Set data breakpoints in GDB for a Fortran executable? - fortran

Is it possible to set data breakpoints in GDB to monitor changes of a global variable in a Fortran executable?
Motivation
I am trying to find out, where an unexpected change to a global configuration variable comes from. Source-code based solutions haven't brought up, where any assignment may happen, so I am trying to use GDB. But while I can easily set up break points for subroutine invocations with readline-completion, and then print global and local variables that are in scope, I can't figure out how to set breakpoints for data changes.
I was unable to set data break points for an executable produced with both GFortran and Intel Fortran. It also doesn't help that the Intel documentation for data break points only covers Windows.
Example
For testing purposes I use the following setup:
! persons.f90
module mperson
implicit none
type :: person
integer :: age = 0
character(16) :: name
end type person
type(person), allocatable :: persons(:)
contains
subroutine init_persons(ages, names)
integer, intent(in) :: ages(:)
character(*), intent(in) :: names(:)
integer iPerson
allocate(persons(size(ages)))
do iPerson = 1, size(ages)
persons(iPerson) = person(ages(iPerson), names(iPerson))
end do
end subroutine init_persons
subroutine print_persons()
integer iPerson
print '("-------- print_persons --------")'
do iPerson = 1, size(persons)
print *, persons(iPerson)
end do
persons(2) = person(-1, "undefined") ! <-- This I would like to catch.
end subroutine print_persons
end module mperson
program main
use mperson
implicit none
call init_persons([18,42,13], [character(16)::'Alex', 'Max', 'Bobby Tables'])
call print_persons()
call print_persons()
contains
end program main
Debugged with:
(bash) ifort -g -traceback persons.f90 -o persons.bin
(bash) gdb persons.bin
(gdb) break persons.f90:main
(gdb) run

Related

How to send command line input to a Fortran subroutine? [duplicate]

