Can the thread object be deleted after std::thread::detach? - c++

I have a question about std::thread::detach(). In cplusplus.com it says 'After a call to this function, the thread object becomes non-joinable and can be destroyed safely', by which it seems to mean that the destructor ~thread() may be called safely.
My question is, does this mean that it is ok & safe to delete a thread object immediately after calling detach(), as in the following sample code? Will the function my_function continue safely, and safely use its thread_local variables and variables that are global to the program?
#include <thread>
#include <unistd.h>
void my_function(int t)
{
sleep(t);
}
int main()
{
std::thread *X = new std::thread(my_function, 10);
X->detach();
delete X;
sleep(30);
return 0;
}
The code 'runs' ok, I just want to know if this is safe from the point of view of memory ownership. My motivation here is to have a program that runs 'forever', and spawns a few child threads from time to time (e.g. every 30 seconds.) Each child thread then does something, and dies: I do not want to have to somehow keep track of the children in the parent thread, call join() and then delete.

Related

pthread_key_create destructor not getting called

As per pthread_key_create man page we can associate a destructor to be called at thread shut down. My problem is that the destructor function I have registered is not being called. Gist of my code is as follows.
static pthread_key_t key;
static pthread_once_t tls_init_flag = PTHREAD_ONCE_INIT;
void destructor(void *t) {
// thread local data structure clean up code here, which is not getting called
}
void create_key() {
pthread_key_create(&key, destructor);
}
// This will be called from every thread
void set_thread_specific() {
ts = new ts_stack; // Thread local data structure
pthread_once(&tls_init_flag, create_key);
pthread_setspecific(key, ts);
}
Any idea what might prevent this destructor being called? I am also using atexit() at moment to do some cleanup in the main thread. Is there any chance that is interfering with destructor function being called? I tried removing that as well. Still didn't work though. Also I am not clear if I should handle the main thread as a separate case with atexit. (It's a must to use atexit by the way, since I need to do some application specific cleanup at application exit)
This is by design.
The main thread exits (by returning or calling exit()), and that doesn't use pthread_exit(). POSIX documents pthread_exit calling the thread-specific destructors.
You could add pthread_exit() at the end of main. Alternatively, you can use atexit to do your destruction. In that case, it would be clean to set the thread-specific value to NULL so in case the pthread_exit was invoked, the destruction wouldn't happen twice for that key.
UPDATE Actually, I've solved my immediate worries by simply adding this to my global unit test setup function:
::atexit([] { ::pthread_exit(0); });
So, in context of my global fixture class MyConfig:
struct MyConfig {
MyConfig() {
GOOGLE_PROTOBUF_VERIFY_VERSION;
::atexit([] { ::pthread_exit(0); });
}
~MyConfig() { google::protobuf::ShutdownProtobufLibrary(); }
};
Some of the references used:
http://www.resolvinghere.com/sof/6357154.shtml
https://sourceware.org/ml/pthreads-win32/2008/msg00007.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_key_create.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_exit.html
PS. Of course c++11 introduced <thread> so you have better and more portable primitves to work with.
It's already in sehe's answer, just to present the key points in a compact way:
