How to know if an elb is handling a high load? - amazon-web-services

We are experiencing a high traffic load, and the great mayority of requests are failing. We have added more instances behind our elb but that does not solve the issue. Our db is at 50% cpu usage. Is there a way to test if the elb is the one that cannot handle the load?

ELB scales infinitely so it's almost never became bottleneck. You can start from CloudWatch metrics, but it's will be good to check VPC flow logs, not only http response codes from ELB.
Also, ALB have log feature that need to be turned on manually

Related

API Gateway/NLB/ECS Latency

I have a number of services deployed in ECS. They register with a Network Load Balancer (via a target group). The NLB is private, and is accessed via API Gateway + a VPC link.
Most of the time, requests to my services take ~4-5 seconds, but occasionally < 100ms. The latter should be the standard; the actual requests are served by my node instances in ~10ms or less. I'm starting to dig into this, but was wondering if there was a common bottleneck in setups similar to what I'm currently using.
Any insight would be greatly appreciated!
The answer to this was to enable Cross-Zone Load Balancing on my load balancers. This isn't immediately obvious and took two AWS support sessions to dig it up as the root cause.

Using Redis behing AWS load balancer

We're using Redis to collect events from our web application (pub/sub based) behind AWS ELB.
We're looking for a solution that will allow us to scale-up and high-availability for the different servers. We do not wish to have these two servers in a Redis cluster, our plan is to monitor them using cloudwatch and switch between them if necessary.
We tried a simple test of locating two Redis server behind the ELB, telnetting the ELB DNS and see what happens using 'redis-cli monitor', but we don't see nothing. (when trying the same without the ELB it seems fine)
any suggestions?
thanks
I came across this while looking for a similar question, but disagree with the accepted answer. Even though this is pretty old, hopefully it will help someone in the future.
It's more appropriate for your question here to use DNS failover with a Redis Replication Auto-Failover configuration. DNS failover provides groups of availability (if you need that level of scale) and the Replication group provides cache up time.
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-configuring.html
The Active-passive failover should provide the solution you're wanting with High Availability:
Active-passive failover: Use this failover configuration when you want
a primary group of resources to be available the majority of the time
and you want a secondary group of resources to be on standby in case
all of the primary resources become unavailable. When responding to
queries, Amazon Route 53 includes only the healthy primary resources.
If all of the primary resources are unhealthy, Amazon Route 53 begins
to include only the healthy secondary resources in response to DNS
queries.
After you setup the DNS, then you would point that to the Elasticache Redis failover group's URL and add multiple groups for higher availability during a failover operation.
However, you might need to setup your application to write and read from different endpoints to maximize the architecture's scalability.
Sources:
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Replication.html
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/AutoFailover.html
Placing a pair of independent redis nodes behind a LB will likely not be what you want. What will happen is ELB will try to balance connections to each instance, splitting half to one and half to another. This means that commands issued by one connection may not be seen by another. It also means no data is shared. So client a could publish a message, and client b being subscribed to the other server won't see the message.
For PUBSUB behind ELB you have a secondary problem. ELB will close an idle connection. So if you subscribe to a channel that isn't busy your ELB will close your connection. As I recall the max you can make this is 60s, meaning if you don't publish a message every single minute your clients will be disconnected.
As to how much of a problem that is depends on your client library, and frankly in my experience most don't handle it well in that they are unaware of the need to re-subscribe upon re-establishing the connection, meaning you would have to code that yourself.
That said a sentinel + redis solution would be quite ideal if your c,isn't has proper sentinel support. In this scenario. Your client asks the sentinels for the master to talk to, and on a connection failure it repeats this process. This would handle the setup you describe, without the problems of being behind an ELB.
Assuming you are running in VPC:
did you register the EC2 instances with the ELB?
did you add the correct security group setting to the ELB (allowing inbound port 23)?
did you add an ELB listener that maps port 23 on the ELB to port 23 on the instances?
did you set sensible ELB health checks (e.g. TCP on port 23) so that ELB thinks the EC2 instances are healthy?
If the ELB thinks the servers behind it are not healthy then ELB will not send them any traffic.

AWS and ELB Network throughput limits

My site runs on AWS and uses ELB
I regularly see 2K con-current users, and during these times, requests through my stack would become slow and take a long time to get a response (30s-50s)
None of my servers or database at this time, would show significant load.
Which leads me to believe my issue could be related to ELB.
I have added some images of a busy day on my site, which shows graphs of my main ELB. Can you perhaps spot something that would give me insight into my problem?
Thanks!
UPDATE
The ELB in the screengrabs is my main ELB forwarding to multiple varnish cache servers. In my varnish vcl I would send misses for a couple of URL's but varnish have a queing behavior and what I ended up doing was set a high ttl for these request, and return hit_for_pass for them. What this does is let varnish know in the vcl_recv that these requests should be passed to the back-end immediately. Since doing this, the problem outlined above has completely been fixed
did you ssh into one of the servers? Maybe you reach some connection limit in apache or whatever server you run. Also check the cloudwatch monitors of EBS volumes attached to your instances, maybe they cause a io bottleneck.

