Is a floating-point value of 0.0 represented differently from other floating-point values? - c++

I've been going back through my C++ book, and I came across a statement that says zero can be represented exactly as a floating-point number. I was wondering how this is possible unless the value of 0.0 is stored as a type other than a floating point value. I wrote the following code to test this:
#include <iomanip>
#include <iostream>
int main()
{
float value1 {0.0};
float value2 {0.1};
std::cout << std::setprecision(10) << std::fixed;
std::cout << value1 << '\n'
<< value2 << std::endl;
}
Running this code gave the following output:
0.0000000000
0.1000000015
To 10 digits of precision, 0.0 is still 0, and 0.1 has some inaccuracies (which is to be expected). Is a value of 0.0 different from other floating point numbers in the way it is represented, and is this a feature of the compiler or the computer's architecture?

How can 2 be represented as an exact number? 4? 15? 0.5? The answer is just that some numbers can be represented exactly in the floating-point format (which is based on base-2/binary) and others can't.
This is no different from in decimal. You can't represent 1/3 exactly in decimal, but that doesn't mean you can't represent 0.
Zero is special in a way, because (like the other real numbers) it's more trivial to prove this property than for some arbitrary fractional number. But that's about it.
So:
what is it about these values (0, 1/16, 1/2048, ...) that allows them to be represented exactly.
Simple mathematics. In any given base, in the sort of representation we're talking about, some numbers can be written out with a fixed number of decimal places; others can't. That's it.
You can play online with H. Schmidt's IEEE-754 Floating Point Converter for different numbers to see a bunch of different representations, and what errors come about as a result of encoding into those representations. For starters, try 0.5, 0.2 and 0.1.
It was my (perhaps naive) understanding that all floating point values contained some instability.
No, absolutely not.
You want to treat every floating point value in your program as potentially having some small error on it, because you generally don't know what sequence of calculations led to it. You can't trust it, in general. I expect someone half-taught this to you in the past, and that's what led to your misunderstanding.
But, if you do know the error (or lack thereof) involved at each step in the creation of the value (e.g. "all I've done is initialised it to zero"), then that's fine! No need to worry about it then.

Here is one way to look at the situation: with 64 bits to store a number, there are 2^64 bit patterns. Some of these are "not-a-number" representations, but most of the 2^64 patterns represent numbers. The number that is represented is represented exactly, with no error. This might seem strange after learning about floating point math; a caveat lurks ahead.
However, as huge as 2^64 is, there are infinitely many more real numbers. When a calculation produces a non-integer result, the odds are pretty good that the answer will not be a number represented by one of the 2^64 patterns. There are exceptions. For example, 1/2 is represented by one of the patterns. If you store 0.5 in a floating point variable, it will actually store 0.5. Let's try that for other single-digit denominators. (Note: I am writing fractions for their expressive power; I do not intend integer arithmetic.)
1/1 – stored exactly
1/2 – stored exactly
1/3 – not stored exactly
1/4 – stored exactly
1/5 – not stored exactly
1/6 – not stored exactly
1/7 – not stored exactly
1/8 – stored exactly
1/9 – not stored exactly
So with these simple examples, over half are not stored exactly. When you get into more complicated calculations, any one piece of the calculation can throw you off the islands of exact representation. Do you see why the general rule of thumb is that floating point values are not exact? It is incredibly easy to fall into that realm. It is possible to avoid it, but don't count on it.
Some numbers can be represented exactly by a floating point value. Most cannot.

Related

Is hardcode float precise if it can be represented by binary format in IEEE 754?

