C++: How to make a container indexed by std::function? - c++

For indexing I use std::unordered_map and std::map. Both of them throws compiling errors when using as follow:
std::unordered_map<std::function<bool(Ent*)>, int> var;
std::unordered_map fails due referencing deleted function
std::map fails due no < operator
The ideal solution for me would be to use a type of map, but if is a must to use another type of container, then it shouldn't be a problem

One way of having functions as container key is to wrap them into functor structure
#include <unordered_map>
#include <typeinfo>
struct FunctorSum {
int operator()(int x, int y) {
return x + y;
}
};
struct FunctorMult {
int operator()(int x, int y) {
return x * y;
}
};
int main() {
std::unordered_map<size_t, int> funcToInt;
funcToInt[typeid(FunctorSum).hash_code()] = 0;
funcToInt[typeid(FunctorMult).hash_code()] = 1;
return 0;
}
Here I used typeid as hash, but it can also be hardcoded into functor struct.
Another way is to use std::function::target_type to calculate hash of the function, which will work only with lambdas. But you can always wrap any function into lambda.
#include <iostream>
#include <functional>
using FuncType = std::function<bool(int)>;
bool x(int v) { return v == 0; }
std::string hash(FuncType f) {
return f.target_type().name();
}
int main() {
auto y = [](int v) { return v == 1; };
auto z = [](int v) { return v == 2; };
std::cout << "x: " << hash(x) << std::endl;
std::cout << "y: " << hash(y) << std::endl;
std::cout << "z: " << hash(z) << std::endl;
return 0;
}
Output
x: PFbiE
y: Z4mainEUliE_
z: Z4mainEUliE0_

Related

Is it possible to automatically deduce the type of the pointer to member overloaded function in ternary when called after?

So I had this scenario where I want to call either function of a class, where the function in question has the same prototype but it's also overloaded. Since I know of pointer to members my immediate reaction was something like this:
struct test
{
int overloaded(char) {}
int overloaded(int) {}
int overloadedone(char) {}
int overloadedone(int) {}
} test;
int main()
{
(test.*(true ? (&test::overloaded) : (&test::overloadedone)))(1);
}
However it turned out the compiler (MSVC - 2019 Preview latest version with std C++ preview) can't deduce the type and I have to write:
(test.*(true ? static_cast<int (test::*)(int)>(&test::overloaded) : static_cast<int (test::*)(int)>(&test::overloadedone)))(1);
instead which made me return to the good old:
true ? test.overloaded(1) : test.overloadedone(1);
But I wonder if this is the defined behavior of requiring those cast. Even:
(test.*static_cast<int (test::*)(int)>(true ? (&test::overloaded) : (&test::overloadedone)))(1);
Doesn't work.
You have to write said cast on each of the two possibilities for the ternary as in the second example.
It isn't particularly elegant, but this approach can deduce an overload if you curry the member function pointer's arguments before passing the member function pointers themselves:
#include <iostream>
template <class... Args>
auto invoke_conditional_mem_fn(Args... args)
{
return [=] <class R, class X> (X x, bool b, R(X::*t)(Args...), R(X::*f)(Args...)) -> R
{
return (x.*(b ? t : f))(args...);
};
}
struct test
{
int overloaded(char) { std::cout << "overloaded(char) "; return 1; }
int overloaded(int) { std::cout << "overloaded(int) "; return 2; }
int overloadedone(char) { std::cout << "overloadedone(char) "; return 3; }
int overloadedone(int) { std::cout << "overloadedone(int) "; return 4; }
} test;
int main()
{
std::cout
<< invoke_conditional_mem_fn('1')(test, true, &test::overloaded, &test::overloadedone)
<< std::endl
<< invoke_conditional_mem_fn(1)(test, false, &test::overloaded, &test::overloadedone)
<< std::endl;
}
Thanks to #dyp and their example, we know that we can infer the return type and base of the member function pointers if we select which arguments to pass.
Alternatively, you could do something a little simpler like this, if it meets your needs. Just declare a lambda to work around the limitations of your ternary expression with an if and else statement since each branch of a ternary operator is required to be of the same type.
