I've got a simple C++ task - I need to create an alarm app, which triggers alarms a few times.
For example, there is a text file with lines of time in format: hour minutes
I read these into an array.
My idea is that I create an infinite loop which checks what time is it every 60 seconds. Inside this loops, it checks if time == time_array_element_1 or time == time_array_element_2 etc.
And it check every 60 seconds.
Could you guys help me to decide, maybe there is some more optimal way to do it?
"optimal" strongly depends on what you want to achieve:
If you just want to have an alarm: use an existing app.
If you need to implement it on your own program, use a library that provides timer (e.g., Qt, boost, ...)
If you can't use 3rd party libraries because you're not allowed to (homework?): build your own.
If you don't want or cannot build your own timer library: use that loop approach.
If you want to run the alarm at a particular time every day, you could write an infinite loop that checks whether that time has come. Pseudo-Code:
const int alarm_time
const int sleep_time;
while (true) {
const int current = get_seconds_since_midnight();
if (current - alarm_time < sleep_time) {
alarm();
}
sleep(sleep_time);
}
However, you'd still need to keep this program running all the time.
That's fine if you just want to learn.
But for any other use-case, this task should be handled by the OS (e.g., cron on unix).
Related
I'm building a tetris game and I need the pieces to fall every x seconds; something like:
while(true){
moveDown();
sleep(x)
}
The problem is, I need to be able to move the pieces left and right in the meantime, i.e., call a function while it's sleeping.
How can I do that in c++?
Both time and key presses can be events which can be used to wait on. On UNIXes you'd use something like poll() with a suitable time for timeout and the input device used to recognize key presses. On other systems there are similar facilities (I'm a UNIX persons and I have never worked on Windows specific stuff although it seems the Windows facilities are actually more flexible). Depending on the result of poll() (timeout or activity on the I/O device in that case) you'd do the appropriate action.
This problem is solvable in multiple ways (another idea that comes to mind is multithreading, but that seems overkill). One approach would be to keep track of the number of "game cycles" and execute some function every n-th cycle like this:
for(int32_t count{1};;count++)
{
if (!count % 5)
{
// do something every 5th cycle
}
// do something every cycle
sleep(x);
}
you can measure how much time has passed since last fall and move piece down after given amount and then reset counter. In pseudo-code it could look like this:
while(true)
{
counter.update();
if(counter.value() == fall_period)
{
move_piece_down();
couter.reset();
}
// rotate pieces
}
If you are using typical implementation of game loop your counter can just accumulate elapsed time since last frame.
How to call a method/function 50 time in a second then calculate time spent, If time spent is less than one second then sleep for (1-timespent) seconds.
Below is the pseudo code
while(1)
{
start_time = //find current time
int msg_count=0;
send_msg();
msg_count++;
// Check time after sending 50 messages
if(msg_count%50 == 0)
{
curr_time = //Find current time
int timeSpent = curr_time - start_time ;
int waitingTime;
start_time = curr_time ;
waitingTime = if(start_time < 1 sec) ? (1 sec - timeSpent) : 0;
wait for waitingTime;
}
}
I am new with Timer APIs. Can anyone help me that what are the timer APIs, I have to use to achieve this. I want portable code.
First, read the time(7) man page.
Then you may want to call timer_create(2) to set up a timer. To query about time, use clock_gettime(2)
You probably may want to wait and multiplex on some input and output. poll(2) is useful for this. To sleep for a small amount of time without using the CPU consider nanosleep(2)
If using timer doing signals, read signal(7) and be careful because signal handlers are restricted to async-signal-safe functions (consider having a signal handler which just sets some global volatile sig_atomic_t flag). You may also be interested by the Linux specific timerfd_create(2) (which you could poll or pass to your event loop).
You might want to use some existing event loop library, like libevent or libev (or those from GTK/Glib, Qt, etc...), which are often using poll (or fancier things). The linux specific eventfd(2) and signalfd(2) might be very helpful.
Advanced Linux Programming is also useful to read.
If send_msg is doing network I/O, you probably need to redesign your program around some event loop (perhaps your own, based on poll) - you'll need to multiplex (i.e. poll) both on network sends and network recieves. continuation-passing style is then a useful paradigm.
I hope someone could help me with this (And english is not my native language so I'm sorry in advance for any grammar or spelling mistakes):
As part of a project I'm coding, I need to time some commands. More specifically: I have 2 sets of commands (Lets call them set A and set B) - I need to to execute set A, then wait for a specific number of milliseconds (calculated in set A), then execute set B. I did it using the Sleep(time) command between the sets.
Now, I need to incorporate another set of commands (Set C) that will run in a loop in the time between the sets A and B instead of simply doing nothing. Meaning, instead of the time the program was idle before (waiting the specified number of milliseconds) I need it to loop the C set - but the catch is that it has to loop C exactly the same time it would have waited in the idle time.
How can I do this without using threads? (And generally keep it as simple as possible)
I guess the "work-time" for the set of commands in C is known. And C is a loop which can/shall finish when the wait time has expired.