pthread_key_create() destructor calls are triggered by a call to pthread_exit().
If the start routine of a thread returns, the behaviour is as if pthread_exit() was called (i. e., destructor calls are triggered).
However, if main() returns, the behaviour is as if exit() was called — no destructor calls are triggered.
This is explained in http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_create.html. See also C++17 6.6.1p5 or C11 5.1.2.2.3p1.
I wrote a quick test and the only thing I changed was moving the create_key call of yours outside of the set_thread_specific.
That is, I called it within the main thread.
I then saw my destroy get called when the thread routine exited.
I call destructor() manually at the end of main():
void * ThreadData = NULL;
if ((ThreadData = pthread_getspecific(key)) != NULL)
destructor(ThreadData);
Of course key should be properly initialized earlier in main() code.
PS. Calling Pthread_Exit() at the end to main() seems to hang entire application...
Your initial thought of handling the main thread as a separate case with atexit worked best for me.
Be ware that pthread_exit(0) overwrites the exit value of the process. For example, the following program will exit with status of zero even though main() returns with number three:
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
class ts_stack {
public:
ts_stack () {
printf ("init\n");
}
~ts_stack () {
printf ("done\n");
}
};
static void cleanup (void);
static pthread_key_t key;
static pthread_once_t tls_init_flag = PTHREAD_ONCE_INIT;
void destructor(void *t) {
// thread local data structure clean up code here, which is not getting called
delete (ts_stack*) t;
}
void create_key() {
pthread_key_create(&key, destructor);
atexit(cleanup);
}
// This will be called from every thread
void set_thread_specific() {
ts_stack *ts = new ts_stack (); // Thread local data structure
pthread_once(&tls_init_flag, create_key);
pthread_setspecific(key, ts);
}
static void cleanup (void) {
pthread_exit(0); // <-- Calls destructor but sets exit status to zero as a side effect!
}
int main (int argc, char *argv[]) {
set_thread_specific();
return 3; // Attempt to exit with status of 3
}
I had similar issue as yours: pthread_setspecific sets a key, but the destructor never gets called. To fix it we simply switched to thread_local in C++. You could also do something like if that change is too complicated:
For example, assume you have some class ThreadData that you want some action to be done on when the thread finishes execution. You define the destructor something on these lines:
void destroy_my_data(ThreadlData* t) {
delete t;
}
When your thread starts, you allocate memory for ThreadData* instance and assign a destructor to it like this:
ThreadData* my_data = new ThreadData;
thread_local ThreadLocalDestructor<ThreadData> tld;
tld.SetDestructorData(my_data, destroy_my_data);
pthread_setspecific(key, my_data)
Notice that ThreadLocalDestructor is defined as thread_local. We rely on C++11 mechanism that when the thread exits, the destructor of ThreadLocalDestructor will be automatically called, and ~ThreadLocalDestructor is implemented to call function destroy_my_data.
Here is the implementation of ThreadLocalDestructor:
template <typename T>
class ThreadLocalDestructor
{
public:
ThreadLocalDestructor() : m_destr_func(nullptr), m_destr_data(nullptr)
{
}
~ThreadLocalDestructor()
{
if (m_destr_func) {
m_destr_func(m_destr_data);
}
}
void SetDestructorData(void (*destr_func)(T*), T* destr_data)
{
m_destr_data = destr_data;
m_destr_func = destr_func;
}
private:
void (*m_destr_func)(T*);
T* m_destr_data;
};