for example, 0 , 0.5, 0.15625 , 1 , 2 , 3... are values converted from IEEE 754. Are their hardcode version precise?
for example:
is
float a=0;
if(a==0){
return true;
}
always return true? other example:
float a=0.5;
float b=0.25;
float c=0.125;
is a * b always equal to 0.125 and a * b==c always true? And one more example:
int a=123;
float b=0.5;
is a * b always be 61.5? or in general, is integer multiply by IEEE 754 binary float precise?
Or a more general question: if the value is hardcode and both the value and result can be represented by binary format in IEEE 754 (e.g.:0.5 - 0.125), is the value precise?
There is no inherent fuzzyness in floating-point numbers. It's just that some, but not all, real numbers can't be exactly represented.
Compare with a fixed-width decimal representation, let's say with three digits. The integer 1 can be represented, using 1.00, and 1/10 can be represented, using 0.10, but 1/3 can only be approximated, using 0.33.
If we instead use binary digits, the integer 1 would be represented as 1.00 (binary digits), 1/2 as 0.10, 1/4 as 0.01, but 1/3 can (again) only be approximated.
There are some things to remember, though:
It's not the same numbers as with decimal digits. 1/10 can be
written exactly as 0.1 using decimal digits, but not using binary
digits, no matter how many you use (short of infinity).
In practice, it is difficult to keep track of which numbers can be
represented and which can't. 0.5 can, but 0.4 can't. So when you need
exact numbers, such as (often) when working with money, you shouldn't
use floating-point numbers.
According to some sources, some processors do strange things
internally when performing floating-point calculations on numbers
that can't be exactly represented, causing results to vary in a way
that is, in practice, unpredictable.
(My opinion is that it's actually a reasonable first approximation to say that yes, floating-point numbers are inherently fuzzy, so unless you are sure your particular application can handle that, stay away from them.)
For more details than you probably need or want, read the famous What Every Computer Scientist Should Know About Floating-Point Arithmetic. Also, this somewhat more accessible website: The Floating-Point Guide.
No, but as Thomas Padron-McCarthy says, some numbers can be exactly represented using binary but not all of them can.
This is the way I explain it to non-developers who I work with (like Mahmut Ali I also work on an very old financial package): Imagine having a very large cake that is cut into 256 slices. Now you can give 1 person the whole cake, 2 people half of the slices but soon as you decide to split it between 3 you can't - it's either 85 or 86 - you can't split the cake any further. The same is with floating point. You can only get exact numbers on some representations - some numbers can only be closely approximated.
C++ does not require binary floating point representation. Built-in integers are required to have a binary representation, commonly two's complement, but one's complement and sign and magnitude are also supported. But floating point can be e.g. decimal.
This leaves open the question of whether C++ floating point can have a radix that does not have 2 as a prime factor, like 2 and 10. Are other radixes permitted? I don't know, and last time I tried to check that, I failed.
However, assuming that the radix must be 2 or 10, then all your examples involve values that are powers of 2 and therefore can be exactly represented.
This means that the single answer to most of your questions is “yes”. The exception is the question “is integer multiply by IEEE 754 binary float [exact]”. If the result exceeds the precision available, then it can't be exact, but otherwise it is.
See the classic “What Every Computer Scientist Should Know About Floating-Point Arithmetic” for background info about floating point representation & properties in general.
If a value can be exactly represented in 32-bit or 64-bit IEEE 754, then that doesn't mean that it can be exactly represented with some other floating point representation. That's because different 32-bit representations and different 64-bit representations use different number of bits to hold the mantissa and have different exponent ranges. So a number that can be exactly represented in one way, can be beyond the precision or range of some other representation.
You can use std::numeric_limits<T>::is_iec559 (where e.g. T is double) to check whether your implementation claims to be IEEE 754 compatible. However, when floating point optimizations are turned on, at least the g++ compiler (1)erroneously claims to be IEEE 754, while not treating e.g. NaN values correctly according to that standard. In effect, the is_iec559 only tells you whether the number representation is IEEE 754, and not whether the semantics conform.
(1) Essentially, instead of providing different types for different semantics, gcc and g++ try to accommodate different semantics via compiler options. And with separate compilation of parts of a program, that can't conform to the C++ standard.
In principle, this should be possible. If you restrict yourself to exactly this class of numbers with a finite 2-power representation.
But it is dangerous: what if someone takes your code and changes your 0.5 to 0.4 or your .0625 to .065 due to whatever reasons? Then your code is broken. And no, even excessive comments won't help about that - someone will always ignore them.

is it possible to categorize the different forms of the approximation of floating point numbers

