C++ alias for a global variable/instance object of a class - c++

I have this, a header file with class declaration and one global object instance:
struct ClassName
{
};
extern ClassName ClassObject;
But in CPP codes I'd like to access it via shorter name, for example CO instead of ClassObject
Ideally I'd like to do something like typedef ClassObject CO; but it's not supported
I don't want to use #define CO ClassObject because it's dangerous.
I don't want to use
extern ClassName &CO;
ClassName &CO=ClassObject;
Because that would decrease performance, accessing CO would have to lookup the address value first, while ClassObject wouldn't have to. So using ClassObject would be faster than CO, but I need same performance.
Tried with a union
union
{
ClassName ClassObject;
ClassName CO;
};
but it requires union to be static, so can't declare in header and share across other CPP files.
So there's no solution for this?

This is an unfortunately common design malady, wherein a programmer arbitrarily defines the problem so narrowly that they define away all possible solutions to that problem.
Macros are deemed "dangerous", despite there not actually being anything especially dangerous about this particular macro; it's just a name that turns into a different name (being only two letters is conceptually dangerous, but no more so than using a 2-letter identifier). So it is disregarded, even though it is workable solution (aside from the lack of namespace scoping, but you almost certainly aren't interested in that since you want the name to be as short as possible).
References are deemed to "decrease performance", despite a lack of evidence for references being slow in this particular case nor of the performance of your application being materially affected by an indirect access to a globally accessible object. So it is disregarded, even though this is a perfectly valid use of references in C++ and is directly analogous to type aliases.
If you start from the presupposition that all of the good solutions are bad, then you're obviously not going to be left with any good solutions. And that's where you find yourself.
But really, the best solution is to avoid creating tiny aliases for variables like this to begin with. It's one thing to create aliases for complex template classes like std::vector<int, MyAllocator<int>> and so forth, where there is a huge amount of cruft and verbiage spent on something that's much simpler than it appears. It's quite another to abbreviate an object name, particularly if the abbreviation is as short as 2 letters.
If the 2 letter name is an adequately descriptive name within this context, then that's what it should always be called. If the long name is long because it needs to be that long in order to be adequately descriptive, then odds are good that this descriptiveness will be important everywhere it gets used. And regardless of how you implement this alias, having two names for the same object in the same scope will get confusing to someone who has to read this code and figure out what it's doing. And that "someone" may well be your future self.
So just... don't do this.
only this "extern ClassName &CO;" would be in the header. So when compiling CPP files, they wouldn't know to what CO actually points.
If that really, really, really bothers you, C++17 offers inline variables, which would allow you to put inline ClassName &CO = ClassObject; in your headers.

Related

Pertinence of void pointers

Looking through a colleague's code, I see that some of its handles are stored as void pointers.
// Class header
void* hSomeSdk;
// Class implementation
hSomeSdk = new SomeSDK(...);
((SomeSDK*)hSomeSdk)->DoSomeWork();
Now I know that sometimes handles are void pointers because it may be unknown before runtime what will be the actual type of the handle. Or that it can help when we need to share the pointer without revealing its actual structure. But this does not seem to be the case in my situation: it will always be SomeSDK and it is not shared outside the class where it is created. Also the author of this code is gone from the company.
Are there other reasons why it would make sense to have it be a void pointer?
Since this is a member variable, I'm gonna go out on a limb and say your colleague wanted to minimize dependencies. Including the header for SomeSDK is probably undesirable just to define a pointer. The colleague may have had one of two reasons as far as I can see from the code you show:
They just didn't know they can add a forward declarations like class SomeSDK; to allow defining pointers. Some programmers just aren't aware of it.
They couldn't forward declare it. If SomeSDK is not a class, but a type alias (aka typedef), then it's not possible to forward declare it exactly. One can only declare the class it aliases, but that in turn may be an implementation detail that's hard to keep track of. Even the standard library has a similar problem, that is why it provides iosfwd to make forward declaring standard stream types easier.
If the code is peppered with casts of this handle, then the design should have been reworked ages ago. Otherwise, if it's in one place (or a few at most) only, I can see why the people maintaining it could live with it peacefully.
Nope.
If I had to guess, the ex-colleague was unfamiliar with forward declarations and thus didn't know they could still do SomeSDK* in the header without including the entire SomeSDK definition.
Given the constraints you've mentioned, the only thing this pattern achieves is to eliminate some type safety, make the code harder to read/maintain, and generate a Stack Overflow question.
void* were popular and needed back in C. They are convenient in the sense that they can be easily cast to anything. If you need to cast from double* to char*, you have to make a mid cast to void*.
The problem with void* is that they are too flexible: they do not convey intentions of the writer, making them very unsafe especially in big projects.
In Object Oriented Design it is popular to create abstract interface classes (all members are virtual and not implemented) and make pointers to such classes and then instantiate various possible implementation depending on the usage.