What are the advantages of HAproxy over AWS ELB?

Under what scenarios, we can opt for HAproxy load balancing solution over AWS elastic load balancing?
Generally you can look at deploying HAProxy when you need a more configurable LB layer.
ELB is the most cost effective solution that you will probably find on AWS, but it has issues handling large spikes of traffic (50% every 5 minutes, according to this article: http://aws.amazon.com/articles/1636185810492479). Also it doesn't play well with long connections, as any idle connection for more than 60 seconds is automatically dropped.
Another good use-case for HAProxy instead of ELB is when you want to do manipulate traffic based on incoming URLs or cookies.
If all you're looking for is a dead-simple LB solution that you can manage without hassles go for ELB. If control is what you're after, go for HAProxy.

Load balancer for php application

Questions about load balancers if you have time.
So I've been using AWS for some time now. Super basic instances, using them to do some tasks whenever I needed something done.
I have a task that needs to be load balanced now. It's not a public service though. It's pretty much a giant cron job that I don't want running on the same servers as my website.
I set up an AWS load balancer, but it doesn't do what I expected it to do.
It get's stuck on one server, and doesn't load balance at all. I've read why it does this, and that's all fine and well, but I need it to be a serious round-robin load balancer.
edit:
I've set up the instances on different zones, but no matter how many instances I add to the ELB, it just uses one. If I take that instance down, it switches to a different one, so I know it's working. But I really would like it to always use a different one under every circumstance.
I know there are alternatives. Here's my question(s):
Would a custom php load balancer be an ok option for now?
IE: Have a list of servers, and have php randomly select a ec2 instance. Wouldn't be scalable at all, bu atleast I could set this up in 2 mins and it can work for now.
or
Should I take the time to learn how HAProxy works, and set that up in place of the AWS ELB?
or
Am I doing it wrong, and AWS's ELB does do round-robin. I just have something configured wrong?
edit:
Structure:
1) Web server finds a task to do.
2) If it's too large it sends it off to AWS (to load balancer).
3) Do the job on EC2
4) Report back via curl to an API
5) Rinse and repeat
Everything works great. But because the connection always comes from my server (one IP) it get's sticky'd to a single EC2 machine.
ELB works well for sites whose loads increase gradually. If you are expecting an uncommon and sudden increase on the load, you can ask AWS to pre-warm it for you.
I can tell you I used ELB in different scenarios and it always worked well for me. As you didn't provide too much information about your architecture, I would bet that ELB works for you, and the case that all connections are hitting only one server, I would ask you:
1) Did you check the ELB to see how many instances are behind it?
2) The instances that you have behind the ELB, are all alive?
3) Are you accessing your application through the ELB DNS?
Anyway, I took an excerpt from the excellent article that does a very good comparison between ELB and HAProxy. http://harish11g.blogspot.com.br/2012/11/amazon-elb-vs-haproxy-ec2-analysis.html
ELB provides Round Robin and Session Sticky algorithms based on EC2
instance health status. HAProxy provides variety of algorithms like
Round Robin, Static-RR, Least connection, source, uri, url_param etc.
Hope this helps.
This point comes as a surprise to many users using Amazon ELB. Amazon
ELB behaves little strange when incoming traffic is originated from
Single or Specific IP ranges, it does not efficiently do round robin
and sticks the request. Amazon ELB starts favoring a single EC2 or
EC2’s in Single Availability zones alone in Multi-AZ deployments
during such conditions. For example: If you have application
A(customer company) and Application B, and Application B is deployed
inside AWS infrastructure with ELB front end. All the traffic
generated from Application A(single host) is sent to Application B in
AWS, in this case ELB of Application B will not efficiently Round
Robin the traffic to Web/App EC2 instances deployed under it. This is
because the entire incoming traffic from application A will be from a
Single Firewall/ NAT or Specific IP range servers and ELB will start
unevenly sticking the requests to Single EC2 or EC2’s in Single AZ.
Note: Users encounter this usually during load test, so it is ideal to
load test AWS Infra from multiple distributed agents.
More info at the Point 9 in the following article http://harish11g.blogspot.in/2012/07/aws-elastic-load-balancing-elb-amazon.html
HAProxy is not hard to learn and is tremendously lightweight yet flexible. I actually use HAProxy behind ELB for the best of both worlds -- the hardened, managed, hands-off reliability of ELB facing the Internet and unwrapping SSL, and the flexible configuration of HAProxy to allow me to fine tune how things hit my servers. I've never lost an HAProxy instance yet, but it I do, ELB will just take that one out of rotation... as I have seen happen when the back-end servers have all become inaccessible, which (because of the way it's configured) makes ELB think the HAProxy is unhealthy, but that's by design in my setup.