#include <iostream>
struct test
{
int overloaded(char) { std::cout << "overloaded(char) "; return 1; }
int overloaded(int) { std::cout << "overloaded(int) "; return 2; }
int overloadedone(char) { std::cout << "overloadedone(char) "; return 3; }
int overloadedone(int) { std::cout << "overloadedone(int) "; return 4; }
} test;
auto conditional = [] (struct test& test, bool cond, auto... args)
{
if (cond) return test.overloaded(args...);
else return test.overloadedone(args...);
};
int main()
{
std::cout << conditional(test, true, '1') << std::endl;
std::cout << conditional(test, false, 1) << std::endl;
}

Generating floating point limits at compile time via template arguments and constexpr semantics:

I'm working on a set of classes. My Function class will take a Functor class which stores a function pointer to some defined function which has an operator that will invoke the function call from the function pointer. It uses a Limit class that currently takes <int,int> for its upper and lower bounds. It has nothing but static constexpr functions to return the bounds and to calculate the number of elements between those bounds. If the lower bounds = 1 and upper bounds = 5 it will generate 5 for the number of elements to be evaluated for that function...
Here is what I'm doing with these classes:
First I declare a function such as f(x) = x, f(x) = x^2, or f(x) = cos(x), etc.
Then I instantiate a Functor object based on the above function(s) parameter types both for the return and for its parameter-argument types...
Next, I assign the function to my Functor class's member variable.
Then I instantiate a Function object giving it the data-type and the Lower & Upper limits for the range of the function.
The Function class upon construction automatically generates the data points of that function from [lower,upper] and stores the generated values in its internal array.
The Function class also contains an operator that will allow the user to get any value from any given input.
Pseudo Example:
f(x) = x^2;
Functor<T,T> functor;
functor.member = &f(x);
Function<T,Lower,Upper,T> function(functor);
// If T=int, Lower = -4, and Upper = 4 then the internal data set will be
// (-4,16) (-3,9), (-2,4), (-1,1), (0,0), (1,1), (2,4), (3,9), (4,16)
// The user can also use it's operator to call function(9) and it will return 81
Here is my working program that is generating datasets of values from my classes using various functions:
main.cpp
#include <cmath>
#include <exception>
#include <iostream>
#include "Function.h"
int main() {
try {
pipes::Functor<int, int> functor1;
functor1.FuncPtr = &square;
pipes::Function<int, -10, 10, int> func1( functor1 );
auto data1{ func1.data() };
for (auto& p : data1)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func1(25) << "\n\n";
pipes::Functor<int, int> functor2;
functor2.FuncPtr = &linear;
pipes::Function<int, -10, 10, int> func2(functor2);
auto data2{ func2.data() };
for (auto& p : data2)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func2(25) << "\n\n";
pipes::Functor<double, double> functor3;
functor3.FuncPtr = &cosine;
pipes::Function<double, -7, 7, double> func3(functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
}
catch (const std::exception& e) {
std::cerr << e.what() << "\n\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Function.h
#pragma once
#include <array>
namespace pipes {
template<typename Ret, typename... Args>
struct Functor {
Ret(*FuncPtr)(Args...);
Ret operator()(Args... args) { return FuncPtr(args...); }
};
template<int Lower, int Upper>
class Limits {
public:
static constexpr unsigned lower_bound() { return Lower; }
static constexpr unsigned upper_bound() { return Upper; }
static constexpr unsigned element_count() { return (Upper - Lower + 1); }
};
template<typename T, int Lower, int Upper, typename... Args>
class Function {
std::array<std::pair<T, T>, Limits<Lower,Upper>::element_count()> data_points_;
Functor<T,Args...> functor_;
public:
Function(Functor<T,Args...> func) {
functor_ = func;
for (unsigned i = 0; i < Limits<Lower,Upper>::element_count(); i++) {
data_points_[i].first = ((T)i + (T)Lower);
data_points_[i].second = functor_(data_points_[i].first);
}
}
T operator()(Args... args) const {
return functor_.FuncPtr(args...);
}
