N-body simulation on Fortran leap frog algorithm - fortran

I am using a simple 'leapfrog algorithm I am aiming to simulate the orbits of the earth a Jupiter around the sun. I am unable to get them to orbit despite being fairly sure the maths is correct. It appears that gravity is acting too weekly and the planet merely floats away from the sun, interestingly if I adjust the Newtonian acceleration due to gravity term by multiplying it by rad2 I find that the system does indeed produce fairly stable orbits but at much much too large radii.
program physim
Implicit none
integer :: i,j,n,day ! Integer variables
doubleprecision :: G , r(1:3,1:10) , a(1:3, 1:10) , v(1:3, 1:10) , m(1:3), dt, Au, dr(1:3),
rad2(1:3), t, tcount, tend, tout
! constants
day = 86400
tout = 10*day
tend = 20*day
Au = 15e11
n = 3
G = 6.67e-11
!n = 2
dt = 100
!sun
r(1,1) = 0.
r(2,1) = 0.
r(3,1) = 0.
v(1,1) = 0.
v(2,1) = 0.
v(3,1) = 0.
m(1) = 1.9898e30
!earth
r(1,2) = Au
r(2,2) = 0.
r(3,2) = 0.
v(1,2) = 0.
v(2,2) = 30000
v(3,2) = 0.
m(2) = 6e24
!jupiter
r(1,3) = 5.2*Au
r(2,3) = 0.
r(3,3) = 0.
v(1,3) = 0.
v(2,3) = 13070
v(3,3) = 0.
m(3) = 2e27
do
a = 0
tcount = 0
do i = 1, n
do j = 1, n
!calculating acceleration
if (i==j)cycle
dr(1:3) = r(1:3, j) - r(1:3, i)
rad2 = dr(1)**2 + dr(2)**2 + dr(3)**2
a(1:3, i) = a(1:3, i) + G*m(j)*dr(1:3)/(rad2*sqrt(rad2))
end do
end do
do i = 1, n
r(1:3 ,i) = r(1:3, i) + v(1:3, i)*dt
v(1:3, i) = v(1:3, i) + a(1:3, i)*dt
end do
t = t + dt
tcount = t + dt
if(tcount>tout) then
!write(6,*) a(1,2)
!write(6,*) rad2
write(6,*) a(1,1) , a(2,1), a(3, 2)
end if
end do
end program

Your most fundamental problem was that 1 A.U. = 1.5e11 m, not 15e11. Then you were doing stuff like resetting tcount every trip through the loop. Set it before the start of the main loop and then only reset when you print out a line of output. It should be updated as tcount=tcount+dt and then you probably want to print out r(1,2) , r(2,2), r(1,3) , r(2,3) so you can plot the positions of jupiter and earth. Also you should maybe go for more time so you can see a few full orbits of earth, and finally put a test at the bottom of the loop so it will exit when t>tend. Making these changes I got output that looked like this:

Related

Why is this ellipse drawing program so very slow?

I have a program to draw a grid of ellipses with a uniform phase distribution. However, it is very slow.
I'd like my code to be faster, so that I can use, for example, N = 150, M = 150.
How can I speed up this code?
N = 10;
M = 10;
y = 1;
x = 1;
a = 1;
b = 2;
for k = 1:N
for m = 1:N
w = rand(1,1);
for l = 1:N
for s = 1:N
if(((l-x)*cos(w*pi)+(s-y)*sin(w*pi)).^2/a^2 + (-(l-x)*sin(w*pi) + (s-y)*cos(w*pi)).^2/b.^2 <= 1)
f(l,s) = 1*(cos(0.001)+i*sin(0.001));
end
end
end
y = y+4;
end
y = 1;
x = x+5;
end
image(arg(f),'CDataMapping','scaled');
This is what the code produces:
Updated:
N = 10;
M = 10;
y = 1;
x = 1;
a = 1;
b = 2;
for x = 1:5:N
for y = 1:4:N
w = rand(1);
for l = 1:N
for s = 1:N
if(((l-x).*cos(w.*pi)+(s-y).*sin(w.*pi)).^2/a.^2 + (-(l-x).*sin(w.*pi) + (s-y).*cos(w.*pi)).^2/b.^2 <= 1)
f(l,s) = cos(0.001)+i.*sin(0.001);
end
end
end
end
y = 1;
end
image(arg(f),'CDataMapping','scaled');
There are many things you can do to speed up the computation. One important one is to remove loops and replace them with vectorized code. Octave works much faster when doing many computations as once, as opposed to one at a time.
For example, instead of
for l = 1:N
for s = 1:N
if(((l-x).*cos(w.*pi)+(s-y).*sin(w.*pi)).^2/a.^2 + (-(l-x).*sin(w.*pi) + (s-y).*cos(w.*pi)).^2/b.^2 <= 1)
f(l,s) = cos(0.001)+i.*sin(0.001);
end
end
end
one can write
l = 1:N;
s = (1:N).';
index = ((l-x).*cos(w.*pi)+(s-y).*sin(w.*pi)).^2/a.^2 + (-(l-x).*sin(w.*pi) + (s-y).*cos(w.*pi)).^2/b.^2 <= 1;
f(index) = cos(0.001)+i.*sin(0.001);
However, here we still do too much work because we compute index at locations that we know will be outside the extend of the ellipse. Ideally we'd find a smaller region around each point (x,y) that we know the ellipse fits into.
Another important thing to do is preallocate the array. f grows within the loop iterations. Instead, one should create f with its final size before the loop starts.
There are also many redundant computations being made. For example w.*pi is computed multiple times, and the cos and sin of it too. You also assign cos(0.001)+i.*sin(0.001) to output pixels over and over again, this could be a constant computed once.
The following code runs in MATLAB in a tiny fraction of a second (though Octave will be a lot slower). I've also separated N and M properly (so the output is not always square) and made the step sizes a variable for improved understanding of the code. I'm assigning 1 to the ellipse elements, you can replace them by your constant by multiplying f = f * (cos(0.001)+i*sin(0.001)).