GCC version 4.6
The Problem: To find a way to feed in parameters to the executable, say a.out, from the command line - more specifically feed in an array of double precision numbers.
Attempt: Using the READ(*,*) command, which is older in the standard:
Program test.f -
PROGRAM MAIN
REAL(8) :: A,B
READ(*,*) A,B
PRINT*, A+B, COMMAND_ARGUMENT_COUNT()
END PROGRAM MAIN
The execution -
$ gfortran test.f
$ ./a.out 3.D0 1.D0
This did not work. On a bit of soul-searching, found that
$./a.out
3.d0,1.d0
4.0000000000000000 0
does work, but the second line is an input prompt, and the objective of getting this done in one-line is not achieved. Also the COMMAND_ARGUMENT_COUNT() shows that the numbers fed into the input prompt don't really count as 'command line arguments', unlike PERL.
If you want to get the arguments fed to your program on the command line, use the (since Fortran 2003) standard intrinsic subroutine GET_COMMAND_ARGUMENT. Something like this might work
PROGRAM MAIN
REAL(8) :: A,B
integer :: num_args, ix
character(len=12), dimension(:), allocatable :: args
num_args = command_argument_count()
allocate(args(num_args)) ! I've omitted checking the return status of the allocation
do ix = 1, num_args
call get_command_argument(ix,args(ix))
! now parse the argument as you wish
end do
PRINT*, A+B, COMMAND_ARGUMENT_COUNT()
END PROGRAM MAIN
Note:
The second argument to the subroutine get_command_argument is a character variable which you'll have to parse to turn into a real (or whatever). Note also that I've allowed only 12 characters in each element of the args array, you may want to fiddle around with that.
As you've already figured out read isn't used for reading command line arguments in Fortran programs.
Since you want to read an array of real numbers, you might be better off using the approach you've already figured out, that is reading them from the terminal after the program has started, it's up to you.
The easiest way is to use a library. There is FLAP or f90getopt available. Both are open source and licensed under free licenses.
The latter is written by Mark Gates and me, just one module and can be learned in minutes but contains all what is needed to parse GNU- and POSIX-like command-line options. The first is more sophisticated and can be used even in closed-source projects. Check them out.
Furthermore libraries at https://fortranwiki.org/fortran/show/Command-line+arguments
What READ (*,*) does is that it reads from the standard input. For example, the characters entered using the keyboard.
As the question shows COMMAND_ARGUMENT_COUNT() can be used to get the number of the command line arguments.
The accepted answer by High Performance Mark show how to retrieve the individual command line arguments separated by blanks as individual character strings using GET_COMMAND_ARGUMENT(). One can also get the whole command line using GET_COMMAND(). One then has to somehow parse that character-based information into the data in your program.
I very simple cases you just need the program requires, for example, two numbers, so you read one number from arg 1 and another form arg 2. That is simple. Or you can read a triplet of numbers from a single argument if they are comma-separated like 1,2,3 using a simple read(arg,*) nums(1:3).
For general complicated command line parsing one uses libraries such as those mentioned in the answer by Hani. You have set them up so that the library knows the expected syntax of the command line arguments and the data it should fill with the values.
There is a middle ground, that is still relatively simple, but one already have multiple arguments, that correspond to Fortran variables in the program, that may or may not be present. In that case one can use the namelist for the syntax and for the parsing.
Here is an example, the man point is the namelist /cmd/ name, point, flag:
implicit none
real :: point(3)
logical :: flag
character(256) :: name
character(1024) :: command_line
call read_command_line
call parse_command_line
print *, point
print *, "'",trim(name),"'"
print *, flag
contains
subroutine read_command_line
integer :: exenamelength
integer :: io, io2
command_line = ""
call get_command(command = command_line,status = io)
if (io==0) then
call get_command_argument(0,length = exenamelength,status = io2)
if (io2==0) then
command_line = "&cmd "//adjustl(trim(command_line(exenamelength+1:)))//" /"
else
command_line = "&cmd "//adjustl(trim(command_line))//" /"
end if
else
write(*,*) io,"Error getting command line."
end if
end subroutine
subroutine parse_command_line
character(256) :: msg
namelist /cmd/ name, point, flag
integer :: io
if (len_trim(command_line)>0) then
msg = ''
read(command_line,nml = cmd,iostat = io,iomsg = msg)
if (io/=0) then
error stop "Error parsing the command line or cmd.conf " // msg
end if
end if
end subroutine
end
Usage in bash:
> ./command flag=T name=\"data.txt\" point=1.0,2.0,3.0
1.00000000 2.00000000 3.00000000
'data.txt'
T
or
> ./command flag=T name='"data.txt"' point=1.0,2.0,3.0
1.00000000 2.00000000 3.00000000
'data.txt'
T
Escaping the quotes for the string is unfortunately necessary, because bash eats the first quotes.

How to watch global variables( from module which was used in main program) using debugger?

I am very new in using Code::Blocks 17.12 for a creating and debugging projects.
At some stage of coding i need to watch values of local and global variables because i want to avoid any wrong logic in my fortran code.
All global variables are declared in module which was included in main program by use, non_intrinsic.
When I try to watch values of mentioned global variables in the watch windows got only empty space for functions and local variables.
This is my example code:
MODULE EES_DM_PRO
IMLICIT NONE
INTEGER :: VAR_01, VAR_02
CONTAINS
SUBROUTINE DM_LOAD_VALUES()
INTEGER, PARAMETER :: UN = 15
OPEN( UN, FILE = 'DATA.TXT')
READ( UN, * ) VAR_01
READ( UN, * ) VAR_02
CLOSE( UN )
END SUBROUTINE DM_LOAD_VALUES
END MODULE
PROGRAM EES_DM_TS
USE, NON_INTRINSIC :: EES_DM_PRO
IMPLICIT NONE
CALL DM_LOAD_VALUES()
END PROGRAM
If I put a breakpoints afther line where was called subroutine and if I start debugging process in the watch window I got a empty space for locals.
Is it possible o track values of VAR_01 and VAR_02 in main program?