std::thread::detach causes crash after original caller is destroyed

struct Test {
bool active{true};
void threadedUpdate() {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
if(!active) // crashes here after Test instance is destroyed
return;
}
Test() {
std::thread([this]{ while(true) threadedUpdate(); }).detach();
}
~Test() {
// somehow stop the detached thread?
}
};
When an instance of Test is initialized, it spawns and detaches an std::thread which runs in background. When the same instance is destroyed, the previously mentioned thread tries to access the active member, which was destroyed along with the instance, causing a crash (and an AddressSanitizer backtrace).
Is there a way to stop the detached thread on ~Test()?
The design is bad. How should a thread running in background until the caller is destroyed be spawned/handled correctly?
Make the thread a member of the class, and instead of detaching it in the constructor, join it in the destructor. To stop the thread from looping, you can have a boolean inside the class that signals whether the thread should continue running or not (std::atomic<bool> update).
The thread could be executing this: [this] { while (update) threadUpdate(); }.
In the destructor of your class, do update = false, and call thread.join()
You can't stop detached threads. That's the point of .detach() - you don't have any way to refer to the detached thread anymore, at least as far as the C++ standard specifies. If you want to keep a handle to the thread, store the std::thread and call .join() in the destructor.

C++ std::thread of a member function

I'm trying to program a command line server that would receive information from a serial port, parse it, and record it in an internal object.
Then upon request from a client the server would return the requested information.
What I want to do is put the receiver & parser parts in a separated thread in order to have the server running along side, not interfering with the data collection.
#include <iostream>
#include <thread>
class exampleClass{
std::thread *processThread;
public void completeProcess(){
while(1){
processStep1();
if (verification()){processStep2()}
}
};
void processStep1(){...};
void processStep2(){...};
bool verification(){...};
void runThreaded();
} // End example class definition
// The idea being that this thread runs independently
// until I call the object's destructor
exampleClass::runThreaded(){
std::thread processThread(&exampleClass::completeProcess, this);
} // Unfortunately The program ends up crashing here with CIGARET
You are running a local thread inside a member function. You have to join it or detach it and, since it is local, you have to do this in the function itself:
exampleClass::runThreaded()
{
std::thread processThread(&exampleClass::completeProcess, this);
// more stuff
processThread.join();
} //
I am guessing what you really want is to launch a data member thread instead of launching a local one. If you do this, you still have to join it somewhere, for example in the destructor. In this case, your method should be
exampleClass::runThreaded()
{
processThread = std::thread(&exampleClass::completeProcess, this);
}
and the destructor
exampleClass::~exampleClass()
{
processThread.join();
}
and processThread should be an std::thread, not a pointer to one.
Just a note on design: if you are to have a runThreaded method acting on a thread data member, you have to be very careful about not calling it more than once before the thread is joined. It might make more sense to launch the thread in the constructor and join it in the destructor.
Thread object is on stack and it is going to be destructed on function end. Thread object destructor calls std::terminate if thread still running, as in your case. See here.

C++11 thread doesn't work with virtual member function

I'm trying to get a class run a thread, which will call a virtual member function named Tick() in a loop. Then I tried to derive a class and override the base::Tick().
but when execute, the program just call the base class's Tick instead of override one. any solutions?
#include <iostream>
#include <atomic>
#include <thread>
#include <chrono>
using namespace std;
class Runnable {
public:
Runnable() : running_(ATOMIC_VAR_INIT(false)) {
}
~Runnable() {
if (running_)
thread_.join();
}
void Stop() {
if (std::atomic_exchange(&running_, false))
thread_.join();
}
void Start() {
if (!std::atomic_exchange(&running_, true)) {
thread_ = std::thread(&Runnable::Thread, this);
}
}
virtual void Tick() {
cout << "parent" << endl;
};
std::atomic<bool> running_;
private:
std::thread thread_;
static void Thread(Runnable *self) {
while(self->running_) {
self->Tick();
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
};
class Fn : public Runnable {
public:
void Tick() {
cout << "children" << endl;
}
};
int main (int argc, char const* argv[])
{
Fn fn;
fn.Start();
return 0;
}
outputs:
parent
You can't let an object run out of scope until you're finished using it! The return 0; at the end of main causes fn to go out of scope. So by the time you get around to calling tick, there's no guarantee the object even exists any more.
(The logic in ~Runnable is totally broken. Inside the destructor is way too late -- the object is already at least partially destroyed.)
The approach of using inheritance with the parent serving as control for the thread and the children implementing the functions is a bad idea in general. The common problems with this approach come from construction and destruction:
if the thread is started from the constructor in the parent (control) then it might start running before the constructor completes and the thread might call the virtual function before the complete object has been fully constructed
if the thread is stopped in the destructor of the parent, then by the time that the control joins the thread, the thread is executing a method on an object that does no longer exist.
In your particular case you are hitting the second case. The program starts executing, and in main the second thread is started. At that point there is a race between the main thread and the newly launched, if the new thread is faster (unlikely, as starting the thread is an expensive operation), it will call the member method Tick that will be dispatched to the final overrider Fn::Tick.
But if the main thread is faster it will exit the scope of main, and it will start destruction of the object, it will complete destruction of the Fn object and during construction of the Runnable it will join the thread. If the main thread is fast enough, it will make it to the join before the second thread and wait there for the second thread to call Tick on the now final overrider that is Runnable::Tick. Note that this is Undefined Behavior, and not guaranteed, since the second thread is accessing an object that is being destroyed.
Also, there are other possible orderings, like for example, the second thread could dispatch to Fn::Tick before the main thread starts destruction, but might not complete the function before the main thread destroys the Fn sub object, in which case your second thread would be calling a member function on a dead object.
You should rather follow the approach in the C++ standard: separate the control from the logic, fully construct the object that will be run and pass it to the thread during construction. Note that this is the case of Java's Runnable, which is recommended over extending the Thread class. Note that from a design point of view this separation makes sense: the thread object manages the execution, and the runnable is the code to execute.
A thread is not a ticker, but rather what controls the execution of the ticker. And in your code Runnable is not something that can be run, but rather something that runs other objects that happen to derive from it.