N = 150;
M = 200;
a = 5;
b = 10;
x_step = 25;
y_step = 25;
f = zeros(N,M);
for x = x_step/2:x_step:M
for y = y_step/2:y_step:N
phi = rand(1)*pi;
cosphi = cos(phi);
sinphi = sin(phi);
l = (1:M)-x;
s = (1:N).'-y;
index = (l*cosphi+s*sinphi).^2/a.^2 + (-l*sinphi + s*cosphi).^2/b.^2 <= 1;
f(index) = 1;
end
end
I'm not 100% sure what you're trying to do. See the code below and let me know. It took me about 30 s to run the 150 x 150 case. Not sure if that's fast enough
[h,k] = meshgrid(0:150, 0:150);
a = 0.25;
b = 0.5;
phi = reshape( linspace( 0 , 2*pi , numel(h) ), size(h));
theta = linspace(0,2*pi,50)';
x = a*cos(theta);
y = b*sin(theta);
h = h(:);
k = k(:);
phi = phi(:);
ellipseX = arrayfun(#(H,K,F) x*cos(F)-y*sin(F) + H , h,k,phi, 'uni', 0);
ellipseY = arrayfun(#(H,K,F) x*sin(F)+y*cos(F) + K , h,k,phi, 'uni', 0);
ellipse = [ellipseX, ellipseY, repmat({'r'}, size(ellipseX))]';
fill(ellipse{:})

Fortran NBody sim code won't run for high year values

The program is as follows.
The issue occurs when I try to run the code for >~80 years, at which point the code apparently 'runs' instantly, generating an empty text file. The code runs fine for smaller timescales.
PROGRAM NBody
IMPLICIT NONE
DOUBLE PRECISION:: m(1:10), deltaR(1:3)
DOUBLE PRECISION:: G, r
DOUBLE PRECISION, DIMENSION(10,3):: pos, v, a0, a1 !x, y, z
INTEGER:: n,i,j,k,stepsize, year, zero, length
CHARACTER(len=13):: fname !xxxyrxxpl.txt
zero = 0
m(1) = 1988500e24 !sun
m(2) = 0.33e24 !mercury
m(3) = 4.87e24 !venus
m(4) = 5.97e24 !earth
m(5) = 0.642e24 !mars
m(6) = 1898e24 !jupiter
m(7) = 568e24 !saturn
m(8) = 86.8e24 !uranus
m(9) = 102e24 !!neptune
m(10) = 0.0146e24 !pluto
!Initial POS
pos = zero
pos(2,1) = 57.9e9
pos(3,1) = 108e9
pos(4,1) = 149e9
pos(5,1) = 227e9
pos(6,1) = 778e9
pos(7,1) = 1352.6e9
pos(8,1) = 2741.3e9
pos(9,1) = 4444.5e9
pos(10,1) = 4436.8e9
!FORTRAN works column,row: (particle,x/y/z)
!Momentum is initially non-zero due to planet and velocity starting points. Figure out a solution.
!Initial velocity
v = zero
v(2,2) = 47.4e3
v(3,2) = 35e3
v(4,2) = 29.8e3
v(5,2) = 24.1e3
v(6,2) = 13.1e3
v(7,2) = 9.7e3
v(8,2) = 6.8e3
v(9,2) = 5.4e3
v(10,2) = 4.7e3
g = 6.67e-11
stepsize = 1800 !3600 = 1 hour
year = 3.154e+7
!Calculate initial values
a0 = 0
a1 = 0
do i = 1,10
do j = 1,10
if(i==j) cycle
deltaR(:) = (pos(i,:)-pos(j,:))
r = -sqrt((pos(i,1)-pos(j,1))**2+(pos(i,2)-pos(j,2))**2+(pos(i,3)-pos(j,3))**2)
a0(i,:) = a0(i,:) + g*M(j)*deltaR*r**(-3)
END DO
END DO
write(6,*) "Specify length in years"
read (*,*) length
write(6,*) "Specify file name (xxxYRzzPL.txt)"
read(*,*) fname
!Just above is where I call for a length in the terminal, values of 40 will work, much higher do not. I don't know the exact cut-off.
open (unit = 2, file = fname)
!Do loop over time, planet and partners to step positions
do k=0, length*year,stepsize
write(2,*) pos
pos = pos + v*stepsize + 0.5*a0*stepsize**2
do i = 1,10
do j = 1,10
if(i==j) cycle
deltaR(:) = (pos(i,:)-pos(j,:))
r = -sqrt((pos(i,1)-pos(j,1))**2+(pos(i,2)-pos(j,2))**2+(pos(i,3)-pos(j,3))**2)
a1(i,:) = a1(i,:) + G*M(j)*deltaR/r**3
END DO
END DO
v = v + 0.5*(a0+a1)*stepsize
a0=a1
a1=0
END DO
close (2)
END PROGRAM
I suspected it could be an issue with variable storage but I can't see any problems there.
Using an iterator like this can be dubious. Even an 8 byte integer will overflow if you go long enough. Considering how this code is set up, I would do something like this:
do iYear = 1, length
do k = 0, year, stepsize
....
enddo
enddo
Inner do loop loops over one year. Outer do loop loops over the years. Could go Gigayears like this with just 4 byte integers if you want to wait that long.
I would likely rename your variables too to make more sense. This would look better:
do iYear = 1, nYears
do k = 0, YearLength, stepsize
....
enddo
enddo
Expanding on #francescalus, you may need to specify your integers as 8-bytes rather than the default 4:
integer, parameter :: c_int8 = selected_int_kind (10)
integer(kind = c_int8) :: n,i,j,k,stepsize, year, zero, length
EDIT I added a parameter to determine the correct value for a 64-bit integer intrinsically.

Why is fortran not computing correctly?