In this case I'd suggest to use a performance counter to count down the wait time. Depending on what is calculated and what overhaed is introduced in C the accuracy to obtain can be in the microseconds range.
Pseudo code:
Delay = 1000
Do A
CounterBegin = GetCounter()
// and now the C loop
while ((GetCounter() - CounterBegin) < Delay) {
Do C
}
Do B
Note: The counter values are to be converted into times by using the counter frequency. See the link above to get the details.
I want to create a timer so that after completing the time(suppose 10 sec) the control should come out of the function..Please note that am starting the timer inside the function.Code is given below..I want to give certain time limit to that function so that after completing the time the control should come out of the function..I don't want to calculate the time..I want to give my own time so that the function should complete its execution within that time period..suppose if function is waiting for an input then also after completing time limit the control should come out indicating that "time has expired"..once it comes out of the function then it should continue with the next function execution...Is this possible in c++...
Begin();
// here I would like to add timer.
v_CallId = v_CallId1;
call_setup_ind();
call_alert_ind();
dir_read_search_cnf();
dir_save_cnf();
END();
If the code is linear and the functions called cannot be chopped into smaller pieces, your stuck to letting an external process/thread do the timing and abort the worker thread when the timeout is exceeded.
When you can chop the worker into smaller pieces you could do something like this
Timeout.Start(5000);
while ((TimeOut.TimeOut() == false) && (completed == false))
{
completed = WorkToDo()
}
This is a pattern we frequently use in our embbeded application. The timeout class was in house develop. It just reads the tick counter and looks if the time has passed. An framework like QT or MFC should have such a class itself.
I'm constructing a data visualisation system that visualises over 100,000 data points (visits to a website) across a time period. The time period (say 1 week) is then converted into simulation time (1 week = 2 minutes in simulation), and a task is performed on each and every piece of data at the specific time it happens in simulation time (the time each visit occurred during the week in real time). With me? =p
In other programming languages (eg. Java) I would simply set a timer for each datapoint. After each timer is complete it triggers a callback that allows me to display that datapoint in my app. I'm new to C++ and unfortunately it seems that timers with callbacks aren't built-in. Another method I would have done in ActionScript, for example, would be using custom events that are triggered after a specific timeframe. But then again I don't think C++ has support for custom events either.
In a nutshell; say I have 1000 pieces of data that span across a 60 second period. Each piece of data has it's own time in relation to that 60 second period. For example, one needs to trigger something at 1 second, another at 5 seconds, etc.
Am I going about this the right way, or is there a much easier way to do this?
Ps. I'm using Mac OS X, not Windows
I would not use timers to do that. Sounds like you have too many events and they may lie too close to each other. Performance and accuracy may be bad with timers.
a simulation is normally done like that:
You are simly doing loops (or iterations). And on every loop you add an either measured (for real time) or constant (non real time) amount to your simulation time.
Then you manually check all your events and execute them if they have to.
In your case it would help to have them sorted for execution time so you would not have to loop through them all every iteration.
Tme measuring can be done with gettimer() c function for low accuracy or there are better functions for higher accuracy e.g. QueryPerformanceTimer() on windows - dont know the equivalent for Mac.
Just make a "timer" mechanism yourself, that's the best, fastest and most flexible way.
-> make an array of events (linked to each object event happens to) (std::vector in c++/STL)
-> sort the array on time (std::sort in c++/STL)
-> then just loop on the array and trigger the object action/method upon time inside a range.
Roughly that gives in C++:
// action upon data + data itself
class Object{
public:
Object(Data d) : data(d) {
void Action(){display(data)};
Data data;
};
// event time + object upon event acts
class Event{
public:
Event(double t, Object o) time (t), object(o) {};
// useful for std::sort
bool operator<(Event e) { return time < e.time; }
double time;
Object object;
}
//init
std::vector<Event> myEvents;
myEvents.push_back(Event(1.0, Object(data0)));
//...
myEvents.push_back(Event(54.0, Object(data10000)));
// could be removed is push_back() is guaranteed to be in the correct order
std::sort(myEvents.begin(), myEvents.end());
// the way you handle time... period is for some fuzziness/animation ?
const double period = 0.5;
const double endTime = 60;
std::vector<Event>::iterator itLastFirstEvent = myEvents.begin();
for (double currtime = 0.0; currtime < endTime; currtime+=0.1)
{
for (std::vector<Event>::iterator itEvent = itLastFirstEvent ; itEvent != myEvents.end();++itEvent)
{
if (currtime - period < itEvent.time)
itLastFirstEvent = itEvent; // so that next loop start is optimised
else if (itEvent.time < currtime + period)
itEvent->actiontick(); // action speaks louder than words
else
break; // as it's sorted, won't be any more tick this loop
}
}
ps: About custom events, you might want to read/search about delegates in c++ and function/method pointers.
If you are using native C++, you should look at the Timers section of the Windows API on the MSDN website. They should tell you exactly what you need to know.