However, nowadays, it is more recommended to work with templates (main advantage of C++ over other languages), as those are much faster and enable more compile-time optimization than OOD allowed. Unfortunately, working with templates is still a huge hassle - they have more complicated syntax and it is difficult to convey intentions of the writer to users about restrictions and demands of the template parameters (Concepts TS that solves this problem decently will be available in C++20 - currently there is only SFINAE, a horrible temporary solution from 20 years ago; while Reflection TS, that will greatly enhance generic programming in C++, is unlikely to be available even in C++23).

Name custom LinkedList type

This is a question of Best practices.
I have implemented a LinkeList (https://github.com/ivanseidel/LinkedList) and it works fine.
The thing is, I'm writing a code that is repeatedly having things like: LinkedList<Beat>, which in my case, is a Rithm, but Rithm is not a type, class or anything, it's just how I see it.
I want a way of simplifying that name, without creating an extended class of LinkedList or anything. Just some way of replacing it.
I have tried with typedef:
typedef LinkedList<Beat> Rithm;
And also with a define (NAHH... I don't like it either)
#define Rithm LinkedList<Beat>
Is there a "correct" way of doing this?
typedef wiki also says the same:
The purpose of typedef is to form complex types from more-basic machine types1 and assign simpler names to such combinations. They are most often used when a standard declaration is cumbersome, potentially confusing, or likely to vary from one implementation to another.
One should give some thought to naming the typedef as well.
I use the naming conventions used in Dave Hanson's C Interfaces and Implementations: a type is named with the module name and a capital T. So for example, the type of sequences is Seq_T, and the type of hash tables is Table_T.

Is it okay to use the this pointer? [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicates:
Is there any reason to use this->
When should this-> be used?
When should I make explicit use of the this pointer?
When working with pointers to classes, I like to add a this-> in front of variables in a class to make it clearer that the variable I'm talking about is in the current class, as opposed to temporary variables, etc. So my lines would be something like
if(this->thing > other->thing)
this->doFoo();
Instead of
if(thing > other->thing)
doFoo();
Is it okay to add the superfluous this, or would that degrade code readability?
Consistency consistency consistency.
I conisder the this-> prefix a valid coding style if you use it throughout your entire project everywhere a member is accessed.
I prefer using a signifying prefix for members, e.g. m_. I feel it is less cutter and less tag soup than the explicit this->:
(alpha-this->gamma > this->alpha-gamma)
vs.
(alpha-m_gamma > m_alpha-gamma)
(The dotNetties have labeled m_ outdated - I use it on small C# projects out of spite. but anyway, any other distinct prefix would do, too.)
I've seen it used often to help intellisense get in gear, or to specifically filter members - which is ok, though leaving it in for that reason is questionable, especially if not used consistently.
That depends on your coding style, however many people would use
_myVariable
m_myVariable
myVariable_
To differentiate member variables from the other.
But the most important thing is to just be consistent
This is a style question, so answers will be subjective. Similarly, a lot of people I've worked with like to prefix member variables with m_ to make it clear that it's a member. (m_foo would be like your this->foo.) Then I'm sure there are people who feel this is a crime against the universe. YMMV. Use what works for you and anyone you might be working with.
One advantage (or disadvantage, depending on who you ask) to this-> is that you can have a variable with the same name that can be both a member and something locally scoped like a parameter or local variable, eg.:
foo bar;
void f(foo bar)
{
this->bar = bar;
}
As already noted this is, mostly, a matter of style.
Personally I do not use it for the data-members (I use the m prefix alternative), however I do use it for functions:
for consistency with templated code, where this might be necessary to defer lookup
for clarity, in order to distinguish at a glance whether it's a method of the class (possibly a base class) or a free-standing function
I think that, since you definitely don't want to trudge through levels of base class when reading up some code, the this-> clarification makes it much easier for the reader. And it's only 6 more characters to type.
I like this pattern too, but I like it more in managed code where it's "this." - the arrow operator does feel a bit noisier, but still it makes it very clear when you're referring to instance-level stuff.
of course you can do it, besides, the compiler would add it for you.
Normally you use this notation, when your method arguments and the member variables have the same name. (to differentiate the method argument with the member variable)
Say for e.g,
void CMYClass::fun1(int sameName)
{
...
this->sameName = sameName;
}
Otherwise, it's just a matter of taste...

Why use prefixes on member variables in C++ classes

A lot of C++ code uses syntactical conventions for marking up member variables. Common examples include
m_memberName for public members (where public members are used at all)
_memberName for private members or all members
Others try to enforce using this->member whenever a member variable is used.
In my experience, most larger code bases fail at applying such rules consistently.
In other languages, these conventions are far less widespread. I see it only occasionally in Java or C# code. I think I have never seen it in Ruby or Python code. Thus, there seems to be a trend with more modern languages to not use special markup for member variables.
Is this convention still useful today in C++ or is it just an anachronism. Especially as it is used so inconsistently across libraries. Haven't the other languages shown that one can do without member prefixes?
I'm all in favour of prefixes done well.
I think (System) Hungarian notation is responsible for most of the "bad rap" that prefixes get.