constexpr auto lower() const { return Lower; }
constexpr auto upper() const { return Upper; }
constexpr auto count() const { return Limits<Lower,Upper>::element_count(); }
constexpr auto data() const { return data_points_; }
};
} // namespace pipes
When I run the program it is generating this output which appears to be correct:
Output
(-10,100)
(-9,81)
(-8,64)
(-7,49)
(-6,36)
(-5,25)
(-4,16)
(-3,9)
(-2,4)
(-1,1)
(0,0)
(1,1)
(2,4)
(3,9)
(4,16)
(5,25)
(6,36)
(7,49)
(8,64)
(9,81)
(10,100)
f(25) = 625
(-10,-10)
(-9,-9)
(-8,-8)
(-7,-7)
(-6,-6)
(-5,-5)
(-4,-4)
(-3,-3)
(-2,-2)
(-1,-1)
(0,0)
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,7)
(8,8)
(9,9)
(10,10)
f(25) = 25
(-7,0.753902)
(-6,0.96017)
(-5,0.283662)
(-4,-0.653644)
(-3,-0.989992)
(-2,-0.416147)
(-1,0.540302)
(0,1)
(1,0.540302)
(2,-0.416147)
(3,-0.989992)
(4,-0.653644)
(5,0.283662)
(6,0.96017)
(7,0.753902)
f(25) = 0.991203
And now for my question where this becomes the tricky part...
With my code currently the way it is, everything is fine as long as my bounds [-a,b] are of an integral type...
Let's suppose on my last example such as with cos, what if I want to have my bounds from [-2pi,2pi] where the lower and upper limits are of floating-point types...
The Issue:
Currently in C++ this is non-standard and in most cases won't compile:
template<float val> // or template<double>
struct foo() {
constexpr float operator()() {
return val;
}
};
And the above prevents me from doing something like this:
constexpr double PI{ 6.28318531 };
pipes::Functor<double, double> functor3;
functor3.FuncPtr = &cosine;
pipes::Function<double, -PI, PI, double> func3(functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
So if I want to be able to support floating-point types for my intervals of my Limits or Range class... What kind of alternative would there be if such a thing is currently possible in c++? Or would I just have to simply restructure the way my class templates are designed?
If the above is possible in some way during compile time via templates and constexpr semantics, then there is another issue that arises that will have to be taken into consideration and that would be the stepping interval for use with floating-point types to know how many data points there will be within the dataset... (basically calculating dx based on some stepping value which would be defined by the user, for example: (0.1, 0.001, etc...) and the number of data points would be calculated by the number of these divisions between [lower, upper]... However, if the stepping value is known at compile-time, then calculating the divisions should be simple enough... that's not a major concern. The bigger concern is being able to express floating-point constants at compile time for template evaluation...
Currently, with the way my code is with its design, I have hit a limit on its functionality... I'm not sure how to provide a similar interface to support a floating-point range that can be calculated and generated at compile time! Any bit of help or suggestions is welcomed!
I think the closest you can get to a construct like yours is:
#include <iostream>
#include <array>
constexpr const double PI_2{ 6.28318531 };
template<double const &lower, double const &upper>
void foo() {
static_assert(lower<upper, "invalid lower and upper value");
constexpr size_t size = (upper-lower);
std::array<int, size> test;
std::cout << lower << " " << upper << " " << test.size() << std::endl;
}
template<double const &V>
struct neg {
static constexpr double value = -V;
};
int main()
{
foo<neg<PI_2>::value, PI_2>();
return 0;
}
If you can always specify the type as first template argument you could have something like this:
template<typename T, T const &lower, T const &upper>
void foo() {
std::cout << lower << " " << upper << std::endl;
}
I didn't fully think it through, how to get the floating-point part and the other together, but I think it should be possible.
In modern C++ and how templates are currently designed, I had to slightly restructure my code. It's forcing me to have to use std::vector instead of std::array, because we can't use floating-point types as constant template arguments... So I ended up having to change two of my classes... I had to change my Limits class, and my Function class.