program partOne
integer hit, i
real x, y, equation, finalE, compE, finalHit
parameter (pi = 3.1415926535)
c This program computes pi using the Monte Carlo method
do 10 i = 1, 1000000
x = rand()
y = rand()
equation = sqrt((x*x) + (y*y))
if (equation .LE. 1.0) hit = hit + 1
10 continue
write(*,*) 'hits = ', hit
finalHit = hit
write(*,*) 'finalHits = ', finalHit
finalE = ((finaHit/1000000) * 4)
write(*,*) 'pi = ', pi
write(*,*) 'Computed pi = ', finalE
END PROGRAM partOne
Why does finalE not calculate correctly? Everything seems to assign correctly, but when the equation is done it comes out completely wrong. It should be close to pi.
Updated:
program partOne
integer hit, i
real x, y, equation, finalE, compE, finalHit
parameter (pi = 3.1415926535)
c This program computes pi using the Monte Carlo method
hit = 0
do 10 i = 1, 1000000
x = rand()
y = rand()
equation = sqrt((x*x) + (y*y))
if (equation .LE. 1.0) hit = hit + 1
10 continue
write(*,*) 'hits = ', hit
finalHit = hit
write(*,*) 'finalHits = ', finalHit
finalE = ((finaHit/1000000.0) * 4.0)
write(*,*) 'pi = ', pi
write(*,*) 'Computed pi = ', finalE
END PROGRAM partOne
Results after update:
hits = 785524
finalHits = 785524.00
pi = 3.1415927
Computed pi = -5.21399923E+23
hit = hit + 1. hit can be initialized to 0 or some other value depending on your compiler and other options. Add hit = 0 before the loop where you increment it.
finalE = ((finaHit/1000000) * 4) should be finalE = ((finalHit/1000000.0) * 4.0). finaHit is not defined so change it to finalHit. real values should be multiplied and added to real values, add the .0 to make them real.
Making these changes:
$ a.out
hits = 785524
finalHits = 785524.000
pi = 3.14159274
Computed pi = 3.14209604

Implementation of the Discrete Fourier Transform - FFT

I am trying to do a project in sound processing and need to put the frequencies into another domain. Now, I have tried to implement an FFT, that didn't go well. I tried to understand the z-transform, that didn't go to well either. I read up and found DFT's a lot more simple to understand, especially the algorithm. So I coded the algorithm using examples but I do not know or think the output is right. (I don't have Matlab on here, and cannot find any resources to test it) and wondered if you guys knew if I was going in the right direction. Here is my code so far:
#include <iostream>
#include <complex>
#include <vector>
using namespace std;
const double PI = 3.141592;
vector< complex<double> > DFT(vector< complex<double> >& theData)
{
// Define the Size of the read in vector
const int S = theData.size();
// Initalise new vector with size of S
vector< complex<double> > out(S, 0);
for(unsigned i=0; (i < S); i++)
{
out[i] = complex<double>(0.0, 0.0);
for(unsigned j=0; (j < S); j++)
{
out[i] += theData[j] * polar<double>(1.0, - 2 * PI * i * j / S);
}
}
return out;
}
int main(int argc, char *argv[]) {
vector< complex<double> > numbers;
numbers.push_back(102023);
numbers.push_back(102023);
numbers.push_back(102023);
numbers.push_back(102023);
vector< complex<double> > testing = DFT(numbers);
for(unsigned i=0; (i < testing.size()); i++)
{
cout << testing[i] << endl;
}
}
The inputs are:
102023 102023
102023 102023
And the result:
(408092, 0)
(-0.0666812, -0.0666812)
(1.30764e-07, -0.133362)
(0.200044, -0.200043)
Any help or advice would be great, I'm not expecting a lot, but, anything would be great. Thank you :)
#Phorce is right here. I don't think there is any reson to reinvent the wheel. However, if you want to do this so that you understand the methodology and to have the joy of coding it yourself I can provide a FORTRAN FFT code that I developed some years ago. Of course this is not C++ and will require a translation; this should not be too difficult and should enable you to learn a lot in doing so...
Below is a Radix 4 based algorithm; this radix-4 FFT recursively partitions a DFT into four quarter-length DFTs of groups of every fourth time sample. The outputs of these shorter FFTs are reused to compute many outputs, thus greatly reducing the total computational cost. The radix-4 decimation-in-frequency FFT groups every fourth output sample into shorter-length DFTs to save computations. The radix-4 FFTs require only 75% as many complex multiplies as the radix-2 FFTs. See here for more information.
!+ FILE: RADIX4.FOR
! ===================================================================
! Discription: Radix 4 is a descreet complex Fourier transform algorithim. It
! is to be supplied with two real arrays, one for real parts of function
! one for imaginary parts: It can also unscramble transformed arrays.
! Usage: calling FASTF(XREAL,XIMAG,ISIZE,ITYPE,IFAULT); we supply the
! following:
!
! XREAL - array containing real parts of transform sequence
! XIMAG - array containing imagianry parts of transformation sequence
! ISIZE - size of transform (ISIZE = 4*2*M)
! ITYPE - +1 forward transform
! -1 reverse transform
! IFAULT - 1 if error
! - 0 otherwise
! ===================================================================
!
! Forward transform computes:
! X(k) = sum_{j=0}^{isize-1} x(j)*exp(-2ijk*pi/isize)
! Backward computes:
! x(j) = (1/isize) sum_{k=0}^{isize-1} X(k)*exp(ijk*pi/isize)
!
! Forward followed by backwards will result in the origonal sequence!
!