This notation is largely pointless in strongly typed languages e.g. in C++ "lpsz" to tell you that your string is a long pointer to a nul terminated string, when: segmented architecture is ancient history, C++ strings are by common convention pointers to nul-terminated char arrays, and it's not really all that difficult to know that "customerName" is a string!
However, I do use prefixes to specify the usage of a variable (essentially "Apps Hungarian", although I prefer to avoid the term Hungarian due to it having a bad and unfair association with System Hungarian), and this is a very handy timesaving and bug-reducing approach.
I use:
m for members
c for constants/readonlys
p for pointer (and pp for pointer to pointer)
v for volatile
s for static
i for indexes and iterators
e for events
Where I wish to make the type clear, I use standard suffixes (e.g. List, ComboBox, etc).
This makes the programmer aware of the usage of the variable whenever they see/use it. Arguably the most important case is "p" for pointer (because the usage changes from var. to var-> and you have to be much more careful with pointers - NULLs, pointer arithmetic, etc), but all the others are very handy.
For example, you can use the same variable name in multiple ways in a single function: (here a C++ example, but it applies equally to many languages)
MyClass::MyClass(int numItems)
{
mNumItems = numItems;
for (int iItem = 0; iItem < mNumItems; iItem++)
{
Item *pItem = new Item();
itemList[iItem] = pItem;
}
}
You can see here:
No confusion between member and parameter
No confusion between index/iterator and items
Use of a set of clearly related variables (item list, pointer, and index) that avoid the many pitfalls of generic (vague) names like "count", "index".
Prefixes reduce typing (shorter, and work better with auto-completion) than alternatives like "itemIndex" and "itemPtr"
Another great point of "iName" iterators is that I never index an array with the wrong index, and if I copy a loop inside another loop I don't have to refactor one of the loop index variables.
Compare this unrealistically simple example:
for (int i = 0; i < 100; i++)
for (int j = 0; j < 5; j++)
list[i].score += other[j].score;
(which is hard to read and often leads to use of "i" where "j" was intended)
with:
for (int iCompany = 0; iCompany < numCompanies; iCompany++)
for (int iUser = 0; iUser < numUsers; iUser++)
companyList[iCompany].score += userList[iUser].score;
(which is much more readable, and removes all confusion over indexing. With auto-complete in modern IDEs, this is also quick and easy to type)
The next benefit is that code snippets don't require any context to be understood. I can copy two lines of code into an email or a document, and anyone reading that snippet can tell the difference between all the members, constants, pointers, indexes, etc. I don't have to add "oh, and be careful because 'data' is a pointer to a pointer", because it's called 'ppData'.
And for the same reason, I don't have to move my eyes out of a line of code in order to understand it. I don't have to search through the code to find if 'data' is a local, parameter, member, or constant. I don't have to move my hand to the mouse so I can hover the pointer over 'data' and then wait for a tooltip (that sometimes never appears) to pop up. So programmers can read and understand the code significantly faster, because they don't waste time searching up and down or waiting.
(If you don't think you waste time searching up and down to work stuff out, find some code you wrote a year ago and haven't looked at
since. Open the file and jump about half way down without reading it.
See how far you can read from this point before you don't know if
something is a member, parameter or local. Now jump to another random
location... This is what we all do all day long when we are single
stepping through someone else's code or trying to understand how to
call their function)
The 'm' prefix also avoids the (IMHO) ugly and wordy "this->" notation, and the inconsistency that it guarantees (even if you are careful you'll usually end up with a mixture of 'this->data' and 'data' in the same class, because nothing enforces a consistent spelling of the name).
'this' notation is intended to resolve ambiguity - but why would anyone deliberately write code that can be ambiguous? Ambiguity will lead to a bug sooner or later. And in some languages 'this' can't be used for static members, so you have to introduce 'special cases' in your coding style. I prefer to have a single simple coding rule that applies everywhere - explicit, unambiguous and consistent.
The last major benefit is with Intellisense and auto-completion. Try using Intellisense on a Windows Form to find an event - you have to scroll through hundreds of mysterious base class methods that you will never need to call to find the events. But if every event had an "e" prefix, they would automatically be listed in a group under "e". Thus, prefixing works to group the members, consts, events, etc in the intellisense list, making it much quicker and easier to find the names you want. (Usually, a method might have around 20-50 values (locals, params, members, consts, events) that are accessible in its scope. But after typing the prefix (I want to use an index now, so I type 'i...'), I am presented with only 2-5 auto-complete options. The 'extra typing' people attribute to prefixes and meaningful names drastically reduces the search space and measurably accelerates development speed)
I'm a lazy programmer, and the above convention saves me a lot of work. I can code faster and I make far fewer mistakes because I know how every variable should be used.
Arguments against
So, what are the cons? Typical arguments against prefixes are:
"Prefix schemes are bad/evil". I agree that "m_lpsz" and its ilk are poorly thought out and wholly useless. That's why I'd advise using a well designed notation designed to support your requirements, rather than copying something that is inappropriate for your context. (Use the right tool for the job).