My Limits class now accepts a Type instead of constant-integral-type and it stores 3 member variables. It also has a default constructor and a user constructor. The functions are now just constexpr instead of being static.
My Function class now stores a Limits class object and data_points_ is no longer an std::array as it is now std::vector. It's constructor now also takes in a Limits object.
I had also taken into account for the step size for floating-point ranges.
Here is what my modified code looks like with its given output:
main.cpp
#include <cmath>
#include <iostream>
#include <exception>
#include "Function.h"
constexpr int square(int x) {
return x * x;
}
constexpr int linear(int x) {
return x;
}
double cosine(double x) {
return cos(x);
}
//template<float val>
struct foo {
float operator()(float val) { return val; }
};
int main() {
try {
pipes::Functor<int, int> functor1;
pipes::Limits<int> limit1(-10, 10, 1);
functor1.FuncPtr = &square;
pipes::Function<int, int, int> func1( limit1, functor1 );
auto data1{ func1.data() };
for (auto& p : data1)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func1(25) << "\n\n";
pipes::Functor<int,int> functor2;
pipes::Limits<int> limit2(-10, 10, 1);
functor2.FuncPtr = &linear;
pipes::Function<int, int, int> func2(limit2, functor2);
auto data2{ func2.data() };
for (auto& p : data2)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func2(25) << "\n\n";
constexpr double PI{ 6.28318531 };
pipes::Functor<double, double> functor3;
pipes::Limits<double> limits3( (-PI), PI, 0.1);
functor3.FuncPtr = &cosine;
pipes::Function<double, double, double> func3(limits3, functor3);
auto data3{ func3.data() };
for (auto& p : data3)
std::cout << '(' << p.first << ',' << p.second << ")\n";
std::cout << '\n';
std::cout << "f(25) = " << func3(25) << "\n\n";
}
catch (const std::exception& e) {
std::cerr << e.what() << "\n\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Function.h
#pragma once
#include <vector>
namespace pipes {
template<typename Ret, typename... Args>
struct Functor {
Ret(*FuncPtr)(Args...);
Ret operator()(Args... args) { return FuncPtr(args...); }
};
template<typename Ty>
class Limits {
private:
Ty Lower;
Ty Upper;
Ty Step;
public:
Limits() {}
Limits(Ty lower, Ty upper, Ty step) : Lower{ lower }, Upper{ upper }, Step{ step } {}
constexpr Ty lower_bound() { return Lower; }
constexpr Ty upper_bound() { return Upper; }
constexpr Ty step_size() { return Step; }
constexpr unsigned element_count() { return (unsigned)((Upper - Lower + 1)/Step); }
};
template<typename LimT, typename FuncT, typename... Args>
class Function {
Limits<LimT> limits_;
Functor<FuncT, Args...> functor_;
std::vector<std::pair<FuncT, FuncT>> data_points_;
public:
Function(Limits<LimT> limits, Functor<FuncT,Args...> func) {
limits_ = limits;
functor_ = func;
data_points_.resize( limits_.element_count() );
for (unsigned i = 0; i < limits_.element_count(); i++) {
auto x = limits_.lower_bound() + (i * limits_.step_size());
data_points_[i].first = (x);
data_points_[i].second = functor_(x);
}
}
FuncT operator()(Args... args) const {
return functor_.FuncPtr(args...);
}
constexpr auto lower() const { return limits_.lower_bound(); }
constexpr auto upper() const { return limits_.upper_bound(); }
constexpr auto count() const { return limits_.element_count(); }
constexpr auto step() const { return limits_.step_size(); }
constexpr auto data() const { return data_points_; }
