Is there a -​- (minus minus) operator in Scala? - list

I've come across this operator in a Scala implementation of a graph (that you can find the example here, where two lists are interponed the operator -- and also two Maps.
abstract class GraphBase[T, U] {
case class Edge(n1: Node, n2: Node, value: U) {
def toTuple = (n1.value, n2.value, value)
}
case class Node(value: T) {
var adj: List[Edge] = Nil
// neighbors are all nodes adjacent to this node.
def neighbors: List[Node] = adj.map(edgeTarget(_, this).get)
}
var nodes: Map[T, Node] = Map()
var edges: List[Edge] = Nil
// If the edge E connects N to another node, returns the other node,
// otherwise returns None.
def edgeTarget(e: Edge, n: Node): Option[Node]
override def equals(o: Any) = o match {
case g: GraphBase[_,_] => (nodes.keys.toList -- g.nodes.keys.toList == Nil &&
edges.map(_.toTuple) -- g.edges.map(_.toTuple) == Nil)
case _ => false
}
def addNode(value: T) = {
val n = new Node(value)
nodes = Map(value -> n) ++ nodes
n
}
}
My current interpreter does not recognize it, so I am wondering where is this operator coming from? Does it mean list subtraction?
Is it valid Scala code?

You can alter an implementation of equals method to avoid usage of --:
override def equals(o: Any) = o match {
case g: GraphBase[_,_] => (nodes.keySet == g.nodes.keySet &&
edges.map(_.toTuple).toSet == g.edges.map(_.toTuple).toSet)
case _ => false
}

Related

how to find the max value in an IntList?

I'm writing a function which will find the largest element in an IntList. I know how to do this in Java, but can't understand how to do this at Scala.
I made it, Here is what I have so far, I think this should be it.
abstract class IntList
case class Nil() extends IntList
case class Cons(h: Int, t: IntList) extends IntList
object ListFuns {
// return the maximum number in is
// return the maximum number in is
def maximum(is: IntList): Int = is match {
case Nil() => 0
case list => max(head(is), tail(is))
}
def head(l : IntList) : Int = l match {
case Nil() => 0
case Cons(e,tail) => e
}
def tail(l : IntList) : IntList = l match {
case Nil() => Nil()
case Cons(e,tail) => tail
}
def max(n : Int, l : IntList) : Int = l match {
case Nil() => n
case l => {
val h = head(l)
var champ = 0
if(n > h) {
champ = n
n
}
else{
champ = h
h
}
if(tail(l) == Nil()){
champ
}
else{
max(champ, tail(l))
}
}
}
}
Pattern matching would make it much shorter :
def maximum(l: IntList) : Int = l match {
case Cons(singleValue, Nil) => singleValue
case Nil() => // you decide, 0, the min value of ints, throw....
case Cons(head, tail) =>
val maxOfTail = maximum(tail)
if(maxOfTail > head) maxOfTail else head
}
minor notes:
you can change case class Nil() to case object Nil
the last two lines should be just head max maximum(tail), or head.max(maximum(tail)), whichever you are more comfortable with (they are the same thing).
This is just a starting point, as you learn further, you will find that my method not being tail-recursive is not too good. You might also consider whether you could return an Option to account for the empty list case. Also, notice that implementation of maximum, minimum, sum, product... are very similar, and try to factor that out.

How to find the largest element in a list of integers recursively?