! ===================================================================
SUBROUTINE FASTF(XREAL,XIMAG,ISIZE,ITYPE,IFAULT)
REAL*8 XREAL(*),XIMAG(*)
INTEGER MAX2,II,IPOW
PARAMETER (MAX2 = 20)
! Check for valid transform size upto 2**(max2):
IFAULT = 1
IF(ISIZE.LT.4) THEN
print*,'FFT: Error: Data array < 4 - Too small!'
return
ENDIF
II = 4
IPOW = 2
! Prepare mod 2:
1 IF((II-ISIZE).NE.0) THEN
II = II*2
IPOW = IPOW + 1
IF(IPOW.GT.MAX2) THEN
print*,'FFT: Error: FFT1!'
return
ENDIF
GOTO 1
ENDIF
! Check for correct type:
IF(IABS(ITYPE).NE.1) THEN
print*,'FFT: Error: Wrong type of transformation!'
return
ENDIF
! No entry errors - continue:
IFAULT = 0
! call FASTG to preform transformation:
CALL FASTG(XREAL,XIMAG,ISIZE,ITYPE)
! Due to Radix 4 factorisation results are not in the same order
! after transformation as they were when the data was submitted:
! We now call SCRAM, to unscramble the reults:
CALL SCRAM(XREAL,XIMAG,ISIZE,IPOW)
return
END
!-END: RADIX4.FOR
! ===============================================================
! Discription: This is the radix 4 complex descreet fast Fourier
! transform with out unscrabling. Suitable for convolutions or other
! applications that do not require unscrambling. Designed for use
! with FASTF.FOR.
!
SUBROUTINE FASTG(XREAL,XIMAG,N,ITYPE)
INTEGER N,IFACA,IFCAB,LITLA
INTEGER I0,I1,I2,I3
REAL*8 XREAL(*),XIMAG(*),BCOS,BSIN,CW1,CW2,PI
REAL*8 SW1,SW2,SW3,TEMPR,X1,X2,X3,XS0,XS1,XS2,XS3
REAL*8 Y1,Y2,Y3,YS0,YS1,YS2,YS3,Z,ZATAN,ZFLOAT,ZSIN
ZATAN(Z) = ATAN(Z)
ZFLOAT(K) = FLOAT(K) ! Real equivalent of K.
ZSIN(Z) = SIN(Z)
PI = (4.0)*ZATAN(1.0)
IFACA = N/4
! Forward transform:
IF(ITYPE.GT.0) THEN
GOTO 5
ENDIF
! If this is for an inverse transform - conjugate the data:
DO 4, K = 1,N
XIMAG(K) = -XIMAG(K)
4 CONTINUE
5 IFCAB = IFACA*4
! Proform appropriate transformations:
Z = PI/ZFLOAT(IFCAB)
BCOS = -2.0*ZSIN(Z)**2
BSIN = ZSIN(2.0*Z)
CW1 = 1.0
SW1 = 0.0
! This is the main body of radix 4 calculations:
DO 10, LITLA = 1,IFACA
DO 8, I0 = LITLA,N,IFCAB
I1 = I0 + IFACA
I2 = I1 + IFACA
I3 = I2 + IFACA
XS0 = XREAL(I0) + XREAL(I2)
XS1 = XREAL(I0) - XREAL(I2)
YS0 = XIMAG(I0) + XIMAG(I2)
YS1 = XIMAG(I0) - XIMAG(I2)
XS2 = XREAL(I1) + XREAL(I3)
XS3 = XREAL(I1) - XREAL(I3)
YS2 = XIMAG(I1) + XIMAG(I3)
YS3 = XIMAG(I1) - XIMAG(I3)
XREAL(I0) = XS0 + XS2
XIMAG(I0) = YS0 + YS2
X1 = XS1 + YS3
Y1 = YS1 - XS3
X2 = XS0 - XS2
Y2 = YS0 - YS2
X3 = XS1 - YS3
Y3 = YS1 + XS3
IF(LITLA.GT.1) THEN
GOTO 7
ENDIF
XREAL(I2) = X1
XIMAG(I2) = Y1
XREAL(I1) = X2
XIMAG(I1) = Y2
XREAL(I3) = X3
XIMAG(I3) = Y3
GOTO 8
! Now IF required - we multiply by twiddle factors:
7 XREAL(I2) = X1*CW1 + Y1*SW1
XIMAG(I2) = Y1*CW1 - X1*SW1
XREAL(I1) = X2*CW2 + Y2*SW2
XIMAG(I1) = Y2*CW2 - X2*SW2
XREAL(I3) = X3*CW3 + Y3*SW3
XIMAG(I3) = Y3*CW3 - X3*SW3
8 CONTINUE
IF(LITLA.EQ.IFACA) THEN
GOTO 10
ENDIF
! Calculate a new set of twiddle factors:
Z = CW1*BCOS - SW1*BSIN + CW1
SW1 = BCOS*SW1 + BSIN*CW1 + SW1
TEMPR = 1.5 - 0.5*(Z*Z + SW1*SW1)
CW1 = Z*TEMPR
SW1 = SW1*TEMPR
CW2 = CW1*CW1 - SW1*SW1
SW2 = 2.0*CW1*SW1
CW3 = CW1*CW2 - SW1*SW2
SW3 = CW1*SW2 + CW2*SW1
10 CONTINUE
IF(IFACA.LE.1) THEN
GOTO 14
ENDIF
! Set up tranform split for next stage:
IFACA = IFACA/4
IF(IFACA.GT.0) THEN
GOTO 5
ENDIF
! This is the calculation of a radix two-stage:
DO 13, K = 1,N,2
TEMPR = XREAL(K) + XREAL(K + 1)
XREAL(K + 1) = XREAL(K) - XREAL(K + 1)
XREAL(K) = TEMPR
TEMPR = XIMAG(K) + XIMAG(K + 1)
XIMAG(K + 1) = XIMAG(K) - XIMAG(K + 1)
XIMAG(K) = TEMPR
13 CONTINUE
14 IF(ITYPE.GT.0) THEN
GOTO 17
ENDIF
! For the inverse case, cojugate and scale the transform:
Z = 1.0/ZFLOAT(N)
DO 16, K = 1,N
XIMAG(K) = -XIMAG(K)*Z
XREAL(K) = XREAL(K)*Z
16 CONTINUE
17 return
END
! ----------------------------------------------------------
!-END of subroutine FASTG.FOR.