};
} // namespace pipes
Output
(-10,100)
(-9,81)
(-8,64)
(-7,49)
(-6,36)
(-5,25)
(-4,16)
(-3,9)
(-2,4)
(-1,1)
(0,0)
(1,1)
(2,4)
(3,9)
(4,16)
(5,25)
(6,36)
(7,49)
(8,64)
(9,81)
(10,100)
f(25) = 625
(-10,-10)
(-9,-9)
(-8,-8)
(-7,-7)
(-6,-6)
(-5,-5)
(-4,-4)
(-3,-3)
(-2,-2)
(-1,-1)
(0,0)
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,7)
(8,8)
(9,9)
(10,10)
f(25) = 25
(-6.28319,1)
(-6.18319,0.995004)
(-6.08319,0.980067)
(-5.98319,0.955336)
(-5.88319,0.921061)
(-5.78319,0.877583)
(-5.68319,0.825336)
(-5.58319,0.764842)
(-5.48319,0.696707)
(-5.38319,0.62161)
(-5.28319,0.540302)
(-5.18319,0.453596)
(-5.08319,0.362358)
(-4.98319,0.267499)
(-4.88319,0.169967)
(-4.78319,0.0707372)
(-4.68319,-0.0291995)
(-4.58319,-0.128844)
(-4.48319,-0.227202)
(-4.38319,-0.32329)
(-4.28319,-0.416147)
(-4.18319,-0.504846)
(-4.08319,-0.588501)
(-3.98319,-0.666276)
(-3.88319,-0.737394)
(-3.78319,-0.801144)
(-3.68319,-0.856889)
(-3.58319,-0.904072)
(-3.48319,-0.942222)
(-3.38319,-0.970958)
(-3.28319,-0.989992)
(-3.18319,-0.999135)
(-3.08319,-0.998295)
(-2.98319,-0.98748)
(-2.88319,-0.966798)
(-2.78319,-0.936457)
(-2.68319,-0.896758)
(-2.58319,-0.8481)
(-2.48319,-0.790968)
(-2.38319,-0.725932)
(-2.28319,-0.653644)
(-2.18319,-0.574824)
(-2.08319,-0.490261)
(-1.98319,-0.400799)
(-1.88319,-0.307333)
(-1.78319,-0.210796)
(-1.68319,-0.112153)
(-1.58319,-0.0123887)
(-1.48319,0.087499)
(-1.38319,0.186512)
(-1.28319,0.283662)
(-1.18319,0.377978)
(-1.08319,0.468517)
(-0.983185,0.554374)
(-0.883185,0.634693)
(-0.783185,0.70867)
(-0.683185,0.775566)
(-0.583185,0.834713)
(-0.483185,0.88552)
(-0.383185,0.927478)
(-0.283185,0.96017)
(-0.183185,0.983268)
(-0.0831853,0.996542)
(0.0168147,0.999859)
(0.116815,0.993185)
(0.216815,0.976588)
(0.316815,0.950233)
(0.416815,0.914383)
(0.516815,0.869397)
(0.616815,0.815725)
(0.716815,0.753902)
(0.816815,0.684547)
(0.916815,0.608351)
(1.01681,0.526078)
(1.11681,0.438547)
(1.21681,0.346635)
(1.31681,0.25126)
(1.41681,0.153374)
(1.51681,0.0539554)
(1.61681,-0.0460021)
(1.71681,-0.1455)
(1.81681,-0.243544)
(1.91681,-0.339155)
(2.01681,-0.431377)
(2.11681,-0.519289)
(2.21681,-0.602012)
(2.31681,-0.67872)
(2.41681,-0.748647)
(2.51681,-0.811093)
(2.61681,-0.865435)
(2.71681,-0.91113)
(2.81681,-0.947722)
(2.91681,-0.974844)
(3.01681,-0.992225)
(3.11681,-0.999693)
(3.21681,-0.997172)
(3.31681,-0.984688)
(3.41681,-0.962365)
(3.51681,-0.930426)
(3.61681,-0.889191)
(3.71681,-0.839072)
(3.81681,-0.780568)
(3.91681,-0.714266)
(4.01681,-0.640826)
(4.11681,-0.560984)
(4.21681,-0.475537)
(4.31681,-0.385338)
(4.41681,-0.291289)
(4.51681,-0.19433)
(4.61681,-0.0954289)
(4.71681,0.0044257)
(4.81681,0.104236)
(4.91681,0.203005)
(5.01681,0.299745)
(5.11681,0.393491)
(5.21681,0.483305)
(5.31681,0.56829)
(5.41681,0.647596)
(5.51681,0.720432)
(5.61681,0.78607)
(5.71681,0.843854)
(5.81681,0.893206)
(5.91681,0.933634)
(6.01681,0.964733)
(6.11681,0.986192)
(6.21681,0.997798)
(6.31681,0.999435)
(6.41681,0.991085)
(6.51681,0.972833)
(6.61681,0.94486)
(6.71681,0.907447)
(6.81681,0.860967)
(6.91681,0.805884)
(7.01681,0.742749)
(7.11681,0.672193)
f(25) = 0.991203
This is giving me the behavior that I want, however, I was trying to do the same thing using array... I'm guessing until C++ supports floating-point-constants as template arguments I'm going to have to settle with std::vector using heap allocations, instead of std::array and stack-cache friendly containers...