I'm trying to write a function which will recursively find the largest element in a list of integers. I know how to do this in Java, but can't understand how to do this at Scala.
Here is what I have so far, but without recursion:
def max(xs: List[Int]): Int = {
if (xs.isEmpty) throw new java.util.NoSuchElementException();
else xs.max;
}
How can we find it recursively with Scala semantic.
This is the most minimal recursive implementation of max I've ever been able to think up:
def max(xs: List[Int]): Option[Int] = xs match {
case Nil => None
case List(x: Int) => Some(x)
case x :: y :: rest => max( (if (x > y) x else y) :: rest )
}
It works by comparing the first two elements on the list, discarding the smaller (or the first, if both are equal) and then calling itself on the remaining list. Eventually, this will reduce the list to one element which must be the largest.
I return an Option to deal with the case of being given an empty list without throwing an exception - which forces the calling code to recognise the possibility and deal with it (up to the caller if they want to throw an exception).
If you want it to be more generic, it should be written like this:
def max[A <% Ordered[A]](xs: List[A]): Option[A] = xs match {
case Nil => None
case x :: Nil => Some(x)
case x :: y :: rest => max( (if (x > y) x else y) :: rest )
}
Which will work with any type which either extends the Ordered trait or for which there is an implicit conversion from A to Ordered[A] in scope. So by default it works for Int, BigInt, Char, String and so on, because scala.Predef defines conversions for them.
We can become yet more generic like this:
def max[A <% Ordered[A]](xs: Seq[A]): Option[A] = xs match {
case s if s.isEmpty || !s.hasDefiniteSize => None
case s if s.size == 1 => Some(s(0))
case s if s(0) <= s(1) => max(s drop 1)
case s => max((s drop 1).updated(0, s(0)))
}
Which will work not just with lists but vectors and any other collection which extends the Seq trait. Note that I had to add a check to see if the sequence actually has a definite size - it might be an infinite stream, so we back away if that might be the case. If you are sure your stream will have a definite size, you can always force it before calling this function - it's going to work through the whole stream anyway. See notes at the end for why I really would not want to return None for an indefinite stream, though. I'm doing it here purely for simplicity.
But this doesn't work for sets and maps. What to do? The next common supertype is Iterable, but that doesn't support updated or anything equivalent. Anything we construct might be very poorly performing for the actual type. So my clean no-helper-function recursion breaks down. We could change to using a helper function but there are plenty of examples in the other answers and I'm going to stick with a one-simple-function approach. So at this point, we can to switch to reduceLeft (and while we are at it, let's go for `Traversable' and cater for all collections):
def max[A <% Ordered[A]](xs: Traversable[A]): Option[A] = {
if (xs.hasDefiniteSize)
xs reduceLeftOption({(b, a) => if (a >= b) a else b})
else None
}
but if you don't consider reduceLeft recursive, we can do this:
def max[A <% Ordered[A]](xs: Traversable[A]): Option[A] = xs match {
case i if i.isEmpty => None
case i if i.size == 1 => Some(i.head)
case i if (i collect { case x if x > i.head => x }).isEmpty => Some(i.head)
case _ => max(xs collect { case x if x > xs.head => x })
}
It uses the collect combinator to avoid some clumsy method of bodging a new Iterator out of xs.head and xs drop 2.
Either of these will work safely with almost any collection of anything which has an order. Examples:
scala> max(Map(1 -> "two", 3 -> "Nine", 8 -> "carrot"))
res1: Option[(Int, String)] = Some((8,carrot))
scala> max("Supercalifragilisticexpialidocious")
res2: Option[Char] = Some(x)
I don't usually give these others as examples, because it requires more expert knowledge of Scala.
