Does having more tables in a bq dataset slow processes? - google-cloud-platform

My dataset had around 30000 tables. I have archived them all into 300 partitioned tables now. I Have deleted 29700 tables. The data volume is same as deleted tables were all archived first. Will it affect processing time of python scripts that use this dataset for creating new tables daily?
PS: I am not concerned about processes that use the archived tables. I am concerned about the processes that only uses the same dataset to create their new tables.

BigQuery doesn't mind if you have 3 tables or 30,000 tables. That shouldn't affect querying speed.
But! Imagine if a UI tries to list all tables in one dataset, or similar operations in other environments. That will be slower for sure.

Related

Optimal Big Data solution for aggregating time-series data and storing results to DynamoDB

I am looking into different Big Data solutions and have not been able to find a clear answer or documentation on what might be the best approach and frameworks/services to use to address my Big Data use-case.
My Use-case:
I have a data producer that will be sending ~1-2 billion events to a
Kinesis Data Firehose delivery stream daily.
This data needs to be stored in some data lake / data warehouse, aggregated, and then
loaded into DynamoDB for our service to consume the aggregated data
in its business logic.
The DynamoDB table needs to be updated hourly. (hourly is not a hard requirement but we would like DynamoDB to be updated as soon as possible, at the longest intervals of daily updates if required)
The event schema is similar to: customerId, deviceId, countryCode, timestamp
The aggregated schema is similar to: customerId, deviceId, countryCode (the aggregation is on the customerId's/deviceId's MAX(countryCode) for each day over the last 29 days, and then the MAX(countryCode) overall over the last 29 days.
Only the CustomerIds/deviceIds that had their countryCode change from the last aggregation (from an hour ago) should be written to DynamoDB to keep required write capacity units low.
The raw data stored in the data lake / data warehouse needs to be deleted after 30 days.
My proposed solution:
Kinesis Data Firehose delivers the data to a Redshift staging table (by default using S3 as intermediate storage and then using the COPY command to load to Redshift)
An hourly Glue job that:
Drops the 30 day old time-series table and creates a new time-series table for today in Redshift if this is the first job run of a new day
Loads data from staging table to the appropriate time-series table
Creates a view on top of the last 29 days of time-series tables
Aggregates by customerId, deviceId, date, and MAX(CountryCode)
Then aggregates by customerId, deviceId, MAX(countryCode)
Writes the aggregated results to an S3 bucket
Checks the previous hourly Glue job's run aggregated results vs. the current runs aggregated results to find the customerIds/deviceIds that had their countryCode change
Writes the customerIds/deviceIds rows that had their countryCode change to DynamoDB
My questions:
Is Redshift the best storage choice here? I was also considering using S3 as storage and directly querying data from S3 using a Glue job, though I like the idea of a fully-managed data warehouse.
Since our data has a fixed retention period of 30 days, AWS documentation: https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-time-series-tables.html suggests to use time-series tables and running DROP TABLE on older data that needs to be deleted. Are there other approaches (outside of Redshift) that would make the data lifecycle management easier? Having the staging table, creating and loading into new time-series tables, dropping older time-series tables, updating the view to include the new time-series table and not the one that was dropped could be error prone.
What would be an optimal way to find the the rows (customerId/deviceId combinations) that had their countryCode change since the last aggregation? I was thinking the Glue job could create a table from the previous runs aggregated results S3 file and another table from the current runs aggregated results S3 file, run some variation of a FULL OUTER JOIN to find the rows that have different countryCodes. Is there a better approach here that I'm not aware of?
I am a newbie when it comes to Big Data and Big Data solutions so any and all input is appreciated!