"If I change the usage of something I have to rename it". Yes, of course you do, that's what refactoring is all about, and why IDEs have refactoring tools to do this job quickly and painlessly. Even without prefixes, changing the usage of a variable almost certainly means its name ought to be changed.
"Prefixes just confuse me". As does every tool until you learn how to use it. Once your brain has become used to the naming patterns, it will filter the information out automatically and you won't really mind that the prefixes are there any more. But you have to use a scheme like this solidly for a week or two before you'll really become "fluent". And that's when a lot of people look at old code and start to wonder how they ever managed without a good prefix scheme.
"I can just look at the code to work this stuff out". Yes, but you don't need to waste time looking elsewhere in the code or remembering every little detail of it when the answer is right on the spot your eye is already focussed on.
(Some of) that information can be found by just waiting for a tooltip to pop up on my variable. Yes. Where supported, for some types of prefix, when your code compiles cleanly, after a wait, you can read through a description and find the information the prefix would have conveyed instantly. I feel that the prefix is a simpler, more reliable and more efficient approach.
"It's more typing". Really? One whole character more? Or is it - with IDE auto-completion tools, it will often reduce typing, because each prefix character narrows the search space significantly. Press "e" and the three events in your class pop up in intellisense. Press "c" and the five constants are listed.
"I can use this-> instead of m". Well, yes, you can. But that's just a much uglier and more verbose prefix! Only it carries a far greater risk (especially in teams) because to the compiler it is optional, and therefore its usage is frequently inconsistent. m on the other hand is brief, clear, explicit and not optional, so it's much harder to make mistakes using it.
I generally don't use a prefix for member variables.
I used to use a m prefix, until someone pointed out that "C++ already has a standard prefix for member access: this->.
So that's what I use now. That is, when there is ambiguity, I add the this-> prefix, but usually, no ambiguity exists, and I can just refer directly to the variable name.
To me, that's the best of both worlds. I have a prefix I can use when I need it, and I'm free to leave it out whenever possible.
Of course, the obvious counter to this is "yes, but then you can't see at a glance whether a variable is a class member or not".
To which I say "so what? If you need to know that, your class probably has too much state. Or the function is too big and complicated".
In practice, I've found that this works extremely well. As an added bonus it allows me to promote a local variable to a class member (or the other way around) easily, without having to rename it.
And best of all, it is consistent! I don't have to do anything special or remember any conventions to maintain consistency.
By the way, you shouldn't use leading underscores for your class members. You get uncomfortably close to names that are reserved by the implementation.
The standard reserves all names starting with double underscore or underscore followed by capital letter. It also reserves all names starting with a single underscore in the global namespace.
So a class member with a leading underscore followed by a lower-case letter is legal, but sooner or late you're going to do the same to an identifier starting with upper-case, or otherwise break one of the above rules.
So it's easier to just avoid leading underscores. Use a postfix underscore, or a m_ or just m prefix if you want to encode scope in the variable name.
You have to be careful with using a leading underscore. A leading underscore before a capital letter in a word is reserved.
For example:
_Foo
_L
are all reserved words while
_foo
_l
are not. There are other situations where leading underscores before lowercase letters are not allowed. In my specific case, I found the _L happened to be reserved by Visual C++ 2005 and the clash created some unexpected results.
I am on the fence about how useful it is to mark up local variables.
Here is a link about which identifiers are reserved:
What are the rules about using an underscore in a C++ identifier?
I prefer postfix underscores, like such:
class Foo
{
private:
int bar_;
public:
int bar() { return bar_; }
};
Lately I have been tending to prefer m_ prefix instead of having no prefix at all, the reasons isn't so much that its important to flag member variables, but that it avoids ambiguity, say you have code like:
void set_foo(int foo) { foo = foo; }
That of cause doesn't work, only one foo allowed. So your options are:
this->foo = foo;
I don't like it, as it causes parameter shadowing, you no longer can use g++ -Wshadow warnings, its also longer to type then m_. You also still run into naming conflicts between variables and functions when you have a int foo; and a int foo();.
foo = foo_; or foo = arg_foo;
Been using that for a while, but it makes the argument lists ugly, documentation shouldn't have do deal with name disambiguity in the implementation. Naming conflicts between variables and functions also exist here.
m_foo = foo;
API Documentation stays clean, you don't get ambiguity between member functions and variables and its shorter to type then this->. Only disadvantage is that it makes POD structures ugly, but as POD structures don't suffer from the name ambiguity in the first place, one doesn't need to use it with them. Having a unique prefix also makes a few search&replace operations easier.
foo_ = foo;
Most of the advantages of m_ apply, but I reject it for aesthetic reasons, a trailing or leading underscore just makes the variable look incomplete and unbalanced. m_ just looks better. Using m_ is also more extendable, as you can use g_ for globals and s_ for statics.
PS: The reason why you don't see m_ in Python or Ruby is because both languages enforce the their own prefix, Ruby uses # for member variables and Python requires self..