Also, do remember that the basic Traversable trait provides a max method, so this is all just for practice ;)
Note: I hope that all my examples show how careful choice of the sequence of your case expressions can make each individual case expression as simple as possible.
More Important Note: Oh, also, while I am intensely comfortable returning None for an input of Nil, in practice I'd be strongly inclined to throw an exception for hasDefiniteSize == false. Firstly, a finite stream could have a definite or non-definite size dependent purely on the sequence of evaluation and this function would effectively randomly return Option in those cases - which could take a long time to track down. Secondly, I would want people to be able to differentiate between having passed Nil and having passed truly risk input (that is, an infinite stream). I only returned Option in these demonstrations to keep the code as simple as possible.
The easiest approach would be to use max function of TraversableOnce trait, as follows,
val list = (1 to 10).toList
list.max
to guard against the emptiness you can do something like this,
if(list.empty) None else Some(list.max)
Above will give you an Option[Int]
My second approach would be using foldLeft
(list foldLeft None)((o, i) => o.fold(Some(i))(j => Some(Math.max(i, j))))
or if you know a default value to be returned in case of empty list, this will become more simpler.
val default = 0
(list foldLeft default)(Math.max)
Anyway since your requirement is to do it in recursive manner, I propose following,
def recur(list:List[Int], i:Option[Int] = None):Option[Int] = list match {
case Nil => i
case x :: xs => recur(xs, i.fold(Some(x))(j => Some(Math.max(j, x))))
}
or as default case,
val default = 0
def recur(list:List[Int], i:Int = default):Int = list match {
case Nil => i
case x :: xs => recur(xs, i.fold(x)(j => Math.max(j, x)))
}
Note that, this is tail recursive. Therefore stack is also saved.
If you want functional approach to this problem then use reduceLeft:
def max(xs: List[Int]) = {
if (xs.isEmpty) throw new NoSuchElementException
xs.reduceLeft((x, y) => if (x > y) x else y)
}
This function specific for list of ints, if you need more general approach then use Ordering typeclass:
def max[A](xs: List[A])(implicit cmp: Ordering[A]): A = {
if (xs.isEmpty) throw new NoSuchElementException
xs.reduceLeft((x, y) => if (cmp.gteq(x, y)) x else y)
}
reduceLeft is a higher-order function, which takes a function of type (A, A) => A, it this case it takes two ints, compares them and returns the bigger one.
You could use pattern matching like that
def max(xs: List[Int]): Int = xs match {
case Nil => throw new NoSuchElementException("The list is empty")
case x :: Nil => x
case x :: tail => x.max(max(tail)) //x.max is Integer's class method
}
Scala is a functional language whereby one is encourage to think recursively. My solution as below. I recur it base on your given method.
def max(xs: List[Int]): Int = {
if(xs.isEmpty == true) 0
else{
val maxVal= max(xs.tail)
if(maxVal >= xs.head) maxVal
else xs.head
}
}
Updated my solution to tail recursive thanks to suggestions.
def max(xs: List[Int]): Int = {
def _max(xs: List[Int], maxNum: Int): Int = {
if (xs.isEmpty) maxNum
else {
val max = {
if (maxNum >= xs.head) maxNum
else xs.head
}
_max(xs.tail, max)
}
}
_max(xs.tail, xs.head)
}
I used just head() and tail()
def max(xs: List[Int]): Int = {
if (xs.isEmpty) throw new NoSuchElementException
else maxRecursive(xs.tail, xs.head)
}
def maxRecursive(xs: List[Int], largest: Int): Int = {
if (!xs.isEmpty) {
if (xs.head > largest) maxRecursive(xs.tail, xs.head)
else maxRecursive(xs.tail, largest)
} else {
largest
}
}
Here is tests for this logic:
test("max of a few numbers") {
assert(max(List(3, 7, 2, 1, 10)) === 10)
assert(max(List(3, -7, 2, -1, -10)) === 3)
assert(max(List(-3, -7, -2, -5, -10)) === -2)
}
Folding can help:
if(xs.isEmpty)
throw new NoSuchElementException
else
(Int.MinValue /: xs)((max, value) => math.max(max, value))