! ----------------------------------------------------------
!+ FILE: SCRAM.FOR
! ==========================================================
! Discription: Subroutine for unscrambiling FFT data:
! ==========================================================
SUBROUTINE SCRAM(XREAL,XIMAG,N,IPOW)
INTEGER L(19),II,J1,J2,J3,J4,J5,J6,J7,J8,J9,J10,J11,J12
INTEGER J13,J14,J15,J16,J17,J18,J19,J20,ITOP,I
REAL*8 XREAL(*),XIMAG(*),TEMPR
EQUIVALENCE (L1,L(1)),(L2,L(2)),(L3,L(3)),(L4,L(4))
EQUIVALENCE (L5,L(5)),(L6,L(6)),(L7,L(7)),(L8,L(8))
EQUIVALENCE (L9,L(9)),(L10,L(10)),(L11,L(11)),(L12,L(12))
EQUIVALENCE (L13,L(13)),(L14,L(14)),(L15,L(15)),(L16,L(16))
EQUIVALENCE (L17,L(17)),(L18,L(18)),(L19,L(19))
II = 1
ITOP = 2**(IPOW - 1)
I = 20 - IPOW
DO 5, K = 1,I
L(K) = II
5 CONTINUE
L0 = II
I = I + 1
DO 6, K = I,19
II = II*2
L(K) = II
6 CONTINUE
II = 0
DO 9, J1 = 1,L1,L0
DO 9, J2 = J1,L2,L1
DO 9, J3 = J2,L3,L2
DO 9, J4 = J3,L4,L3
DO 9, J5 = J4,L5,L4
DO 9, J6 = J5,L6,L5
DO 9, J7 = J6,L7,L6
DO 9, J8 = J7,L8,L7
DO 9, J9 = J8,L9,L8
DO 9, J10 = J9,L10,L9
DO 9, J11 = J10,L11,L10
DO 9, J12 = J11,L12,L11
DO 9, J13 = J12,L13,L12
DO 9, J14 = J13,L14,L13
DO 9, J15 = J14,L15,L14
DO 9, J16 = J15,L16,L15
DO 9, J17 = J16,L17,L16
DO 9, J18 = J17,L18,L17
DO 9, J19 = J18,L19,L18
J20 = J19
DO 9, I = 1,2
II = II +1
IF(II.GE.J20) THEN
GOTO 8
ENDIF
! J20 is the bit reverse of II!
! Pairwise exchange:
TEMPR = XREAL(II)
XREAL(II) = XREAL(J20)
XREAL(J20) = TEMPR
TEMPR = XIMAG(II)
XIMAG(II) = XIMAG(J20)
XIMAG(J20) = TEMPR
8 J20 = J20 + ITOP
9 CONTINUE
return
END
! -------------------------------------------------------------------
!-END:
! -------------------------------------------------------------------
Going through this and understanding it will take time! I wrote this using a CalTech paper I found years ago, I cannot recall the reference I am afraid. Good luck.
I hope this helps.
Your code works.
I would give more digits for PI ( 3.1415926535898 ).
Also, you have to devide the output of the DFT summation by S, the DFT size.
Since the input series in your test is constant, the DFT output should have only one non-zero coefficient.
And indeed all the output coefficients are very small relative to the first one.
But for a large input length, this is not an efficient way of implementing the DFT.
If timing is a concern, look into the Fast Fourrier Transform for faster methods to calculate the DFT.
Your code looks right to me. I'm not sure what you were expecting for output but, given that your input is a constant value, the DFT of a constant is a DC term in bin 0 and zeroes in the remaining bins (or a close equivalent, which you have).
You might try testing you code with a longer sequence containing some type of waveform like a sine wave or a square wave. In general, however, you should consider using something like fftw in production code. Its been wrung out and highly optimized by many people for a long time. FFTs are optimized DFTs for special cases (e.g., lengths that are powers of 2).
Your code looks okey. out[0] should represent the "DC" component of your input waveform. In your case, it is 4 times bigger than the input waveform, because your normalization coefficient is 1.
The other coefficients should represent the amplitude and phase of your input waveform. The coefficients are mirrored, i.e., out[i] == out[N-i]. You can test this with the following code:
double frequency = 1; /* use other values like 2, 3, 4 etc. */
for (int i = 0; i < 16; i++)
numbers.push_back(sin((double)i / 16 * frequency * 2 * PI));
For frequency = 1, this gives:
(6.53592e-07,0)
(6.53592e-07,-8)
(6.53592e-07,1.75661e-07)
(6.53591e-07,2.70728e-07)
(6.5359e-07,3.75466e-07)
(6.5359e-07,4.95006e-07)
(6.53588e-07,6.36767e-07)
(6.53587e-07,8.12183e-07)
(6.53584e-07,1.04006e-06)
(6.53581e-07,1.35364e-06)
(6.53576e-07,1.81691e-06)
(6.53568e-07,2.56792e-06)
(6.53553e-07,3.95615e-06)
(6.53519e-07,7.1238e-06)
(6.53402e-07,1.82855e-05)
(-8.30058e-05,7.99999)
which seems correct to me: negligible DC, amplitude 8 for 1st harmonics, negligible amplitudes for other harmonics.
MoonKnight has already provided a radix-4 Decimation In Frequency Cooley-Tukey scheme in Fortran. I'm below providing a radix-2 Decimation In Frequency Cooley-Tukey scheme in Matlab.
The code is an iterative one and considers the scheme in the following figure:
A recursive approach is also possible.
As you will see, the implementation calculates also the number of performed multiplications and additions and compares it with the theoretical calculations reported in How many FLOPS for FFT?.
The code is obviously much slower than the highly optimized FFTW exploited by Matlab.
Note also that the twiddle factors omegaa^((2^(p - 1) * n)) can be calculated off-line and then restored from a lookup table, but this point is skipped in the code below.