A way to destroy "thread" class

Here is a skeleton of my thread class:
class MyThread {
public:
virutal ~MyThread();
// will start thread with svc() as thread entry point
void start() = 0;
// derive class will specialize what the thread should do
virtual void svc() = 0;
};
Somewhere in code I create an instance of MyThread and later I want to destroy it.
In this case MyThread~MyThread() is called. MyThread:svc() is still running and using the object's data members. So I need a way politely inform MyThread:svc() to stop spinning, before proceeding with the destructor.
What is the acceptable way to destroy the thread object?
Note: I'm looking for platform agnostic solution.
UPD: It's clear that the root of problem is that there's no relationship between C++ object representing thread and OS thread. So the question is: in context of object destuction, is there an acceptable way to make thread object behave like an ordinary C++ object or should it be treated as an unusual one (e.g. should we call join() before destoying it?
Considering your additional requirements posted as comment to Checkers' reply (which is the
most straightforward way to do that):
I agree that join in DTor is problematic for various reasons. But from that the lifetime of your thread object is unrelated to the lifetime of the OS thread object.
First, you need to separate the data the thread uses from the thread object itself. They are distinct entities with distinct lifetime requirements.
One approach is to make the data refcounted, and have any thread that wants to access it hold a strong reference to the data. This way, no thread will suddenly grab into the void, but the data will be destroyed as soon as noone touches it anymore.
Second, about the thread object being destroyed when the thread joins:
I am not sure if this is a good idea. The thread object is normally a way to query the state of a thread - but with a thread object that dies as soon as the thread finishes, noone can tell you wether the thread finished.
Generally, I'd completely decouple the lifetime of the thread object from the lifetime of the OS thread: Destroying your thread object should not affect the thread itself. I see two basic approaches to this:
Thread Handle Object - reference counted again, returned by thread creator, can be released as early as one likes without affecting the OS thread. It would expose methods such as Join, IsFinished, and can give access to the thread shared data.
(If the thread object holds relevant execution state, the threafFunc itself could hold a reference to it, thereby ensuring the instance won't be released before the thread ends)
Thin Wrapper - You simply create a temporary around an OS thread handle. You could not hold additional state for the thread easily, but it might be just enough to make it work: At any place, you can turn an OS thread handle into an thread object. The majority of communication - e.g. telling the thread to terminate - would be via the shared data.
For your code example, this means: separate the start() from the svc()
You'd roughly work with this API (XxxxPtr could be e.g. boost::shared_ptr):
class Thread
{
public:
bool IsFinished();
void Join();
bool TryJoin(long timeout);
WorkerPtr GetWorker();
static ThreadPtr Start(WorkerPtr worker); // creates the thread
};
class Worker
{
private:
virtual void Svc() = 0;
friend class Thread; // so thread can run Svc()
}
Worker could contain a ThreadPtr itself, giving you a guarantee that the thread object exists during execution of Svc(). If multiple threads are allowed to work on the same data, this would have to be a thread list. Otherwise, Thread::Start would have to reject Workers that are already associated with a thread.
Motivation: What to do with rogue threads that block?
Assuming a thread fails to terminate within time for one reason or another, even though you told it to. You simply have three choices:
Deadlock, your applicaiton hangs. That usually happens if you join in the destructor.
Violently terminate the thread. That's potentially a violent termination of the app.
Let the thread run to completion on it's own data - you can notify the user, who can safely save & exit. Or you simply let the rogue thread dance on it's own copy of the data (not reference by the main thread anymore) until it completes.
Usually any OS-specific threads API will allow you to "join" a thread. That is, to block indefinitely on a thread handle until the thread functions returns.
So,
Signal the thread function to return (e.g. by setting a flag in its loop to false).
Join the thread, to make sure the actual thread terminates before you try to delete the thread object.
Then you can proceed with destruction of the thread object (you may also join in the destructor, though some people object to blocking destructors.).
I've had a project before with a similar "thread worker" class and a corresponding "work item" class (a-la Java's Thread and Runnable, except thread does not terminate but waits for a new Runnable object to be executed).