tldr: Use step functions, not Glue. Use Redshift Spectrum with data in S3. Otherwise you overall structure looks on track.
You are on the right track IMHO but there are a few things that could be better. Redshift is great for sifting through tons of data and performing analytics on it. However I'm not sure you want to COPY the data into Redshift if all you are doing is building aggregates to be loaded into DDB. Do you have other analytic workloads being done that will justify storing the data in Redshift? Are there heavy transforms being done between the staging table and the time series event tables? If not you may want to make the time series tables external - read directly from S3 using Redshift Spectrum. This could be a big win as the initial data grouping and aggregating is done in the Spectrum layer in S3. This way the raw data doesn't have to be moved.
Next I would advise not using Glue unless you have a need (transform) that cannot easily be done elsewhere. I find Glue to require some expertise to get to do what you want and it sounds like you would just be using it for a data movement orchestrator. If this impression is correct you will be better off with a step function or even a data pipeline. (I've wasted way too much time trying to get Glue to do simple things. It's a powerful tool but make sure you'll get value from the time you will spend on it.)
If you are only using Redshift to do these aggregations and you go the Spectrum route above you will want to get as small a cluster as you can get away with. Redshift can be pricy and if you don't use its power, not cost effective. In this case you can run the cluster only as needed but Redshift boot up times are not fast and the smallest clusters are not expensive. So this is a possibility but only in the right circumstances. Depending on how difficult the aggregation is that you are doing you might want to look at Athena. If you are just running a few aggregating queries per hour then this could be the most cost effective approach.
Checking against the last hour's aggregations is just a matter of comparing the new aggregates against the old which are in S3. This is easily done with Redshift Spectrum or Athena as they can makes files (or sets of files) the source for a table. Then it is just running the queries.
In my opinion Glue is an ETL tool that can do high power transforms. It can do a lot of things but is not my first (or second) choice. It is touchy, requires a lot of configuration to do more than the basics, and requires expertise that many data groups don't have. If you are a Glue expert, knock you self out; If not, I would avoid.
As for data management, yes you don't want to be deleting tons of rows from the beginning of tables in Redshift. It creates a lot of data reorganization work. So storing your data in "month" tables and using a view is the right way to go in Redshift. Dropping tables doesn't create this housekeeping. That said if you organize you data in S3 in "month" folders then unneeded removing months of data can just be deleting these folders.
As for finding changing country codes this should be easy to do in SQL. Since you are comparing aggregate data to aggregate data this shouldn't be expensive either. Again Redshift Spectrum or Athena are tools that allow you to do this on S3 data.
As for being a big data newbie, not a worry, we all started there. The biggest difference from other areas is how important it is to move the data the fewest number of times. It sounds like you understand this when you say "Is Redshift the best storage choice here?". You seem to be recognizing the importance of where the data resides wrt the compute elements which is on target. If you need the horsepower of Redshift and will be accessing the data over and over again then the Redshift is the best option - The data is moved once to a place where the analytics need to run. However, Redshift is an expensive storage solution - it's not what it is meant to do. Redshift Spectrum is very interesting in that the initial aggregations of data is done in S3 and much reduced partial results are sent to Redshift for completion. S3 is a much cheaper storage solution and if your workload can be pattern-matched to Spectrum's capabilities this can be a clear winner.
I want to be clear that you have only described on area where you need a solution and I'm assuming that you don't have other needs for a Redshift cluster operating on the same data. This would change the optimization point.