Sort just one member of the classes in a vector, leaving the other members unchanged

There are tons of answers for sorting a vector of struct in regards to a member variable. That is easy with std::sort and a predicate function, comparing the structs member. Really easy.
But I have a different question. Assume that I have the following struct:
struct Test {
int a{};
int b{};
int toSort{};
};
and a vector of that struct, like for example:
std::vector<Test> tv{ {1,1,9},{2,2,8},{3,3,7},{4,4,6},{5,5,5} };
I do not want to sort the vectors elements, but only the values in the member variable. So the expected output should be equal to:
std::vector<Test> tvSorted{ {1,1,5},{2,2,6},{3,3,7},{4,4,8},{5,5,9} };
I wanted to have the solution to be somehow a generic solution. Then I came up with a (sorry for that) preprocessor-macro-solution. Please see the following example code:
#include <iostream>
#include <vector>
#include <algorithm>
struct Test {
int a{};
int b{};
int toSort{};
};
#define SortSpecial(vec,Struct,Member) \
do { \
std::vector<decltype(Struct::Member)> vt{}; \
std::transform(vec.begin(), vec.end(), std::back_inserter(vt), [](const Struct& s) {return s.Member; }); \
std::sort(vt.begin(), vt.end()); \
std::for_each(vec.begin(), vec.end(), [&vt, i = 0U](Struct & s) mutable {s.Member = vt[i++]; }); \
} while (false)
int main()
{
// Define a vector of struct Test
std::vector<Test> tv{ {1,1,9},{2,2,8},{3,3,7},{4,4,6},{5,5,5} };
for (const Test& t : tv) std::cout << t.a << " " << t.b << " " << t.toSort << "\n";
// Call sort macro
SortSpecial(tv, Test, toSort);
std::cout << "\n\nSorted\n";
for (const Test& t : tv) std::cout << t.a << " " << t.b << " " << t.toSort << "\n";
}
Since macros shouldn't be used in C++, here my questions:
1. Is a solution with the algorithm library possible?
2. Or can this be achieved via templates?
To translate your current solution to a template solution is fairly straight forward.
template <typename T, typename ValueType>
void SpecialSort(std::vector<T>& vec, ValueType T::* mPtr) {
std::vector<ValueType> vt;
std::transform(vec.begin(), vec.end(), std::back_inserter(vt), [&](const T& s) {return s.*mPtr; });
std::sort(vt.begin(), vt.end());
std::for_each(vec.begin(), vec.end(), [&, i = 0U](T& s) mutable {s.*mPtr = vt[i++]; });
}
And we can call it by passing in the vector and a pointer-to-member.