When reading through a member function, knowing who "owns" each variable is absolutely essential to understanding the meaning of the variable. In a function like this:
void Foo::bar( int apples )
{
int bananas = apples + grapes;
melons = grapes * bananas;
spuds += melons;
}
...it's easy enough to see where apples and bananas are coming from, but what about grapes, melons, and spuds? Should we look in the global namespace? In the class declaration? Is the variable a member of this object or a member of this object's class? Without knowing the answer to these questions, you can't understand the code. And in a longer function, even the declarations of local variables like apples and bananas can get lost in the shuffle.
Prepending a consistent label for globals, member variables, and static member variables (perhaps g_, m_, and s_ respectively) instantly clarifies the situation.
void Foo::bar( int apples )
{
int bananas = apples + g_grapes;
m_melons = g_grapes * bananas;
s_spuds += m_melons;
}
These may take some getting used to at first—but then, what in programming doesn't? There was a day when even { and } looked weird to you. And once you get used to them, they help you understand the code much more quickly.
(Using "this->" in place of m_ makes sense, but is even more long-winded and visually disruptive. I don't see it as a good alternative for marking up all uses of member variables.)
A possible objection to the above argument would be to extend the argument to types. It might also be true that knowing the type of a variable "is absolutely essential to understanding the meaning of the variable." If that is so, why not add a prefix to each variable name that identifies its type? With that logic, you end up with Hungarian notation. But many people find Hungarian notation laborious, ugly, and unhelpful.
void Foo::bar( int iApples )
{
int iBananas = iApples + g_fGrapes;
m_fMelons = g_fGrapes * iBananas;
s_dSpuds += m_fMelons;
}
Hungarian does tell us something new about the code. We now understand that there are several implicit casts in the Foo::bar() function. The problem with the code now is that the value of the information added by Hungarian prefixes is small relative to the visual cost. The C++ type system includes many features to help types either work well together or to raise a compiler warning or error. The compiler helps us deal with types—we don't need notation to do so. We can infer easily enough that the variables in Foo::bar() are probably numeric, and if that's all we know, that's good enough for gaining a general understanding of the function. Therefore the value of knowing the precise type of each variable is relatively low. Yet the ugliness of a variable like "s_dSpuds" (or even just "dSpuds") is great. So, a cost-benefit analysis rejects Hungarian notation, whereas the benefit of g_, s_, and m_ overwhelms the cost in the eyes of many programmers.
I can't say how widespred it is, but speaking personally, I always (and have always) prefixed my member variables with 'm'. E.g.:
class Person {
....
private:
std::string mName;
};
It's the only form of prefixing I do use (I'm very anti Hungarian notation) but it has stood me in good stead over the years. As an aside, I generally detest the use of underscores in names (or anywhere else for that matter), but do make an exception for preprocessor macro names, as they are usually all uppercase.
The main reason for a member prefix is to distinguish between a member function and a member variable with the same name. This is useful if you use getters with the name of the thing.
Consider:
class person
{
public:
person(const std::string& full_name)
: full_name_(full_name)
{}
const std::string& full_name() const { return full_name_; }
private:
std::string full_name_;
};
The member variable could not be named full_name in this case. You need to rename the member function to get_full_name() or decorate the member variable somehow.
I don't think one syntax has real value over another. It all boils down, like you mentionned, to uniformity across the source files.
The only point where I find such rules interesting is when I need 2 things named identicaly, for example :
void myFunc(int index){
this->index = index;
}
void myFunc(int index){
m_index = index;
}
I use it to differentiate the two. Also when I wrap calls, like from windows Dll, RecvPacket(...) from the Dll might be wrapped in RecvPacket(...) in my code. In these particular occasions using a prefix like "_" might make the two look alike, easy to identify which is which, but different for the compiler
Some responses focus on refactoring, rather than naming conventions, as the way to improve readability. I don't feel that one can replace the other.
I've known programmers who are uncomfortable with using local declarations; they prefer to place all the declarations at the top of a block (as in C), so they know where to find them. I've found that, where scoping allows for it, declaring variables where they're first used decreases the time that I spend glancing backwards to find the declarations. (This is true for me even for small functions.) That makes it easier for me to understand the code I'm looking at.
I hope it's clear enough how this relates to member naming conventions: When members are uniformly prefixed, I never have to look back at all; I know the declaration won't even be found in the source file.
I'm sure that I didn't start out preferring these styles. Yet over time, working in environments where they were used consistently, I optimized my thinking to take advantage of them. I think it's possible that many folks who currently feel uncomfortable with them would also come to prefer them, given consistent usage.
Those conventions are just that. Most shops use code conventions to ease code readability so anyone can easily look at a piece of code and quickly decipher between things such as public and private members.
Others try to enforce using
this->member whenever a member
variable is used
That is usually because there is no prefix. The compiler needs enough information to resolve the variable in question, be it a unique name because of the prefix, or via the this keyword.