For a Matlab implementation of an iterative radix-2 Decimation In Time Cooley-Tukey scheme, please see Implementing a Fast Fourier Transform for Option Pricing.
% --- Radix-2 Decimation In Frequency - Iterative approach
clear all
close all
clc
N = 32;
x = randn(1, N);
xoriginal = x;
xhat = zeros(1, N);
numStages = log2(N);
omegaa = exp(-1i * 2 * pi / N);
mulCount = 0;
sumCount = 0;
tic
M = N / 2;
for p = 1 : numStages;
for index = 0 : (N / (2^(p - 1))) : (N - 1);
for n = 0 : M - 1;
a = x(n + index + 1) + x(n + index + M + 1);
b = (x(n + index + 1) - x(n + index + M + 1)) .* omegaa^((2^(p - 1) * n));
x(n + 1 + index) = a;
x(n + M + 1 + index) = b;
mulCount = mulCount + 4;
sumCount = sumCount + 6;
end;
end;
M = M / 2;
end
xhat = bitrevorder(x);
timeCooleyTukey = toc;
tic
xhatcheck = fft(xoriginal);
timeFFTW = toc;
rms = 100 * sqrt(sum(sum(abs(xhat - xhatcheck).^2)) / sum(sum(abs(xhat).^2)));
fprintf('Time Cooley-Tukey = %f; \t Time FFTW = %f\n\n', timeCooleyTukey, timeFFTW);
fprintf('Theoretical multiplications count \t = %i; \t Actual multiplications count \t = %i\n', ...
2 * N * log2(N), mulCount);
fprintf('Theoretical additions count \t\t = %i; \t Actual additions count \t\t = %i\n\n', ...
3 * N * log2(N), sumCount);
fprintf('Root mean square with FFTW implementation = %.10e\n', rms);
Your code is correct to obtain the DFT.
The function you are testing is (sin ((double) i / points * frequency * 2) which corresponds to a synoid of amplitude 1, frequency 1 and sampling frequency Fs = number of points taken.
Operating with the obtained data we have:
As you can see, the DFT coefficients are symmetric with respect to the position coefficient N / 2, so only the first N / 2 provide information. The amplitude obtained by means of the module of the real and imaginary part must be divided by N and multiplied by 2 to reconstruct it. The frequencies of the coefficients will be multiples of Fs / N by the coefficient number.
If we introduce two sinusoids, one of frequency 2 and amplitude 1.3 and another of frequency 3 and amplitude 1.7.
for (int i = 0; i < 16; i++)
{
numbers.push_back(1.3 *sin((double)i / 16 * frequency1 * 2 * PI)+ 1.7 *
sin((double)i / 16 * frequency2 * 2 * PI));
}
The obtained data are:
Good luck.

6 dimensional integral by Trapezoid in Fortran using Fortran 90

I need to calculate six dimensional integrals using Trapezoid in Fortran 90 in an efficient way. Here is an example of what I need to do:
Where F is a numerical (e.g. not analytical) function which is to be integrated over x1 to x6, variables. I have initially coded a one dimension subroutine:
SUBROUTINE trapzd(f,mass,x,nstep,deltam)
INTEGER nstep,i
DOUBLE PRECISION mass(nstep+1),f(nstep+1),x,deltam
x=0.d0
do i=1,nstep
x=x+deltam*(f(i)+f(i+1))/2.d0
end do
return
END
Which seems to work fine with one dimension, however, I don't know how to scale this up to six dimensions. Can I re-use this six times, once for every dimension or shall I write a new subroutine?
If you have a fully coded (no library/API use) version of this in another language like Python, MATLAB or Java, I'd be very glad to have a look and get some ideas.
P.S. This is not school homework. I am a PhD student in Biomedicine and this is part of my research in modeling stem cell activities. I do not have a deep background of coding and mathematics.
Thank you in advance.
You could look at the Monte Carlo Integration chapter of the GNU Scientific Library (GSL). Which is both a library, and, since it is open source, source code that you can study.
Look at section 4.6 of numerical recipes for C.
Step one is to reduce the problem using, symmetry and analytical dependencies.
Step two is to chain the solution like this:
f2(x2,x3,..,x6) = Integrate(f(x,x2,x3..,x6),x,1,x1end)
f3(x3,x4,..,x6) = Integrate(f2(x,x3,..,x6),x,1,x2end)
f4(x4,..,x6) = ...
f6(x6) = Integrate(I4(x,x6),x,1,x5end)
result = Integrate(f6(x),x,1,x6end)
Direct evaluation of multiple integrals is computationally challenging. It might be better to use Monte Carlo, perhaps using importance sampling. However brute force direct integration is sometimes of interest for validation of methods.
The integration routine I use is "QuadMo" written by Luke Mo about 1970. I made it recursive and put it in a module. QuadMo refines the mesh were needed to get the requested integration accuracy. Here is a program that does an n-dimensional integral using QuadMo.
Here is the validation of the program using a Gaussian centered at 0.5 with SD 0.1 in all dimensions for nDim up to 6, using a G95 compile. It runs in a couple of seconds.
nDim ans expected nlvl
1 0.249 0.251 2
2 6.185E-02 6.283E-02 2 2
3 1.538E-02 1.575E-02 2 2 2
4 3.826E-03 3.948E-03 2 2 2 2
5 9.514E-04 9.896E-04 2 2 2 2 2
6 2.366E-04 2.481E-04 2 2 2 2 2 2
Here is the code:
!=======================================================================
module QuadMo_MOD
implicit none
integer::QuadMo_MinLvl=6,QuadMo_MaxLvl=24
integer,dimension(:),allocatable::QuadMo_nlvlk
real*8::QuadMo_Tol=1d-5
real*8,save,dimension(:),allocatable::thet
integer,save::nDim
abstract interface
function QuadMoFunct_interface(thet,k)
real*8::QuadMoFunct_interface
real*8,intent(in)::thet
integer,intent(in),optional::k
end function
end interface
abstract interface
function MultIntFunc_interface(thet)
real*8::MultIntFunc_interface
real*8,dimension(:),intent(in)::thet
end function
end interface
procedure(MultIntFunc_interface),pointer :: stored_func => null()
contains
!----------------------------------------------------------------------
recursive function quadMoMult(funct,lower,upper,k) result(ans)
! very powerful integration routine written by Luke Mo
! then at the Stanford Linear Accelerator Center circa 1970
! QuadMo_Eps is error tolerance
! QuadMo_MinLvl determines initial grid of 2**(MinLvl+1) + 1 points
! to avoid missing a narrow peak, this may need to be increased.