Command line arguments in fortran (a filename, an integer, and another filename) [duplicate]

GCC version 4.6
The Problem: To find a way to feed in parameters to the executable, say a.out, from the command line - more specifically feed in an array of double precision numbers.
Attempt: Using the READ(*,*) command, which is older in the standard:
Program test.f -
PROGRAM MAIN
REAL(8) :: A,B
READ(*,*) A,B
PRINT*, A+B, COMMAND_ARGUMENT_COUNT()
END PROGRAM MAIN
The execution -
$ gfortran test.f
$ ./a.out 3.D0 1.D0
This did not work. On a bit of soul-searching, found that
$./a.out
3.d0,1.d0
4.0000000000000000 0
does work, but the second line is an input prompt, and the objective of getting this done in one-line is not achieved. Also the COMMAND_ARGUMENT_COUNT() shows that the numbers fed into the input prompt don't really count as 'command line arguments', unlike PERL.
If you want to get the arguments fed to your program on the command line, use the (since Fortran 2003) standard intrinsic subroutine GET_COMMAND_ARGUMENT. Something like this might work
PROGRAM MAIN
REAL(8) :: A,B
integer :: num_args, ix
character(len=12), dimension(:), allocatable :: args
num_args = command_argument_count()
allocate(args(num_args)) ! I've omitted checking the return status of the allocation
do ix = 1, num_args
call get_command_argument(ix,args(ix))
! now parse the argument as you wish
end do
PRINT*, A+B, COMMAND_ARGUMENT_COUNT()
END PROGRAM MAIN
Note:
The second argument to the subroutine get_command_argument is a character variable which you'll have to parse to turn into a real (or whatever). Note also that I've allowed only 12 characters in each element of the args array, you may want to fiddle around with that.
As you've already figured out read isn't used for reading command line arguments in Fortran programs.
Since you want to read an array of real numbers, you might be better off using the approach you've already figured out, that is reading them from the terminal after the program has started, it's up to you.
The easiest way is to use a library. There is FLAP or f90getopt available. Both are open source and licensed under free licenses.
The latter is written by Mark Gates and me, just one module and can be learned in minutes but contains all what is needed to parse GNU- and POSIX-like command-line options. The first is more sophisticated and can be used even in closed-source projects. Check them out.
Furthermore libraries at https://fortranwiki.org/fortran/show/Command-line+arguments
What READ (*,*) does is that it reads from the standard input. For example, the characters entered using the keyboard.
As the question shows COMMAND_ARGUMENT_COUNT() can be used to get the number of the command line arguments.
The accepted answer by High Performance Mark show how to retrieve the individual command line arguments separated by blanks as individual character strings using GET_COMMAND_ARGUMENT(). One can also get the whole command line using GET_COMMAND(). One then has to somehow parse that character-based information into the data in your program.
I very simple cases you just need the program requires, for example, two numbers, so you read one number from arg 1 and another form arg 2. That is simple. Or you can read a triplet of numbers from a single argument if they are comma-separated like 1,2,3 using a simple read(arg,*) nums(1:3).
For general complicated command line parsing one uses libraries such as those mentioned in the answer by Hani. You have set them up so that the library knows the expected syntax of the command line arguments and the data it should fill with the values.
There is a middle ground, that is still relatively simple, but one already have multiple arguments, that correspond to Fortran variables in the program, that may or may not be present. In that case one can use the namelist for the syntax and for the parsing.
Here is an example, the man point is the namelist /cmd/ name, point, flag:
implicit none
real :: point(3)
logical :: flag
character(256) :: name
character(1024) :: command_line
call read_command_line
call parse_command_line
print *, point
print *, "'",trim(name),"'"
print *, flag
contains
subroutine read_command_line
integer :: exenamelength
integer :: io, io2
command_line = ""
call get_command(command = command_line,status = io)
if (io==0) then
call get_command_argument(0,length = exenamelength,status = io2)
if (io2==0) then
command_line = "&cmd "//adjustl(trim(command_line(exenamelength+1:)))//" /"
else
command_line = "&cmd "//adjustl(trim(command_line))//" /"
end if
else
write(*,*) io,"Error getting command line."
end if
end subroutine
subroutine parse_command_line
character(256) :: msg
namelist /cmd/ name, point, flag
integer :: io
if (len_trim(command_line)>0) then
msg = ''
read(command_line,nml = cmd,iostat = io,iomsg = msg)
if (io/=0) then
error stop "Error parsing the command line or cmd.conf " // msg
end if
end if
end subroutine
end
Usage in bash:
> ./command flag=T name=\"data.txt\" point=1.0,2.0,3.0
1.00000000 2.00000000 3.00000000
'data.txt'
T
or
> ./command flag=T name='"data.txt"' point=1.0,2.0,3.0
1.00000000 2.00000000 3.00000000
'data.txt'
T
Escaping the quotes for the string is unfortunately necessary, because bash eats the first quotes.