So, yes, I think prefixes are still useful. I, for one, would prefer to type '_' to access a member rather than 'this->'.
Other languages will use coding conventions, they just tend to be different. C# for example has probably two different styles that people tend to use, either one of the C++ methods (_variable, mVariable or other prefix such as Hungarian notation), or what I refer to as the StyleCop method.
private int privateMember;
public int PublicMember;
public int Function(int parameter)
{
// StyleCop enforces using this. for class members.
this.privateMember = parameter;
}
In the end, it becomes what people know, and what looks best. I personally think code is more readable without Hungarian notation, but it can become easier to find a variable with intellisense for example if the Hungarian notation is attached.
In my example above, you don't need an m prefix for member variables because prefixing your usage with this. indicates the same thing in a compiler-enforced method.
This doesn't necessarily mean the other methods are bad, people stick to what works.
When you have a big method or code blocks, it's convenient to know immediately if you use a local variable or a member. it's to avoid errors and for better clearness !
IMO, this is personal. I'm not putting any prefixes at all. Anyway, if code is meaned to be public, I think it should better has some prefixes, so it can be more readable.
Often large companies are using it's own so called 'developer rules'.
Btw, the funniest yet smartest i saw was DRY KISS (Dont Repeat Yourself. Keep It Simple, Stupid). :-)
As others have already said, the importance is to be colloquial (adapt naming styles and conventions to the code base in which you're writing) and to be consistent.
For years I have worked on a large code base that uses both the "this->" convention as well as using a postfix underscore notation for member variables. Throughout the years I've also worked on smaller projects, some of which did not have any sort of convention for naming member variables, and other which had differing conventions for naming member variables. Of those smaller projects, I've consistently found those which lacked any convention to be the most difficult to jump into quickly and understand.
I'm very anal-retentive about naming. I will agonize over the name to be ascribed to a class or variable to the point that, if I cannot come up with something that I feel is "good", I will choose to name it something nonsensical and provide a comment describing what it really is. That way, at least the name means exactly what I intend it to mean--nothing more and nothing less. And often, after using it for a little while, I discover what the name should really be and can go back and modify or refactor appropriately.
One last point on the topic of an IDE doing the work--that's all nice and good, but IDEs are often not available in environments where I have perform the most urgent work. Sometimes the only thing available at that point is a copy of 'vi'. Also, I've seen many cases where IDE code completion has propagated stupidity such as incorrect spelling in names. Thus, I prefer to not have to rely on an IDE crutch.
The original idea for prefixes on C++ member variables was to store additional type information that the compiler didn't know about. So for example, you could have a string that's a fixed length of chars, and another that's variable and terminated by a '\0'. To the compiler they're both char *, but if you try to copy from one to the other you get in huge trouble. So, off the top of my head,
char *aszFred = "Hi I'm a null-terminated string";
char *arrWilma = {'O', 'o', 'p', 's'};
where "asz" means this variable is "ascii string (zero-terminated) and "arr" means this variable is a character array.
Then the magic happens. The compiler will be perfectly happy with this statement:
strcpy(arrWilma, aszFred);
But you, as a human, can look at it and say "hey, those variables aren't really the same type, I can't do that".
Unfortunately a lot places use standards such as "m_" for member variables, "i" for integers no matter how used, "cp" for char pointers. In other words they're duplicating what the compiler knows, and making the code hard to read at the same time. I believe this pernicious practice should be outlawed by statute and subject to harsh penalties.
Finally, there's two points I should mention:
Judicious use of C++ features allows the compiler to know the information you had to encode in raw C-style variables. You can make classes that will only allow valid operations. This should be done as much as practical.
If your code blocks are so long that you forget what type a variable is before you use it, they are way too long. Don't use names, re-organize.
Our project has always used "its" as a prefix for member data, and "the" as a prefix for parameters, with no prefix for locals. It's a little cutesy, but it was adopted by the early developers of our system because they saw it used as a convention by some commercial source libraries we were using at the time (either XVT or RogueWave - maybe both). So you'd get something like this:
void
MyClass::SetName(const RWCString &theName)
{
itsName = theName;
}
The big reason I see for scoping prefixes (and no others - I hate Hungarian notation) is that it prevents you from getting into trouble by writing code where you think you're referring to one variable, but you're really referring to another variable with the same name defined in the local scope. It also avoids the problem of coming up with a variable names to represent that same concept, but with different scopes, like the example above. In that case, you would have to come up with some prefix or different name for the parameter "theName" anyway - why not make a consistent rule that applies everywhere.
Just using this-> isn't really good enough - we're not as interested in reducing ambiguity as we are in reducing coding errors, and masking names with locally scoped identifiers can be a pain. Granted, some compilers may have the option to raise warnings for cases where you've masked the name in a larger scope, but those warnings may become a nuisance if you're working with a large set of third party libraries that happen to have chosen names for unused variables that occasionally collide with your own.
As for the its/the itself - I honestly find it easier to type than underscores (as a touch typist, I avoid underscores whenever possible - too much stretching off the home rows), and I find it more readable than a mysterious underscore.