I am just wondering if we can make rules for the form of the approximation of real numbers using floating point numbers.
For intance is a floating point number can be terminated by 1.xxx777777 (so terminated by infinite 7 by instance and eventually a random digit at the end ) ?
I believe that there is only this form of floating point number :
1. exact value.
2. value like 1.23900008721.... so where 1.239 is approximated with digits that appears as "noise" but with 0 between the exact value and this noise
3. value like 3.2599995, where 3.26 is approximated by adding 9999.. and a final digit (like 5), so approximated with a floating number just below the real number
4. value like 2.000001, where 2.0 is approximated with a floating number just above the real number
You are thinking in terms of decimal numbers, that is, numbers that can be represented as n*(10^e), with e either positive or negative. These numbers occur naturally in your thought processes for historical reasons having to do with having ten fingers.
Computer numbers are represented in binary, for technical reasons that have to do with an electrical signal being either present or absent.
When you are dealing with smallish integer numbers, it does not matter much that the computer representation does not match your own, because you are thinking of an accurate approximation of the mathematical number, and so is the computer, so by transitivity, you and the computer are thinking about the same thing.
With either very large or very small numbers, you will tend to think in terms of powers of ten, and the computer will definitely think in terms of powers of two. In these cases you can observe a difference between your intuition and what the computer does, and also, your classification is nonsense. Binary floating-point numbers are neither more dense or less dense near numbers that happen to have a compact representation as decimal numbers. They are simply represented in binary, n*(2^p), with p either positive or negative. Many real numbers have only an approximative representation in decimal, and many real numbers have only an approximative representation in binary. These numbers are not the same (binary numbers can be represented in decimal, but not always compactly. Some decimal numbers cannot be represented exactly in binary at all, for instance 0.1).
If you want to understand the computer's floating-point numbers, you must stop thinking in decimal. 1.23900008721.... is not special, and neither is 1.239. 3.2599995 is not special, and neither is 3.26. You think they are special because they are either exactly or close to compact decimal numbers. But that does not make any difference in binary floating-point.
Here are a few pieces of information that may amuse you, since you tagged your question C++:
If you print a double-precision number with the format %.16e, you get a decimal number that converts back to the original double. But it does not always represent the exact value of the original double. To see the exact value of the double in decimal, you must use %.53e. If you write 0.1 in a program, the compiler interprets this as meaning 1.000000000000000055511151231257827021181583404541015625e-01, which is a relatively compact number in binary. Your question speaks of 3.2599995 and 2.000001 as if these were floating-point numbers, but they aren't. If you write these numbers in a program, the compiler will interpret them as 3.25999950000000016103740563266910612583160400390625
and
2.00000100000000013977796697872690856456756591796875. So the pattern you are looking for is simple: the decimal representation of a floating-point number is always 17 significant digits followed by 53-17=36 “noise” digits as you call them. The noise digits are sometimes all zeroes, and the significant digits can end in a bunch of zeroes too.
Floating point is presented by bits. What this means is:
1 bit flipped after the decimal is 0.5 or 1/2
01 bits is 0.25 or 1/4
etc.
This means floating point is always approximately close but not exact if it's not an exact power of 2, when represented in terms of what the machine can handle.
Rational numbers can very accurately be represented by the machine (not precisely of course if not a power of two below the decimal point), but irrational numbers will always carry an error. In terms of this your question is not so much related to c++ as to computer architecture.

Subtracting double gives wrong result

I am trying to get the decimal part from the double and this is my code to get the decimal part
double decimalvalue = 23423.1234-23423.0;
0.12340000000040163
But after the subtraction I am expecting decimalvalue to be 0.1234 but I get 0.12340000000040163. Please help me to understand this behavior and if there is any workaround for it.
I suggest you have a look at
What Every Computer Scientist Should Know About Floating-Point Arithmetic
Wikipedia: IEEE 754
There are a finite number of values you can specify in a floating point number, but an infinite number of floating point numbers in the represented range.
Some floating point numbers therefore cannot be represented exactly in any floating/double style data type.
The typical way to handle your specific problem is to avoid a direct equality comparison, but rather do an epsilon test: See if the expected and computed values are within some small number (compared to the values being subtracted), called epsilon, of each other.
Indirectly related is the concept of Machine Epsilon, worth having a look at for a complete understanding
This is a rounding error. In base ten you cannot perfectly represent 1/3 in a given number of digits (say 15). In base 2 there are a lot more things you can not represent, 0.1234 happens to be one of them. The precision depends on the scale, but it's about 15 decimal digits for a double. I would suggest taking a look at http://en.wikipedia.org/wiki/IEEE_floating_point for more details on floating point numbers.
If you are trying to make a base 10 system (like a human used calculator for instance) and you need exact results you should use BCD.