SpecialSort(tv, &Test::toSort);
Somewhow like this (You just need to duplicate, rename and edit the "switchToShort" funtion for the rest of the variables if you want):
#include <iostream>
#include <vector>
struct Test {
int a{};
int b{};
int toSort{};
};
void switchToShort(Test &a, Test &b) {
if (a.toSort > b.toSort) {
int temp = a.toSort;
a.toSort = b.toSort;
b.toSort = temp;
}
}
//void switchToA(Test& a, Test& b) { ... }
//void switchToB(Test& a, Test& b) { ... }
inline void sortMemeberValues(std::vector<Test>& data, void (*funct)(Test&, Test&)) {
for (int i = 0; i < data.size(); i++) {
for (int j = i + 1; j < data.size(); j++) {
(*funct)(data[i], data[j]);
}
}
}
int main() {
std::vector<Test> tv { { 1, 1, 9 }, { 2, 2, 8 }, { 3,3 ,7 }, { 4, 4, 6 }, { 5, 5, 5} };
sortMemeberValues(tv, switchToShort);
//sortMemeberValues(tv, switchToA);
//sortMemeberValues(tv, switchToB);
for (const Test& t : tv) std::cout << t.a << " " << t.b << " " << t.toSort << "\n";
}
With range-v3 (and soon ranges in C++20), you might simply do:
auto r = tv | ranges::view::transform(&Test::toSort);
std::sort(r.begin(), r.end());
Demo

Detect initialized variables

Is there a way to check if certain variable is initialized before some point in a program?
For example, how to check if certain variable is initialized somewhere before the IfStmt node?
Methods from VarDecl class (hasInit() and getInit()) are not enough because of the following situation:
int x = 0; // hasInit() return true
int y;
...
y = 0; // initialized here, but hasInit() returns false
...
if (...) {}
If you maintain a product written by C++ code and hope to remove ugly indeterminate variables, a reasonable way to do it is defining an initializing function or lambda f, and then declare a local variable as const auto x = f(...); from the get-go.
OTOH, if you delay the value asignment on purpose, there are several methods to detect the value is assigned or not.
I just came up with following methods.
std::optional
In C++17 and over,
std::optional<T> enables us to detect whether values are assigned or not.
std::optional::has_value and std::optional::value correspond to your hasInit and getInit respectively as follows:
DEMO
#include <iostream>
#include <optional>
template<typename T>
void checkInitialization(const std::optional<T>& a)
{
if(a.has_value()){
std::cout << "Value is assigned by " << a.value() << "." << std::endl;
}
else{
std::cout << "Value is still not assigned." << std::endl;
}
}
int main(void)
{
std::optional<int> x;
checkInitialization(x); // Value is still not assigned
x = 1;
checkInitialization(x); // Value is assigned
return 0;
}
The output is as follows:
Value is still not assigned.
Value is assigned by 1.
std::unique_ptr
We can also check it using std::unique_ptr<T> which is introduced from C++11.
First we define a variable as std::unique_ptr<T> x; where (x == nullptr) is still true.
Later on, we assign a value by x = std::unique_ptr<int>(new int(1)) and then (x == nullptr) becomes false.
(In C++14 x = std::make_unique<int>(1) works and is simple.)
Thus we can again get the previous output with the following code:
DEMO
#include <iostream>
#include <memory>
template<typename T>
bool hasInit(const std::unique_ptr<T>& a)
{
return (a != nullptr);
}
template<typename T>
const T& getInit(const std::unique_ptr<T>& a)
{
return *a;
}
template<typename T>
void checkInitialization(const std::unique_ptr<T>& a)
{
if(hasInit(a)){
std::cout << "Value is assigned by " << getInit(a) << "." << std::endl;
}
else{
std::cout << "Value is still not assigned." << std::endl;
}
}
int main(void)
{
std::unique_ptr<int> x;
checkInitialization(x); // Uninitialized
x = std::unique_ptr<int>(new int(1));
//x = std::make_unique<int>(1); // C++14
checkInitialization(x); // Initialized
return 0;
}
std::pair
We can also apply std::pair<bool, T> where std::pair::first and std::pair::second correspond to your hasInit and getInit respectively.