List and pattern matching (updated, thanks to #x3ro)
def max(xs:List[Int], defaultValue: =>Int):Int = {
#tailrec
def max0(xs:List[Int], maxSoFar:Int):Int = xs match {
case Nil => maxSoFar
case head::tail => max0(tail, math.max(maxSoFar, head))
}
if(xs.isEmpty)
defaultValue
else
max0(xs, Int.MinValue)
}
(This solution does not create Option instance every time. Also it is tail-recursive and will be as fast as an imperative solution.)
Looks like you're just starting out with scala so I try to give you the simplest answer to your answer, how do it recursively:
def max(xs: List[Int]): Int = {
def maxrec(currentMax : Int, l: List[Int]): Int = l match {
case Nil => currentMax
case head::tail => maxrec(head.max(currentMax), tail) //get max of head and curretn max
}
maxrec(xs.head, xs)
}
This method defines an own inner method (maxrec) to take care of the recursiveness. It will fail ( exception) it you give it an empty list ( there's no maximum on an empty List)
Here is my code (I am a newbie in functional programming) and I'm assuming whoever lands up under this question will be folks like me. The top answer, while great, is bit too much for newbies to take! So, here is my simple answer. Note that I was asked (as part of a Course) to do this using only head and tail.
/**
* This method returns the largest element in a list of integers. If the
* list `xs` is empty it throws a `java.util.NoSuchElementException`.
*
* #param xs A list of natural numbers
* #return The largest element in `xs`
* #throws java.util.NoSuchElementException if `xs` is an empty list
*/
#throws(classOf[java.util.NoSuchElementException])
def max(xs: List[Int]): Int = find_max(xs.head, xs.tail)
def find_max(max: Int, xs: List[Int]): Int = if (xs.isEmpty) max else if (max >= xs.head) find_max(max, xs.tail) else find_max(xs.head, xs.tail)
Some tests:
test("max of a few numbers") {
assert(max(List(3, 7, 2)) === 7)
intercept[NoSuchElementException] {
max(List())
}
assert(max(List(31,2,3,-31,1,2,-1,0,24,1,21,22)) === 31)
assert(max(List(2,31,3,-31,1,2,-1,0,24,1,21,22)) === 31)
assert(max(List(2,3,-31,1,2,-1,0,24,1,21,22,31)) === 31)
assert(max(List(Int.MaxValue,2,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,222,3,-31,1,2,-1,0,24,1,21,22)) === Int.MaxValue)
}
list.sortWith(_ > ).head & list.sortWith( > _).reverse.head for greatest and smallest number
If you are required to write a recursive max function on a list using isEmpty, head and tail and throw exception for empty list:
def max(xs: List[Int]): Int =
if (xs.isEmpty) throw new NoSuchElementException("max of empty list")
else if (xs.tail.isEmpty) xs.head
else if (xs.head > xs.tail.head) max(xs.head :: xs.tail.tail)
else max(xs.tail)
if you were to use max function on list it is simply (you don't need to write your own recursive function):
val maxInt = List(1, 2, 3, 4).max
def max(xs: List[Int]): Int = {
def _max(xs: List[Int], maxAcc:Int): Int = {
if ( xs.isEmpty )
maxAcc
else
_max( xs.tail, Math.max( maxAcc, xs.head ) ) // tail call recursive
}
if ( xs.isEmpty )
throw new NoSuchElementException()
else
_max( xs, Int.MinValue );
}
With tail-recursion
#tailrec
def findMax(x: List[Int]):Int = x match {
case a :: Nil => a
case a :: b :: c => findMax( (if (a > b) a else b) ::c)
}
With pattern matching to find max and return zero in case empty
def findMax(list: List[Int]) = {
def max(list: List[Int], n: Int) : Int = list match {
case h :: t => max(t, if(h > n) h else n)
case _ => n
}
max(list,0)
}
I presume this is for the progfun-example
This is the simplest recursive solution I could come up with
def max(xs: List[Int]): Int = {
if (xs.isEmpty) throw new NoSuchElementException("The list is empty")
val tail = xs.tail
if (!tail.isEmpty) maxOfTwo(xs.head, max(xs.tail))
else xs.head
}
def maxOfTwo(x: Int, y: Int): Int = {
if (x >= y) x
else y
}
def max(xs: List[Int]): Int = xs match {
case Nil => throw new NoSuchElementException("empty list!")
case x :: Nil => x
case x :: tail => if (x > max(tail)) x else max(tail)
}