! QuadMo_Nlvl returns number of subinterval refinements required beyond
! QuadMo_MaxLvl
! Modified by making recursive and adding argument k
! for multiple integrals (GuthrieMiller#gmail.com)
real*8::ans
procedure(QuadMoFunct_interface) :: funct
real*8,intent(in)::lower,upper
integer,intent(in),optional::k
real*8::Middle,Left,Right,eps,est,fLeft,fMiddle,fRight
& ,fml,fmr,rombrg,coef,estl,estr,estint,area,abarea
real*8::valint(50,2), Middlex(50), Rightx(50), fmx(50), frx(50)
& ,fmrx(50), estrx(50), epsx(50)
integer retrn(50),i,level
level = 0
QuadMo_nlvlk(k) = 0
abarea = 0
Left = lower
Right = upper
if(present(k))then
fLeft = funct(Left,k)
fMiddle = funct((Left+Right)/2,k)
fRight = funct(Right,k)
else
fLeft = funct(Left)
fMiddle = funct((Left+Right)/2)
fRight = funct(Right)
endif
est = 0
eps = QuadMo_Tol
100 level = level+1
Middle = (Left+Right)/2
coef = Right-Left
if(coef.ne.0) go to 150
rombrg = est
go to 300
150 continue
if(present(k))then
fml = funct((Left+Middle)/2,k)
fmr = funct((Middle+Right)/2,k)
else
fml = funct((Left+Middle)/2)
fmr = funct((Middle+Right)/2)
endif
estl = (fLeft+4*fml+fMiddle)*coef
estr = (fMiddle+4*fmr+fRight)*coef
estint = estl+estr
area= abs(estl)+ abs(estr)
abarea=area+abarea- abs(est)
if(level.ne.QuadMo_MaxLvl) go to 200
QuadMo_nlvlk(k) = QuadMo_nlvlk(k)+1
rombrg = estint
go to 300
200 if(( abs(est-estint).gt.(eps*abarea)).or.
1(level.lt.QuadMo_MinLvl)) go to 400
rombrg = (16*estint-est)/15
300 level = level-1
i = retrn(level)
valint(level, i) = rombrg
go to (500, 600), i
400 retrn(level) = 1
Middlex(level) = Middle
Rightx(level) = Right
fmx(level) = fMiddle
fmrx(level) = fmr
frx(level) = fRight
estrx(level) = estr
epsx(level) = eps
eps = eps/1.4d0
Right = Middle
fRight = fMiddle
fMiddle = fml
est = estl
go to 100
500 retrn(level) = 2
Left = Middlex(level)
Right = Rightx(level)
fLeft = fmx(level)
fMiddle = fmrx(level)
fRight = frx(level)
est = estrx(level)
eps = epsx(level)
go to 100
600 rombrg = valint(level,1)+valint(level,2)
if(level.gt.1) go to 300
ans = rombrg /12
end function quadMoMult
!-----------------------------------------------------------------------
recursive function MultInt(k,func) result(ans)
! MultInt(nDim,func) returns multi-dimensional integral from 0 to 1
! in all dimensions of function func
! variable QuadMo_Mod: nDim needs to be set initially to number of dimensions
procedure(MultIntFunc_interface) :: func
real*8::ans
integer,intent(in)::k
stored_func => func
if(k.eq.nDim)then
if(allocated(thet))deallocate(thet)
allocate (thet(nDim))
if(allocated(QuadMo_nlvlk))deallocate(QuadMo_nlvlk)
allocate(QuadMo_nlvlk(nDim))
endif
if(k.eq.0)then
ans=func(thet)
return
else
ans=QuadMoMult(MultIntegrand,0d0,1d0,k)
endif
end function MultInt
!-----------------------------------------------------------------------
recursive function MultIntegrand(thetARG,k) result(ans)
real*8::ans
real*8,intent(in)::thetARG
integer,optional,intent(in)::k
if(present(k))then
thet(k)=thetARG
else
write(*,*)'MultIntegrand: not expected, k not present!'