In the end, there was no difference if you join in a separate "shutdown" function or in the destructor, except a separate function is a bit more clear.
If you join in a destructor and a thread blocks, you will wait indefinitely.
If you join in a separate function and a thread blocks, you will wait indefinitely.
If you detach the thread and let it finish on its own, it will usually block application from exiting, so you will wait indefinitely.
So there is no straightforward way to make a thread behave like a regular C++ object and ignore its OS thread semantics, unless you can guarantee that your thread code can terminate almost immediately when notified to do so.
You could havee somthing like this in your svc method
while (alive){ //loops}
//free resources after while.
In your destructor, you could set the alive member to false. Or, you could have a pleaseDie() method, that sets the alive member to false, and can be called from the outside requesting the Thread instance to stop processing.
void
Thread::pleaseDie()
{
this->alive = false;
}
You first need a way to communicate with the thread to tell it to shut down. The best mechanism to do this depends on what svc() is doing. If, for example, it is looping on a message queue, you could insert a "please stop" message in that queue. Otherwise, you could simply add a member bool variable (and synchronize access to it) that is periodically checked by the svc(), and set by the thread wanting to destroy the object. Your could add a pure virtual stop() function to your base class, giving the implementor a clear signal that it has to implement svc() to make its class "runnable", and to implement stop() to make it "stoppable".
After asking the thread to stop, you must wait for it to exit before destroying the object. Again, there are several ways to do this. One is to make the stop() function blocking. It could wait, for example, for a "ok, I'm really stopped now" condition variable to be set by the thread running svc(). Alternatively, the caller could "wait" on the thread running svc(). The way to "wait" is platform dependent.
Most thread systems allow you to send a signal to a thead.
Example: pthreads
pthread_kill(pthread_t thread, int sig);
This will send a signall to a thread.
You can use this to kill the thread. Though this can leave a few of the resources hanging in an undefined state.
A solution to the resource problem is to install a signall handler.
So that when the signal handler is called it throws an exception. This will cause the thread stack to unwind to the entry point where you can then get the thread to check a variable about weather it is sill alive.
NOTE: You should never allow an exception to propogate out of a thread (this is so undefined my eyes bleed thinking about it). Basically catch the exception at the thread entry point then check some state variable to see if the thread should really exit.
Meanwhile the thread that sends the signal should wait for the thread to die by doing a join.
The only issues are that when you throw out of signal handler function you need to be careful. You should not use a signal that is asynchronus (ie one that could have been generated by a signal in another thread). A good one to use is SIGSEGV. If this happens normally then you have accessed invalid memory any you thread should think about exiting anyway!
You may also need to specify an extra flag on some systems to cope.
See This article
A working example using pthreads:
#include <pthread.h>
#include <iostream>
extern "C" void* startThread(void*);
extern "C" void shouldIexit(int sig);
class Thread
{
public:
Thread();
virtual ~Thread();
private:
friend void* startThread(void*);
void start();
virtual void run() = 0;
bool running;
pthread_t thread;
};
// I have seen a lot of implementations use a static class method to do this.
// DON'T. It is not portable. This is because the C++ ABI is not defined.
//
// It currently works on several compilers but will break if these compilers
// change the ABI they use. To gurantee this to work you should use a
// function that is declared as extern "C" this guarantees that the ABI is
// correct for the callback. (Note this is true for all C callback functions)
void* startThread(void* data)
{
Thread* thread = reinterpret_cast<Thread*>(data);
thread->start();
}
void shouldIexit(int sig)
{
// You should not use std::cout in signal handler.
// This is for Demo purposes only.
std::cout << "Signal" << std::endl;
signal(sig,shouldIexit);
// The default handler would kill the thread.
// But by returning you can continue your code where you left off.
// Or by throwing you can cause the stack to unwind (if the exception is caught).
// If you do not catch the exception it is implementation defined weather the
// stack is unwound.
throw int(3); // use int for simplicity in demo
}