Scala: Using Option for key/value pairs in a list

I'm trying to write the get method for a key, value pair implemented using a list. I want to use the Option type as I heard its good for this but I'm new to Scala and I'm not really sure how to use it in this case...
This is as far as I got, only the method header.
def get(key : String): Option[Any] = {}
My guess is you are looking for something like this:
class KeyValueStore(pairs: List[(String, Any)]) {
def get(key: String): Option[Any] = pairs.collectFirst {
case (k, v) if k == key => v
}
}
This uses the collectFirst method for sequences. If you want a more "do it yourself" approach, this should work:
def get(key: String): Option[Any] = {
def search(xs: List[(String, Any)]): Option[Any] = {
xs match {
case List() => None //end of list and key not found. We return None
case (k, v) :: rest if k == key => Some(v) // found our key. Returning some value
case _ :: rest => search(rest) // not found until nou. Carrying on with the rest of the list
}
search(pairs)
}
}
You can turn a List of Pairs into a Map:
class Store[K, V](values: List[(K, V)]) {
val map = values.toMap
def get(key: K): Option[V] = map get key
}
Although #Marius' collectFirst version is probably the most elegant (and maybe a little bit faster as it only uses one closure), I find it more intuitive to use find for your problem :
def get[A, B](key: A, pairs: List[(A, B)]): Option[B] = pairs.find(_._1 == key).map(_._2)
In case you were wondering (or need high performance), you will need either #Marius' recursive or the following imperative version which may look more familiar (although less idiomatic):
def get[A, B](key: A, pairs: List[(A, B)]): Option[B] = {
var l = pairs
var found: Option[B] = None
while (l.nonEmpty && found.isEmpty) {
val (k, v) = l.head
if (k == key) {
found = Some(v)
} else {
l = l.tail
}
}
found
}
What you must understand is that Option[B] is a class that may either be instantiated to None (which replaces and improves the null reference used in other languages) or Some(value: B). Some is a case class, which allows, among other neat features, to instantiate it without the new keyword (thanks to some compiler magic, Google Scala case class for more info). You can think of Option as a List which may contain either 0 or 1 element: most operations that can be done on sequences can also be applied to Options (such as map in the find version).

Scala: extracting a repeated value from a list

I have often the need to check if many values are equal and in case extract the common value. That is, I need a function that will work like follows:
extract(List()) // None
extract(List(1,2,3)) // None
extract(List(2,2,2)) // Some(2)
Assuming one has a pimp that will add tailOption to seqs (it is trivial to write one or there is one in scalaz), one implementation looks like
def extract[A](l: Seq[A]): Option[A] = {
def combine(s: A)(r: Seq[A]): Option[A] =
r.foldLeft(Some(s): Option[A]) { (acc, n) => acc flatMap { v =>
if (v == n) Some(v) else None
} }
for {
h <- l.headOption
t <- l.tailOption
res <- combine(h)(t)
} yield res
}
Is there something like that - possibly more general - already in Scalaz, or some simpler way to write it?
This seems like a really complicated way to write
def extract[A](l:Seq[A]):Option[A] = l.headOption.flatMap(h =>
if (l.tail.forall(h==)) Some(h) else None)
You don't need tailOption, since the anonymous function that gets passed as an argument to flatMap is only executed if l is not empty.
If you only want to delete duplicates toSet is enough:
def equalValue[A](xs: Seq[A]): Option[A] = {
val set = xs.toSet
if (set.size == 1) Some(set.head) else None
}
scala> equalValue(List())
res8: Option[Nothing] = None
scala> equalValue(List(1,2,3))
res9: Option[Int] = None
scala> equalValue(List(2,2,2))
res10: Option[Int] = Some(2)
This is a fluent solution
yourSeq.groupBy(x => x) match {case m if m.size==1 => m.head._1; case _ => None}
You could use a map to count the number of occurrences of each element in the list and then return only those that occur more than once:
def extract[T](ts: Iterable[T]): Iterable[T] = {
var counter: Map[T, Int] = Map()
ts.foreach{t =>
val cnt = counter.get(t).getOrElse(0) + 1
counter = counter.updated(t, cnt)
}
counter.filter(_._2 > 1).map(_._1)
}
println(extract(List())) // List()
println(extract(List(1,2,3))) // List()
println(extract(List(2,2,2))) // List(2)
println(extract(List(2,3,2,0,2,3))) // List(2,3)
You can also use a foldLeft instead of foreach and use the empty map as the initial accumulator of foldLeft.