How to convert float to double(both stored in IEEE-754 representation) without losing precision?

I mean, for example, I have the following number encoded in IEEE-754 single precision:
"0100 0001 1011 1110 1100 1100 1100 1100" (approximately 23.85 in decimal)
The binary number above is stored in literal string.
The question is, how can I convert this string into IEEE-754 double precision representation(somewhat like the following one, but the value is not the same), WITHOUT losing precision?
"0100 0000 0011 0111 1101 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010"
which is the same number encoded in IEEE-754 double precision.
I have tried using the following algorithm to convert the first string back to decimal number first, but it loses precision.
num in decimal = (sign) * (1 + frac * 2^(-23)) * 2^(exp - 127)
I'm using Qt C++ Framework on Windows platform.
EDIT: I must apologize maybe I didn't get the question clearly expressed.
What I mean is that I don't know the true value 23.85, I only got the first string and I want to convert it to double precision representation without precision loss.
Well: keep the sign bit, rewrite the exponent (minus old bias, plus new bias), and pad the mantissa with zeros on the right...
(As #Mark says, you have to treat some special cases separately, namely when the biased exponent is either zero or max.)
IEEE-754 (and floating point in general) cannot represent periodic binary decimals with full precision. Not even when they, in fact, are rational numbers with relatively small integer numerator and denominator. Some languages provide a rational type that may do it (they are the languages that also support unbounded precision integers).
As a consequence those two numbers you posted are NOT the same number.
They in fact are:
10111.11011001100110011000000000000000000000000000000000000000 ...
10111.11011001100110011001100110011001100110011001101000000000 ...
where ... represent an infinite sequence of 0s.
Stephen Canon in a comment above gives you the corresponding decimal values (did not check them, but I have no reason to doubt he got them right).
Therefore the conversion you want to do cannot be done as the single precision number does not have the information you would need (you have NO WAY to know if the number is in fact periodic or simply looks like being because there happens to be a repetition).
First of all, +1 for identifying the input in binary.
Second, that number does not represent 23.85, but slightly less. If you flip its last binary digit from 0 to 1, the number will still not accurately represent 23.85, but slightly more. Those differences cannot be adequately captured in a float, but they can be approximately captured in a double.
Third, what you think you are losing is called accuracy, not precision. The precision of the number always grows by conversion from single precision to double precision, while the accuracy can never improve by a conversion (your inaccurate number remains inaccurate, but the additional precision makes it more obvious).
I recommend converting to a float or rounding or adding a very small value just before displaying (or logging) the number, because visual appearance is what you really lost by increasing the precision.
Resist the temptation to round right after the cast and to use the rounded value in subsequent computation - this is especially risky in loops. While this might appear to correct the issue in the debugger, the accummulated additional inaccuracies could distort the end result even more.
It might be easiest to convert the string into an actual float, convert that to a double, and convert it back to a string.
Binary floating points cannot, in general, represent decimal fraction values exactly. The conversion from a decimal fractional value to a binary floating point (see "Bellerophon" in "How to Read Floating-Point Numbers Accurately" by William D.Clinger) and from a binary floating point back to a decimal value (see "Dragon4" in "How to Print Floating-Point Numbers Accurately" by Guy L.Steele Jr. and Jon L.White) yield the expected results because one converts a decimal number to the closest representable binary floating point and the other controls the error to know which decimal value it came from (both algorithms are improved on and made more practical in David Gay's dtoa.c. The algorithms are the basis for restoring std::numeric_limits<T>::digits10 decimal digits (except, potentially, trailing zeros) from a floating point value stored in type T.
Unfortunately, expanding a float to a double wrecks havoc on the value: Trying to format the new number will in many cases not yield the decimal original because the float padded with zeros is different from the closest double Bellerophon would create and, thus, Dragon4 expects. There are basically two approaches which work reasonably well, however:
As someone suggested convert the float to a string and this string into a double. This isn't particularly efficient but can be proven to produce the correct results (assuming a correct implementation of the not entirely trivial algorithms, of course).
Assuming your value is in a reasonable range, you can multiply it by a power of 10 such that the least significant decimal digit is non-zero, convert this number to an integer, this integer to a double, and finally divide the resulting double by the original power of 10. I don't have a proof that this yields the correct number but for the range of value I'm interested in and which I want to store accurately in a float, this works.
One reasonable approach to avoid this entirely issue is to use decimal floating point values as described for C++ in the Decimal TR in the first place. Unfortunately, these are not, yet, part of the standard but I have submitted a proposal to the C++ standardization committee to get this changed.