Thread::Thread()
:running(true)
{
// Note starting the thread in the constructor means that the thread may
// start before the derived classes constructor finishes. This may potentially
// be a problem. It is started here to make the code succinct and the derived
// class used has no constructor so it does not matter.
if (pthread_create(&thread,NULL,startThread,this) != 0)
{
throw int(5); // use int for simplicity in demo.
}
}
Thread::~Thread()
{
void* ignore;
running = false;
pthread_kill(thread,SIGSEGV); // Tell thread it may want to exit.
pthread_join(thread,&ignore); // Wait for it to finish.
// Do NOT leave before thread has exited.
std::cout << "Thread Object Destroyed" << std::endl;
}
void Thread::start()
{
while(running)
{
try
{
this->run();
}
catch(...)
{}
}
std::cout << "Thread exiting" << std::endl;
}
class MyTestThread:public Thread
{
public:
virtual void run()
{
// Unless the signal causes an exception
// this loop will never exit.
while(true)
{
sleep(5);
}
}
};
struct Info
{
Info() {std::cout << "Info" << std::endl;}
~Info() {std::cout << "Done: The thread Should have exited before this" << std::endl;}
};
int main()
{
signal(SIGSEGV,shouldIexit);
Info info;
MyTestThread test;
sleep(4);
std::cout << "Exiting About to Exit" << std::endl;
}
> ./a.exe
Info
Exiting About to Exit
Signal
Thread exiting
Thread Object Destroyed
Done: The thread Should have exited before this
>
You should add dedicated thread management class (i.e. MyThreadMngr), that handles this and other tasks, like book keeping, owning the thread handles etc. The Thread itself should somehow signal to the thread manager that its going to terminate and MyThreadMngr should i.e. have a loop like Tom proposed.
There will probably be more actions that suite into such a thread manager class.
I reckon the easiest way to do this is to wrap the thread execution code in a loop
while(isRunning())
{
... thread implementation ...
}
You can also stop your thread by doing specific calls, for instance when you're using a WIN32 thread you can call TerminateThread on the thread handle in the destructor.
i give a simple and clean design, no signal, no sync, no kill needed.
per your MyThread, i suggest renaming and adding as below:
class MyThread {
public:
virutal ~MyThread();
// will be called when starting a thread,
// could do some initial operations
virtual bool OnStart() = 0;
// will be called when stopping a thread, say calling join().
virtual bool OnStop() = 0;
// derive class will specialize what the thread should do,
// say the thread loop such as
// while (bRunning) {
// do the job.
// }
virtual int OnRun() = 0;
};
the thread interface user will control the lifetime of MyThread.
and actually the real thread object is as below:
class IThread
{
public:
virtual API ~IThread() {}
/* The real destructor. */
virtual void Destroy(void) = 0;
/* Starts this thread, it will call MyThread::OnStart()
* and then call MyThread::OnRun() just after created
* the thread. */
virtual bool Start(void) = 0;
/* Stops a thread. will call MyThread::OnStop(). */
virtual void Stop(void) = 0;
/* If Wait() called, thread won't call MyThread::OnStop().
* If could, it returns the value of MyThread::OnRun()
* returned */
virtual int Wait(void) = 0;
/* your staff */
virtual MyThread * Command(void) = 0;
};
/* The interface to create a thread */
extern IThread * ThrdCreate(MyThread *p);
See the complete interfaces
http://effoaddon.googlecode.com/svn/trunk/devel/effo/codebase/addons/thrd/include/thrd_i.h
Coding Examples
Case 1. Controlled thread loop
class ThreadLoop : public MyThread
{
private:
bool m_bRunning;
public:
virtual bool OnStart() { m_bRunning = true; }
virtual bool OnStop() { m_bRunning = false; }
virtual int OnRun()
{
while (m_bRunning) {
do your job;
}
}
};
int main(int argc, char **argv)
{
ThreadLoop oLoop;
IThread *pThread = ThrdCreate(&oLoop);
// Start the thread, it will call Loop::OnStart()
//and then call Loop::OnRun() internally.
pThread->Start();
do your things here. when it is time to stop the thread, call stop().
// Stop the thread, it will call Loop::OnStop(),
// so Loop::OnRun() will go to the end
pThread->Stop();
// done, destroy the thread
pThread->Destroy();
}
Case 2. Don't know when the thread will stop
class ThreadLoop : public MyThread
{
public:
virtual bool OnStart() { }
virtual bool OnStop() { }
virtual int OnRun()
{
do your job until finish.
}
};
int main(int argc, char **argv)
{
ThreadLoop oLoop;
IThread *pThread = ThrdCreate(&oLoop);
// Start the thread, it will call Loop::OnStart()
//and then call Loop::OnRun() internally.
pThread->Start();
do your things here. Since you don't know when the job will
finish in the thread loop. call wait().
// Wait the thread, it doesn't call Loop::OnStop()
pThread->Wait();
// done, destroy the thread
pThread->Destroy();
}
A complete IThread implementation:
see
http://effoaddon.googlecode.com/svn/trunk/devel/effo/codebase/addons/thrd/src/thrd/thrd.cpp