIPredicate() {}
// "You can treat this as a function (operator()) but I'm not providing an implementation here ( = 0)"
virtual bool operator()(AIObject* object) = 0;
};
struct AIAction {
virtual ~AIAction() {}
virtual void operator()(AIObject* object) = 0;
};
struct AIRule {
// std::auto_ptr (or std::unique_ptr if you can use C++0x) will delete predicate for you.
// Add "#include <memory>" to your includes if it complains (most std headers will include it already)
std::auto_ptr<AIPredicate> predicate;
std::auto_ptr<AIAction> action;
};
Now you can make types like:
struct AIFrame : public AIPredicate {
// Implement the operator() member AICondition promises.
bool operator()(AIObject* object) {
return object->foo < 100;
}
};
...
// Use .reset() instead of = if you use std::unique_ptr.
ai[n].predicate = new AIFooIsLow();
If you want to have a very general predicate type, you can use the very powerful (and complicated) templates feature:
// The naming convention I'm using here is 'T'TitleCase for template parameters, TitleCase for types,
// lower_case for arguments and variables and '_'lower_case for members.
template<typename TMemberType, AIObject::TMemberType* TMember>
struct AIMemberEquals : public AIPredicate {
// Constructor: Initializes a new instance after it is created.
AIMemberEquals(TMemberType comparand) {
// Save comparand argument so we can use it in operator().
_comparand = comparand;
}
bool operator()(AIObject* object) {
return object->*TMember == comparand;
}
// Stores the value to compare.
TMemberType _comparand;
};
Unfortunately, creating templates looks a bit crazy:
ai[n].predicate = new AIMemberEquals<int, &AIObject::some_member>(100);
Read it as "create a new instance of (the type that AIMemberEquals applied to int and (the some_member member of AIObject) creates), with the argument 100".
When you have multiple predicates memory management becomes a bit more difficult without C++0x's unique_ptr or shared_ptr, types that will delete the object for you, since std::auto_ptr doesn't work in containers:
#include <vector>
struct AIData {
// vector is fairly close to AS3's Array type, it is a good default for
// arrays of changing or unknown size.
std::vector<AIPredicate*> predicates;
// Destructor: will be run before the memory for this object is freed.
~AIData() {
for (int i = 0; i != predicates.size(); ++i) {
delete predicates[i];
}
}
};
...
ai[n].predicates.push_back(new AIFooIsLow());
...
for (int i = 0; i != ai[n].predicates.size(); ++i) {
(*ai[n].predicates[i])(ai[n].object);
}
In C++0x:
struct AIData {
// unique_ptr will delete it for you, so no ~AIData() needed.
std::vector<unique_ptr<AIPredicate>> predicates;
};
Your final example could in C++ look something like:
std::auto_ptr<Shape> shape(new Shape());
...
std::auto_ptr<AIRule> rule(new AIRule());
rule->predicates.push(new AIMemberEquals<int, &Shape::state>(0));
rule->predicates.push(new AIMemberGreater<int, &Shape::frame>(64));
rule->actions.push(new AIAddMember<double, &Shape::rotation>(180.0));
rule->actions.push(new AISetMember<int, &Shape::state>(1));
shape->ai.push(rule); // .push(std::move(rule)); if you are using unique_ptr
Certainly not as pretty, but it works and is fairly flexible.