How should I remove the first occurrence of an object from a list in Scala?

What is the best way to remove the first occurrence of an object from a list in Scala?
Coming from Java, I'm accustomed to having a List.remove(Object o) method that removes the first occurrence of an element from a list. Now that I'm working in Scala, I would expect the method to return a new immutable List instead of mutating a given list. I might also expect the remove() method to take a predicate instead of an object. Taken together, I would expect to find a method like this:
/**
* Removes the first element of the given list that matches the given
* predicate, if any. To remove a specific object <code>x</code> from
* the list, use <code>(_ == x)</code> as the predicate.
*
* #param toRemove
* a predicate indicating which element to remove
* #return a new list with the selected object removed, or the same
* list if no objects satisfy the given predicate
*/
def removeFirst(toRemove: E => Boolean): List[E]
Of course, I can implement this method myself several different ways, but none of them jump out at me as being obviously the best. I would rather not convert my list to a Java list (or even to a Scala mutable list) and back again, although that would certainly work. I could use List.indexWhere(p: (A) ⇒ Boolean):
def removeFirst[E](list: List[E], toRemove: (E) => Boolean): List[E] = {
val i = list.indexWhere(toRemove)
if (i == -1)
list
else
list.slice(0, i) ++ list.slice(i+1, list.size)
}
However, using indices with linked lists is usually not the most efficient way to go.
I can write a more efficient method like this:
def removeFirst[T](list: List[T], toRemove: (T) => Boolean): List[T] = {
def search(toProcess: List[T], processed: List[T]): List[T] =
toProcess match {
case Nil => list
case head :: tail =>
if (toRemove(head))
processed.reverse ++ tail
else
search(tail, head :: processed)
}
search(list, Nil)
}
Still, that's not exactly succinct. It seems strange that there's not an existing method that would let me do this efficiently and succinctly. So, am I missing something, or is my last solution really as good as it gets?
You can clean up the code a bit with span.
scala> def removeFirst[T](list: List[T])(pred: (T) => Boolean): List[T] = {
| val (before, atAndAfter) = list span (x => !pred(x))
| before ::: atAndAfter.drop(1)
| }
removeFirst: [T](list: List[T])(pred: T => Boolean)List[T]
scala> removeFirst(List(1, 2, 3, 4, 3, 4)) { _ == 3 }
res1: List[Int] = List(1, 2, 4, 3, 4)
The Scala Collections API overview is a great place to learn about some of the lesser known methods.
This is a case where a little bit of mutability goes a long way:
def withoutFirst[A](xs: List[A])(p: A => Boolean) = {
var found = false
xs.filter(x => found || !p(x) || { found=true; false })
}
This is easily generalized to dropping the first n items matching the predicate. (i<1 || { i = i-1; false })
You can also write the filter yourself, though at this point you're almost certainly better off using span since this version will overflow the stack if the list is long:
def withoutFirst[A](xs: List[A])(p: A => Boolean): List[A] = xs match {
case x :: rest => if (p(x)) rest else x :: withoutFirst(rest)(p)
case _ => Nil
}
and anything else is more complicated than span without any clear benefits.