I use it because VC++'s Intellisense can't tell when to show private members when accessing out of the class. The only indication is a little "lock" symbol on the field icon in the Intellisense list. It just makes it easier to identify private members(fields) easier. Also a habit from C# to be honest.
class Person {
std::string m_Name;
public:
std::string Name() { return m_Name; }
void SetName(std::string name) { m_Name = name; }
};
int main() {
Person *p = new Person();
p->Name(); // valid
p->m_Name; // invalid, compiler throws error. but intellisense doesn't know this..
return 1;
}
I think that, if you need prefixes to distinguish class members from member function parameters and local variables, either the function is too big or the variables are badly named. If it doesn't fit on the screen so you can easily see what is what, refactor.
Given that they often are declared far from where they are used, I find that naming conventions for global constants (and global variables, although IMO there's rarely ever a need to use those) make sense. But otherwise, I don't see much need.
That said, I used to put an underscore at the end of all private class members. Since all my data is private, this implies members have a trailing underscore. I usually don't do this anymore in new code bases, but since, as a programmer, you mostly work with old code, I still do this a lot. I'm not sure whether my tolerance for this habit comes from the fact that I used to do this always and am still doing it regularly or whether it really makes more sense than the marking of member variables.
In python leading double underscores are used to emulate private members. For more details see this answer
I use m_ for member variables just to take advantage of Intellisense and related IDE-functionality. When I'm coding the implementation of a class I can type m_ and see the combobox with all m_ members grouped together.
But I could live without m_ 's without problem, of course. It's just my style of work.
It is useful to differentiate between member variables and local variables due to memory management. Broadly speaking, heap-allocated member variables should be destroyed in the destructor, while heap-allocated local variables should be destroyed within that scope. Applying a naming convention to member variables facilitates correct memory management.
Code Complete recommends m_varname for member variables.
While I've never thought the m_ notation useful, I would give McConnell's opinion weight in building a standard.
I almost never use prefixes in front of my variable names. If you're using a decent enough IDE you should be able to refactor and find references easily. I use very clear names and am not afraid of having long variable names. I've never had trouble with scope either with this philosophy.
The only time I use a prefix would be on the signature line. I'll prefix parameters to a method with _ so I can program defensively around them.
You should never need such a prefix. If such a prefix offers you any advantage, your coding style in general needs fixing, and it's not the prefix that's keeping your code from being clear. Typical bad variable names include "other" or "2". You do not fix that with requiring it to be mOther, you fix it by getting the developer to think about what that variable is doing there in the context of that function. Perhaps he meant remoteSide, or newValue, or secondTestListener or something in that scope.
It's an effective anachronism that's still propagated too far. Stop prefixing your variables and give them proper names whose clarity reflects how long they're used. Up to 5 lines you could call it "i" without confusion; beyond 50 lines you need a pretty long name.
I like variable names to give only a meaning to the values they contain, and leave how they are declared/implemented out of the name. I want to know what the value means, period. Maybe I've done more than an average amount of refactoring, but I find that embedding how something is implemented in the name makes refactoring more tedious than it needs to be. Prefixes indicating where or how object members are declared are implementation specific.
color = Red;
Most of the time, I don't care if Red is an enum, a struct, or whatever, and if the function is so large that I can't remember if color was declared locally or is a member, it's probably time to break the function into smaller logical units.
If your cyclomatic complexity is so great that you can't keep track of what is going on in the code without implementation-specific clues embedded in the names of things, most likely you need to reduce the complexity of your function/method.
Mostly, I only use 'this' in constructors and initializers.
According to JOINT STRIKE FIGHTER AIR VEHICLE C++ CODING STANDARDS (december 2005):
AV Rule 67
Public and protected data should only be used in
structs—not classes. Rationale: A class is able to maintain its
invariant by controlling access to its data. However, a class cannot
control access to its members if those members non-private. Hence all
data in a class should be private.
Thus, the "m" prefix becomes unuseful as all data should be private.
But it is a good habit to use the p prefix before a pointer as it is a dangerous variable.
Many of those conventions are from a time without sophisticated editors. I would recommend using a proper IDE that allows you to color every kind of variable. Color is by far easier to spot than any prefix.
If you need to get even more detail on a variable any modern IDE should be able to show it to you by moving the caret or cursor over it. And if you use a variable in a wrong way (for instance a pointer with the . operator) you will get an error, anyway.
Personally I use a relatively "simple" system to denote what variables are
I have the different "flags" that I combine then an underscore, then the memory type, then finally the name.
I like this because you can narrow down the amount of variables in an IDE's completion as much as possible as quickly as possible.
The stuff I use is:
m for member function
s for static
c for const/constexpr
then an underscore _
then the variable memory type
p for unowned pointer
v for list
r for reference
nothing for owned value
for example if I had a member variable which is a list of ints I would put
m_vName
and for a static const pointer to a pointer of lists of ints I would put
sc_ppvName
This lets me quickly tell what The variable is used for and how to access it. aswell as how to get/drop values

Internal typedefs in C++ - good style or bad style?