Error in fortran, undefined reference to subroutine

I am writing a subroutine and main function to call it, but getting error as undefined reference to ___. I found one reason: When I save the main and subroutine in the same file, compile and run that file, everything runs perfectly. However, when I save them into different .f90 files and try to run the main file, I get error. Is there any way I can make subroutine into a separate file and call into main calling program?
I got confused with another place - in the main program at !------ERROR------ place. I referred to Automatic width integer descriptor in fortran 90 I can use I0 as automatic width display indicator. But when I used the same, there is run time error expected integer but got character. Any idea about this?
! saved as sub_program.f90 file
SUBROUTINE sub_program (v1,v2,ctr)
IMPLICIT NONE
INTEGER, INTENT(IN) :: ctr
INTEGER, INTENT (OUT) :: v1,v2
SELECT CASE (ctr)
CASE (1)
v1=1
v2=0
CASE (2)
v1=0
v2=1
END SELECT
RETURN
END SUBROUTINE
! main calling program, saved as caller.f90
PROGRAM caller
IMPLICIT NONE
INTEGER :: v1,v2,ctr
DO ctr = 1,2,1
CALL sub_program (v1,v2,ctr)
WRITE (*,100) 'STEP = ',ctr,'V1 = ',v1,'V2 = ',v2 !------ERROR------
100 FORMAT (I0)
END DO
END PROGRAM
Thanks!
What is your compile command? For me, this compiles and runs normally
gfortran caller.f90 foo.f90 && ./a.out
I0 is an integer indicator, but some items following your WRITE statement are character strings. You can try, for example,
100 FORMAT (3(A, I0, 1X))
where 1X refers to a space.
As a note, if formatting is not terribly important and you're only interested in seeing some quick results, you can use the free format output (WRITE(*,*) ...).
EDIT: I had incorrectly referred to FORMAT as obsolete.

fortran overloading interface error

I edit three files
first:add.f90
module MA
implicit none
contains
subroutine show_int(n)
implicit none
integer , intent(in) ::n
write(*,"('n=',I3)") n
return
end subroutine show_int
subroutine show_character(str)
implicit none
character(len=*) ,intent(in) :: str
write(*,"('str=',A)") str
return
end subroutine show_character
end module
second: add.h
interface show
module procedure show_int, show_character
end interface
third:main.f90
program main
use MA
implicit none
include 'add.h'
call show_int(1)
call show(1)
call show_character("Fortran 95")
call show("Fortran 95")
print * ,"hello "
end program
I compile ,gfortran add.f90 main.f90 -o main
I got these errors
add.h:2.2:
包含于 main.f90:4:
module procedure show_int, show_character
1
错误: (1) 语句无法归类
main.f90:6.13:
call show(1)
1
错误: 泛型‘show’在(1)处没有特定的子进程
main.f90:8.24:
call show("Fortran 95") 1
错误: 泛型‘show’在(1)处没有特定的子进程
I don't know why ?
can you help me ?
Thanks
I cannot read the error messages, but:
The module procedure statement can be used only inside the module containing the procedure. Forget the .h file and place the generic interface block into the module. In Fortran 2003 you could use just procedure (without module) and it should work.