stop
endif
ans=MultInt(k-1,stored_func)
end function MultIntegrand
!-----------------------------------------------------------------------
end module QuadMo_MOD
!=======================================================================
module test_MOD
use QuadMo_MOD
implicit none
contains
!-----------------------------------------------------------------------
real*8 function func(thet) ! multidimensional function
! this is the function defined in nDim dimensions
! in this case a Gaussian centered at 0.5 with SD 0.1
real*8,intent(in),dimension(:)::thet
func=exp(-sum(((thet-5d-1)/1d-1)
& *((thet-5d-1)/1d-1))/2)
end function func
!-----------------------------------------------------------------------
end module test_MOD
!=======================================================================
! test program to evaluate multiple integrals
use test_MOD
implicit none
real*8::ans
! these values are set for speed, not accuracy
QuadMo_MinLvl=2
QuadMo_MaxLvl=3
QuadMo_Tol=1d-1
write(*,*)' nDim ans expected nlvl'
do nDim=1,6
! expected answer is (0.1 sqrt(2pi))**nDim
ans=MultInt(nDim,func)
write(*,'(i10,2(1pg10.3),999(i3))')nDim,ans,(0.250663)**nDim
& ,QuadMo_nlvlk
enddo
end
!-----------------------------------------------------------------------
double MultInt(int k);
double MultIntegrand(double thetARG, int k);
double quadMoMult(double(*funct)(double, int), double lower, double upper, int k);
double funkn(double *thet);
int QuadMo_MinLvl = 2;
int QuadMo_MaxLvl = 3;
double QuadMo_Tol = 0.1;
int *QuadMo_nlvlk;
double *thet;
int nDim;
//double MultInt(int k, double(*func)(double *))
double MultInt(int k)
{
//MultInt(nDim, func) returns multi - dimensional integral from 0 to 1
//in all dimensions of function func
double ans;
if (k == 0)
{
ans = funkn(thet);
}
else
{
ans = quadMoMult(MultIntegrand, 0.0, 1.0, k); //limits hardcoded here
}
return ans;
}
double MultIntegrand(double thetARG, int k)
{
double ans;
if (k > 0)
thet[k] = thetARG;
else
printf("\n***MultIntegrand: not expected, k not present!***\n");
//Recursive call
//ans = MultInt(k - 1, func);
ans = MultInt(k - 1);
return ans;
}
double quadMoMult(double(*funct)(double, int), double lower, double upper, int k)
{
//Integration routine written by Luke Mo
//Stanford Linear Accelerator Center circa 1970
//QuadMo_Eps is error tolerance
//QuadMo_MinLvl determines initial grid of 2 * *(MinLvl + 1) + 1 points
//to avoid missing a narrow peak, this may need to be increased.
//QuadMo_Nlvl returns number of subinterval refinements required beyond
//QuadMo_MaxLvl
//Modified by making recursive and adding argument k
//for multiple integrals(GuthrieMiller#gmail.com)
double ans;
double Middle, Left, Right, eps, est, fLeft, fMiddle, fRight;
double fml, fmr, rombrg, coef, estl, estr, estint, area, abarea;
double valint[51][3], Middlex[51], Rightx[51], fmx[51], frx[51]; //Jack up arrays
double fmrx[51], estrx[51], epsx[51];
int retrn[51];
int i, level;
level = 0;
QuadMo_nlvlk[k] = 0;
abarea = 0.0;
Left = lower;
Right = upper;
if (k > 0)
{
fLeft = funct(Left, k);
fMiddle = funct((Left + Right) / 2, k);
fRight = funct(Right, k);
}
else
{
fLeft = funct(Left,0);
fMiddle = funct((Left + Right) / 2,0);
fRight = funct(Right,0);
}
est = 0.0;
eps = QuadMo_Tol;
l100:
level = level + 1;
Middle = (Left + Right) / 2;
coef = Right - Left;
if (coef != 0.0)
goto l150;
rombrg = est;
goto l300;
l150:
if (k > 0)
{
fml = funct((Left + Middle) / 2.0, k);
fmr = funct((Middle + Right) / 2.0, k);
}
else
{
fml = funct((Left + Middle) / 2.0, 0);
fmr = funct((Middle + Right) / 2.0, 0);
}
estl = (fLeft + 4 * fml + fMiddle)*coef;
estr = (fMiddle + 4 * fmr + fRight)*coef;
estint = estl + estr;
area = abs(estl) + abs(estr);
abarea = area + abarea - abs(est);
if (level != QuadMo_MaxLvl)
goto l200;
QuadMo_nlvlk[k] = QuadMo_nlvlk[k] + 1;
rombrg = estint;
goto l300;
l200:
if ((abs(est - estint) > (eps*abarea)) || (level < QuadMo_MinLvl))
goto l400;
rombrg = (16 * estint - est) / 15;
l300:
level = level - 1;
i = retrn[level];
valint[level][i] = rombrg;
if (i == 1)
goto l500;
if (i == 2)
goto l600;
l400:
retrn[level] = 1;
Middlex[level] = Middle;
Rightx[level] = Right;
fmx[level] = fMiddle;
fmrx[level] = fmr;
frx[level] = fRight;
estrx[level] = estr;
epsx[level] = eps;
eps = eps / 1.4;
Right = Middle;
fRight = fMiddle;
fMiddle = fml;
est = estl;
goto l100;
l500:
retrn[level] = 2;
Left = Middlex[level];
Right = Rightx[level];
fLeft = fmx[level];
fMiddle = fmrx[level];
fRight = frx[level];
est = estrx[level];
eps = epsx[level];
goto l100;
l600:
rombrg = valint[level][1] + valint[level][2];
if (level > 1)
goto l300;
ans = rombrg / 12.0;
return ans;
}
double funkn(double *thet)
{
//in this case a Gaussian centered at 0.5 with SD 0.1
double *sm;
double sum;
sm = new double[nDim];
sum = 0.0;
for (int i = 1; i <= nDim; i++)
{
sm[i] = (thet[i] - 0.5) / 0.1;
sm[i] *= sm[i];
sum = sum + sm[i];
}
return exp(-sum / 2.0);
}
int main() {
double ans;
printf("\nnDim ans expected nlvl\n");
for (nDim = 1; nDim <= 6; nDim++)
{
//expected answer is(0.1 sqrt(2pi))**nDim
QuadMo_nlvlk = new int[nDim + 1]; //array for x values
thet = new double[nDim + 1]; //array for x values
ans = MultInt(nDim);
printf("\n %d %f %f ", nDim, ans, pow((0.250663),nDim));
for (int j=1; j<=nDim; j++)
printf(" %d ", QuadMo_nlvlk[nDim]);
printf("\n");
}
return 0;
}
Declare relevant parameters globally
int QuadMo_MinLvl = 2;
int QuadMo_MaxLvl = 3;
double QuadMo_Tol = 0.1;
int *QuadMo_nlvlk;
double *thet;
int nDim;
This coding is much clearer than the obfuscated antiquated fortran coding, with some tweaking the integral limits and tolerances could be parameterised!!
There are better algorithms to use with adaptive techniques and which handle singularities on the surfaces etc....