Migrating hive tables to AWS - How to capture CDC for hive tables?

I am currently writing a framework to transfer hive tables to aws. We can't do that in one shot. We need to it over a period of time. And so there are lots of table which needs to be in Synch with AWS and On-prem hadoop.
Tables which are small and needs truncte and load is not an issue. We have a frameowrk which daily refreshes the table using spark framework.
Problem is for huge tables, we need to append only newly added/updated/deleted rows to AWS. Finding a newly added is fairly simple task. However how do I get updated or deleted records.
40% of our total tables are transcation table. so Updates and deletes are frequent.
For other 60% tables Update/deletes are not frequent. However, sometime due to data issue, people delete the past batch and reload the data.
My questions are
Is there a way I can get Change data capture for hive table?
How do I figure out which records are updated/deleted in transcational table?
how do I figure out which records are updated/deleted in External Table?

BigQuery - querying only a subset of keys in a table with key value schema

So I have a table with the following schema:
timestamp: TIMESTAMP
key: STRING
value: FLOAT
There are around 200 unique keys. I am partitioning the dataset by date.
I want to run several (5-6 currently, but I expect to add at least 15 more) queries on a daily basis on this database. Brute forcing these would cost me a lot daily, which I want to avoid.
The issue is that because of this key - value format, and BigQuery being a columnar database, each query queries the whole day's data, despite each query actually using a maximum of 4 keys. What is a best way to optimize this?
I am thinking the best way I can go about it right now is to create separate temp tables for each key as a daily batch process, run my queries on them and then delete them.
Ideal way I would want to go about it is partitioning by key, I am not sure there is any such provision?
You can try using recently introduced clustering partitioned tables
When you create a clustered table in BigQuery, the table data is automatically organized based on the contents of one or more columns in the table’s schema. The columns you specify are used to colocate related data. When you cluster a table using multiple columns, the order of columns you specify is important. The order of the specified columns determines the sort order of the data.
Clustering can improve the performance of certain types of queries such as queries that use filter clauses and queries that aggregate data. When data is written to a clustered table by a query job or a load job, BigQuery sorts the data using the values in the clustering columns. These values are used to organize the data into multiple blocks in BigQuery storage. When you submit a query containing a clause that filters data based on the clustering columns, BigQuery uses the sorted blocks to eliminate scans of unnecessary data.
Similarly, when you submit a query that aggregates data based on the values in the clustering columns, performance is improved because the sorted blocks colocate rows with similar values.
Update (moved from comments)
Also have in mind below
Feature Partitioning Clustering
--------------- ------------- -------------
Cardinality Less than 10k Unlimited
Dry Run Pricing Available Not available
Query Pricing Exact Best Effort
Pay special attention to Dry Run Pricing - unfortunately - clustered tables do not support dry run (validation) based on clustered keys - and rather show only validation based on partitions. but if you set your clustering properly - actual run will end up with lower cost. you should try with smaller data to get comfortable with this
See more at Clustering partitioned tables

Best strategy for building Redshift Data Warehouse from multiple DBs

I need some guidance on our strategy for loading data into a Redshift Data Warehouse for analytics. We have ~40 SQL databases, each represents one customer and each database is identical. I have a SQL database with the same table structure as the 40 but each table has an additional column called "customer" that will capture where that record came from. We do some additional ETL processing with the records as they come in.
In total we have about 50 GB of data across all 40 DBs. Looking into the recommended processes for Updating / Inserting data on AWS's site they recommend creating the scratch table then merging data. I could do this but I could also just drop all the data from a table and re-load it since I am reading from the source every time. What is the recommended way to handle this?

Columnar database queries in Amazon Redshift

I'm learning Amazon Redshift. Heard that it is very powerful storage on cloud and works very fast on data where aggregate operations are required because it stores data column-wise.
Am not able to find any example queries? Could someone share with me some examples of Aggregate queries running on Amazon Redshift? Is it different from normal relation database queries?
You are correct -- Amazon Redshift is a columnar database. This means that data is stored on disk per column, making operations on a column very fast. For example, adding the Sales column for a particular value in the Country column only requires accessing two columns rather than all columns in a table.
Other benefits are that data in Redshift is compressed (which works well with the columnar concept, because each column uses its own compression method based on the data stored) and the fact that it is a clustered database, so compute and storage can be scaled by adding additional nodes.
Amazon Redshift presents itself as a PostgreSQL database, so you just use industry-standard SQL to query data. No changes to queries are required.
However, you can optimize Redshift by wisely choosing a Distribution Key for each table that determines how data is distributed amongst nodes, and carefully select the Sort Key, which determines how data is stored on each node. Put simply, data should be distributed by how you JOIN tables and should be sorted by what you use in WHERE statements.
As for sample queries... it totally depends upon your data! Queries look exactly the same as normal SQL.