Something I have found myself doing often lately is declaring typedefs relevant to a particular class inside that class, i.e.
class Lorem
{
typedef boost::shared_ptr<Lorem> ptr;
typedef std::vector<Lorem::ptr> vector;
//
// ...
//
};
These types are then used elsewhere in the code:
Lorem::vector lorems;
Lorem::ptr lorem( new Lorem() );
lorems.push_back( lorem );
Reasons I like it:
It reduces the noise introduced by the class templates, std::vector<Lorem> becomes Lorem::vector, etc.
It serves as a statement of intent - in the example above, the Lorem class is intended to be reference counted via boost::shared_ptr and stored in a vector.
It allows the implementation to change - i.e. if Lorem needed to be changed to be intrusively reference counted (via boost::intrusive_ptr) at a later stage then this would have minimal impact to the code.
I think it looks 'prettier' and is arguably easier to read.
Reasons I don't like it:
There are sometimes issues with dependencies - if you want to embed, say, a Lorem::vector within another class but only need (or want) to forward declare Lorem (as opposed to introducing a dependency on its header file) then you end up having to use the explicit types (e.g. boost::shared_ptr<Lorem> rather than Lorem::ptr), which is a little inconsistent.
It may not be very common, and hence harder to understand?
I try to be objective with my coding style, so it would be good to get some other opinions on it so I can dissect my thinking a little bit.
I think it is excellent style, and I use it myself. It is always best to limit the scope of names as much as possible, and use of classes is the best way to do this in C++. For example, the C++ Standard library makes heavy use of typedefs within classes.
It serves as a statement of intent -
in the example above, the Lorem class
is intended to be reference counted
via boost::shared_ptr and stored in a
vector.
This is exactly what it does not do.
If I see 'Foo::Ptr' in the code, I have absolutely no idea whether it's a shared_ptr or a Foo* (STL has ::pointer typedefs that are T*, remember) or whatever. Esp. if it's a shared pointer, I don't provide a typedef at all, but keep the shared_ptr use explicitly in the code.
Actually, I hardly ever use typedefs outside Template Metaprogramming.
The STL does this type of thing all the time
The STL design with concepts defined in terms of member functions and nested typedefs is a historical cul-de-sac, modern template libraries use free functions and traits classes (cf. Boost.Graph), because these do not exclude built-in types from modelling the concept and because it makes adapting types that were not designed with the given template libraries' concepts in mind easier.
Don't use the STL as a reason to make the same mistakes.
Typedefs are the ones what policy based design and traits built upon in C++, so The power of Generic Programming in C++ stems from typedefs themselves.
Typdefs are definitely are good style. And all your "reasons I like" are good and correct.
About problems you have with that. Well, forward declaration is not a holy grail. You can simply design your code to avoid multi level dependencies.
You can move typedef outside the class but Class::ptr is so much prettier then ClassPtr that I don't do this. It is like with namespaces as for me - things stay connected within the scope.
Sometimes I did
Trait<Loren>::ptr
Trait<Loren>::collection
Trait<Loren>::map
And it can be default for all domain classes and with some specialization for certain ones.
The STL does this type of thing all the time - the typedefs are part of the interface for many classes in the STL.
reference
iterator
size_type
value_type
etc...
are all typedefs that are part of the interface for various STL template classes.
Another vote for this being a good idea. I started doing this when writing a simulation that had to be efficient, both in time and space. All of the value types had an Ptr typedef that started out as a boost shared pointer. I then did some profiling and changed some of them to a boost intrusive pointer without having to change any of the code where these objects were used.
Note that this only works when you know where the classes are going to be used, and that all the uses have the same requirements. I wouldn't use this in library code, for example, because you can't know when writing the library the context in which it will be used.
Currently I'm working on code, that intensively uses these kind of typedefs. So far that is fine.
But I noticed that there are quite often iterative typedefs, the definitions are split among several classes, and you never really know what type you are dealing with. My task is to summarize the size of some complex data structures hidden behind these typedefs - so I can't rely on existing interfaces. In combination with three to six levels of nested namespaces and then it becomes confusing.
So before using them, there are some points to be considered
Does anyone else need these typedefs? Is the class used a lot by other classes?
Do I shorten the usage or hide the class? (In case of hiding you also could think of interfaces.)
Are other people working with the code? How do they do it? Will they think it is easier or will they become confused?
When the typedef is used only within the class itself (i.e. is declared as private) I think its a good idea. However, for exactly the reasons you give, I would not use it if the typedef's need to be known outside the class. In that case I recommend to move them outside the class.
I recommend to move those typedefs outside the class. This way, you remove direct dependency on shared pointer and vector classes and you can include them only when needed. Unless you are using those types in your class implementation, I consider they shouldn't be inner typedefs.
The reasons you like it are still matched, since they are solved by the type aliasing through typedef, not by declaring them inside your class.