Representing probability in C++

I'm trying to represent a simple set of 3 probabilities in C++. For example:
a = 0.1
b = 0.2
c = 0.7
(As far as I know probabilities must add up to 1)
My problem is that when I try to represent 0.7 in C++ as a float I end up with 0.69999999, which won't help when I am doing my calculations later. The same for 0.8, 0.80000001.
Is there a better way of representing numbers between 0.0 and 1.0 in C++?
Bear in mind that this relates to how the numbers are stored in memory so that when it comes to doing tests on the values they are correct, I'm not concerned with how they are display/printed out.
This has nothing to do with C++ and everything to do with how floating point numbers are represented in memory. You should never use the equality operator to compare floating point values, see here for better methods: http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
My problem is that when I try to
represent 0.7 in C++ as a float I end
up with 0.69999999, which won't help
when I am doing my calculations later.
The same for 0.8, 0.80000001.
Is it really a problem? If you just need more precision, use a double instead of a float. That should get you about 15 digits precision, more than enough for most work.
Consider your source data. Is 0.7 really significantly more correct than 0.69999999?
If so, you could use a rational number library such as:
http://www.boost.org/doc/libs/1_40_0/libs/rational/index.html
If the problem is that probabilities add up to 1 by definition, then store them as a collection of numbers, omitting the last one. Infer the last value by subtracting the sum of the others from 1.
How much precision do you need? You might consider scaling the values and quantizing them in a fixed-point representation.
The tests you want to do with your numbers will be incorrect.
There is no exact floating point representation in a base-2 number system for a number like 0.1, because it is a infinte periodic number. Consider one third, that is exactly representable as 0.1 in a base-3 system, but 0.333... in the base-10 system.
So any test you do with a number 0.1 in floating point will be prone to be flawed.
A solution would be using rational numbers (boost has a rational lib), which will be always exact for, ermm, rationals, or use a selfmade base-10 system by multiplying the numbers with a power of ten.
If you really need the precision, and are sticking with rational numbers, I suppose you could go with a fixed point arithemtic. I've not done this before so I can't recommend any libraries.
Alternatively, you can set a threshold when comparing fp numbers, but you'd have to err on one side or another -- say
bool fp_cmp(float a, float b) {
return (a < b + epsilon);
}
Note that excess precision is automatically truncated in each calculation, so you should take care when operating at many different orders of magnitude in your algorithm. A contrived example to illustrate:
a = 15434355e10 + 22543634e10
b = a / 1e20 + 1.1534634
c = b * 1e20
versus
c = b + 1.1534634e20
The two results will be very different. Using the first method a lot of the precision of the first two numbers will be lost in the divide by 1e20. Assuming that the final value you want is on the order of 1e20, the second method will give you more precision.
If you only need a few digits of precision then just use an integer. If you need better precision then you'll have to look to different libraries that provide guarantees on precision.
The issue here is that floating point numbers are stored in base 2. You can not exactly represent a decimal in base 10 with a floating point number in base 2.
Lets step back a second. What does .1 mean? Or .7? They mean 1x10-1 and 7x10-1. If you're using binary for your number, instead of base 10 as we normally do, .1 means 1x2-1, or 1/2. .11 means 1x2-1 + 1x2-2, or 1/2+1/4, or 3/4.
Note how in this system, the denominator is always a power of 2. You cannot represent a number without a denominator that is a power of 2 in a finite number of digits. For instance, .1 (in decimal) means 1/10, but in binary that is an infinite repeating fraction, 0.000110011... (with the 0011 pattern repeating forever). This is similar to how in base 10, 1/3 is an infinite fraction, 0.3333....; base 10 can only represent numbers exactly with a denominator that is a multiple of powers of 2 and 5. (As an aside, base 12 and base 60 are actually really convenient bases, since 12 is divisible by 2, 3, and 4, and 60 is divisible by 2, 3, 4, and 5; but for some reason we use decimal anyhow, and we use binary in computers).
Since floating point numbers (or fixed point numbers) always have a finite number of digits, they cannot represent these infinite repeating fractions exactly. So, they either truncate or round the values to be as close as possible to the real value, but are not equal to the real value exactly. Once you start adding up these rounded values, you start getting more error. In decimal, if your representation of 1/3 is .333, then three copies of that will add up to .999, not 1.