We again get the previous output:
DEMO
#include <iostream>
#include <utility>
template<typename T>
void checkInitialization(const std::pair<bool, T>& a)
{
if(a.first){
std::cout << "Value is assigned by " << a.second << "." << std::endl;
}
else{
std::cout << "Value is still not assigned." << std::endl;
}
}
int main(void)
{
std::pair<bool, int> x{false, 0};
checkInitialization(x); // Uninitialized
x = {true, 1};
checkInitialization(x); // Initialized
return 0;
}
Firstly as mentioned in the comments:
int y = 0; // initialization
int y; y = 0; // assignment
Let's assume you want to detect assignment. One simple way could be wrap the integer you want to track in a struct and write a custom operator = (int). For example:
struct Foo
{
Foo() {std::cout << "default init" << std::endl;}
Foo& operator = (int elem)
{
cout<<"Int-Assignment operator called "<<endl;
x = elem;
is_assigned = true;
return *this;
}
int x = 0; // default initialized to 0
bool is_assigned = false; // default initialized to false
};
Now let's see what happens:
int main()
{
Foo t1;
// t1.is_assigned is false
t1 = 0;
// t1.is_assigned is true
return 0;
}
You could use something like this or a variant if needed. Here's the code running online corresponding to the above.
Is this what you wanted?

runtime specialization of overloaded function

This is a variant of this SO question. I have an overloaded function that takes parameters of different types and returns different types:
struct mystruct {
auto f (int x, int y) -> int;
auto f (std::string x, int y) -> float;
};
The function f needs to call itself with one of its parameters specialized a number of times.
I'd like to define a function that specializes the parameter y, that is I'd want g(z) = f(z,y). The return type of g and the type of its unique parameter z variable, but the implementation is the same in both cases.
The best implementation I could find of this situation is overloading the lambda function:
template <class F1, class F2>
struct overload_set : F1, F2
{
overload_set(F1 f1, F2 f2) : F1(f1), F2(f2) {}
using F1::operator();
using F2::operator();
};
template <class F1, class F2>
overload_set<F1, F2> overload(F1 f1, F2 f2) {
return overload_set<F1, F2>(f1, f2);
};
struct mystruct {
auto f( std::string x, int y) -> float {
return y+9.3;
}
auto f( int x, int y) -> int
{
auto g = overload (
[=]( int z ) -> int {return f(z,y);},
[=]( std::string z) -> float { return f(z,y); }
);
if ( x == 0 ) {
std::cout << g("this string") << "\n";
return 0;
}
if ( x == 1 ) return y;
return 7;
}
};
int main () {
mystruct h;
std::cout << h.f(1,4) << "\n";
std::cout << h.f(0,2) << "\n";
}
which works as expected but seems overkill. It seems that a simple preprocessor macro of the form
#define k(z) f(z,y)
would also work. Is there a good way of achieving this?
Not sure if this is what you are attempting to do but here is a working (c++14) example:
#include <iostream>
struct mystruct {
static auto f (int x, int y) -> int {
std::cout << "f(" << x << "," << y << ")" << std::endl;
auto g = [=](auto z) -> decltype(mystruct::f(z, y)) {
return mystruct::f(z, y);
};
if (x < 1)
g("end");
else
g(x - 1);
}
static auto f (std::string x, int y) -> float {
std::cout << "f(\"" << x << "\"," << y << ")" << std::endl;
}
};
int main() {
mystruct::f(10, 1);
}
Output:
f(10,1)
f(9,1)
f(8,1)
f(7,1)
f(6,1)
f(5,1)
f(4,1)
f(3,1)
f(2,1)
f(1,1)
f(0,1)
f("end",1)
Am I missing something?
This produces the same answer, and I think is a little clearer:
#include <string>
#include <iostream>
struct mystruct
{
auto f( std::string x, int y) -> float {
return y+9.3;
}
auto f( int x, int y) -> int
{
switch(x)
{
case 0: {
auto g = [=](auto...args) { return f(args..., y); };
std::cout << g("this string") << "\n";
return 0;
} break;
case 1: {
return y;
} break;
default:
return 7;
}
}
};
int main () {
mystruct h;
std::cout << h.f(1,4) << "\n";
std::cout << h.f(0,2) << "\n";
}
Maybe in reality there are more switch cases, and g needs to be hoisted above the switch statement?