There are four possible solutions. If all you care about is exactly representing decimal fractions like .1 and .7 (as in, you don't care that 1/3 will have the same problem you mention), then you can represent your numbers as decimal, for instance using binary coded decimal, and manipulate those. This is a common solution in finance, where many operations are defined in terms of decimal. This has the downside that you will need to implement all of your own arithmetic operations yourself, without the benefits of the computer's FPU, or find a decimal arithmetic library. This also, as mentioned, does not help with fractions that can't be represented exactly in decimal.
Another solution is to use fractions to represent your numbers. If you use fractions, with bignums (arbitrarily large numbers) for your numerators and denominators, you can represent any rational number that will fit in the memory of your computer. Again, the downside is that arithmetic will be slower, and you'll need to implement arithmetic yourself or use an existing library. This will solve your problem for all rational numbers, but if you wind up with a probability that is computed based on π or √2, you will still have the same issues with not being able to represent them exactly, and need to also use one of the later solutions.
A third solution, if all you care about is getting your numbers to add up to 1 exactly, is for events where you have n possibilities, to only store the values of n-1 of those probabilities, and compute the probability of the last as 1 minus the sum of the rest of the probabilities.
And a fourth solution is to do what you always need to remember when working with floating point numbers (or any inexact numbers, such as fractions being used to represent irrational numbers), and never compare two numbers for equality. Again in base 10, if you add up 3 copies of 1/3, you will wind up with .999. When you want to compare that number to 1, you have to instead compare to see if it is close enough to 1; check that the absolute value of the difference, 1-.999, is less than a threshold, such as .01.
Binary machines always round decimal fractions (except .0 and .5, .25, .75, etc) to values that don't have an exact representation in floating point. This has nothing to do with the language C++. There is no real way around it except to deal with it from a numerical perspective within your code.
As for actually producing the probabilities you seek:
float pr[3] = {0.1, 0.2, 0.7};
float accPr[3];
float prev = 0.0;
int i = 0;
for (i = 0; i < 3; i++) {
accPr[i] = prev + pr[i];
prev = accPr[i];
}
float frand = rand() / (1 + RAND_MAX);
for (i = 0; i < 2; i++) {
if (frand < accPr[i]) break;
}
return i;
I'm sorry to say there's not really an easy answer to your problem.
It falls into a field of study called "Numerical Analysis" that deals with these types of problems (which goes far beyond just making sure you don't check for equality between 2 floating point values). And by field of study, I mean there are a slew of books, journal articles, courses etc. dealing with it. There are people who do their PhD thesis on it.
All I can say is that that I'm thankful I don't have to deal with these issues very much, because the problems and the solutions are often very non-intuitive.
What you might need to do to deal with representing the numbers and calculations you're working on is very dependent on exactly what operations you're doing, the order of those operations and the range of values that you expect to deal with in those operations.
Depending on the requirements of your applications any one of several solutions could be best:
You live with the inherent lack of precision and use floats or doubles. You cannot test either for equality and this implies that you cannot test the sum of your probabilities for equality with 1.0.
As proposed before, you can use integers if you require a fixed precision. You represent 0.7 as 7, 0.1 as 1, 0.2 as 2 and they will add up perfectly to 10, i.e., 1.0. If you have to calculate with your probabilities, especially if you do division and multiplication, you need to round the results correctly. This will introduce an imprecision again.
Represent your numbers as fractions with a pair of integers (1,2) = 1/2 = 0.5. Precise, more flexible than 2) but you don't want to calculate with those.
You can go all the way and use a library that implements rational numbers (e.g. gmp). Precise, with arbitrary precision, you can calculate with it, but slow.
yeah, I'd scale the numbers (0-100)(0-1000) or whatever fixed size you need if you're worried about such things. It also makes for faster math computation in most cases. Back in the bad-old-days, we'd define entire cos/sine tables and other such bleh in integer form to reduce floating fuzz and increase computation speed.
I do find it a bit interesting that a "0.7" fuzzes like that on storage.