I have a dataset in SAS in which the months would be dynamically updated each month. I need to calculate the sum vertically each month and paste the sum below, as shown in the image.
Proc means/ proc summary and proc print are not doing the trick for me.
I was given the following code before:
`%let month = month name;
%put &month.;
data new_totals;
set Final_&month. end=end;
&month._sum + &month._final;
/*feb_sum + &month._final;*/
output;
if end then do;
measure = 'Total';
&month._final = &month._sum;
/*Feb_final = feb_sum;*/
output;
end;
drop &month._sum;
run; `
The problem is this has all the months hardcoded, which i don't want. I am not too familiar with loops or arrays, so need a solution for this, please.
enter image description here
It may be better to use a reporting procedure such as PRINT or REPORT to produce the desired output.
data have;
length group $20;
do group = 'A', 'B', 'C';
array month_totals jan2020 jan2019 feb2020 feb2019 mar2019 apr2019 may2019 jun2019 jul2019 aug2019 sep2019 oct2019 oct2019 nov2019 dec2019;
do over month_totals;
month_totals = 10 + floor(rand('uniform', 60));
end;
output;
end;
run;
ods excel file='data_with_total_row.xlsx';
proc print noobs data=have;
var group ;
sum jan2020--dec2019;
run;
proc report data=have;
columns group jan2020--dec2019;
define group / width=20;
rbreak after / summarize;
compute after;
group = 'Total';
endcomp;
run;
ods excel close;
Data structure
The data sets you are working with are 'difficult' because the date aspect of the data is actually in the metadata, i.e. the column name. An even better approach, in SAS, is too have a categorical data with columns
group (categorical role)
month (categorical role)
total (continuous role)
Such data can be easily filtered with a where clause, and reporting procedures such as REPORT and TABULATE can use the month variable in a class statement.
Example:
data have;
length group $20;
do group = 'A', 'B', 'C';
do _n_ = 0 by 1 until (month >= '01feb2020'd);
month = intnx('month', '01jan2018'd, _n_);
total = 10 + floor(rand('uniform', 60));
output;
end;
end;
format month monyy5.;
run;
proc tabulate data=have;
class group month;
var total;
table
group all='Total'
,
month='' * total='' * sum=''*f=comma9.
;
where intck('month', month, '01feb2020'd) between 0 and 13;
run;
proc report data=have;
column group (month,total);
define group / group;
define month / '' across order=data ;
define total / '' ;
where intck('month', month, '01feb2020'd) between 0 and 13;
run;
Here is a basic way. Borrowed sample data from Richard.
data have;
length group $20;
do group = 'A', 'B';
array months jan2020 jan2019 feb2020 feb2019 mar2019 apr2019 may2019 jun2019 jul2019 aug2019 sep2019 oct2019 oct2019 nov2019 dec2019;
do over months;
months = 10 + floor(rand('uniform', 60, 1));
end;
output;
end;
run;
proc summary data=have;
var _numeric_;
output out=temp(drop=_:) sum=;
run;
data want;
set have temp (in=t);
if t then group='Total';
run;
Related
I have data in the following format:
data have;
input id rtl_apples rtl_oranges rtl_berries;
datalines;
1 50 60 10
2 10 30 80
3 40 8 1
;
I'm trying to create new variables that represent the percent of the sum of the RTL variables, PCT_APPLES, PCT_ORANGES, PCT_BERRIES. The problem is I'm doing this within a macro so the names and number of RTL variables with vary with each iteration so the new variable names need to be generated dynamically.
This data step essentially gets what I need, but the new variables are in the format PCT1, PCT2, PCTn format so it's difficult to know which RTL variable the PCT corresponds too.
data want;
set have;
array rtls[*] rtl_:;
total_sales = sum(of rtl_:);
call symput("dim",dim(rtls));
array pct[&dim.];
do i=1 to dim(rtls);
pct[i] = rtls[i] / total_sales;
end;
drop i;
run;
I also tried creating the new variable name by using a macro variable, but only the last variable in the array is created. In this case, PCT_BERRIES.
data want;
set have;
array rtls[*] rtl_:;
total_sales = sum(of rtl_:);
do i=1 to dim(rtls);
var_name = compress(tranwrd(upcase(vname(rtls[i])),'RTL','PCT'));
call symput("var_name",var_name);
&var_name. = rtls[i] / total_sales;
end;
drop i var_name;
run;
I have a feeling I'm over complicating this so any help would be appreciated.
If you have the list of names in data already then use the list to create the names you need for your arrays.
proc sql noprint;
select distinct cats('RTL_',name),cats('PCT_',name)
into :rtl_list separated by ' '
, :pct_list separated by ' '
from dataset_with_names
;
quit;
data want;
set have;
array rtls &rtl_list;
array pcts &pct_list;
total_sales = sum(of rtls[*]);
do index=1 to dim(rtls);
pcts[index] = rtls[index] / total_sales;
end;
drop index ;
run;
You can't create variables while a data step is executing. This program uses PROC TRANSPOSE to create a new data using the RTL_ variables "renamed" PCT_.
data have;
input id rtl_apples rtl_oranges rtl_berries;
datalines;
1 50 60 10
2 10 30 80
3 40 8 1
;;;;
run;
proc transpose data=have(obs=0) out=names;
var rtl_:;
run;
data pct;
set names;
_name_ = transtrn(_name_,'rtl_','PCT_');
y = .;
run;
proc transpose data=pct out=pct2;
id _name_;
var y;
run;
data want;
set have;
if 0 then set pct2(drop=_name_);
array _rtl[*] rtl_:;
array _pct[*] pct_:;
call missing(of _pct[*]);
total = sum(of _rtl[*]);
do i = 1 to dim(_rtl);
_pct[i] = _rtl[i]/total*1e2;
end;
drop i;
run;
proc print;
run;
You may want to just report the row percents
proc transpose data=&data out=&data.T;
by id;
var rtl_:;
run;
proc tabulate data=&data.T;
class id _name_;
var col1;
table
id=''
, _name_='Result'*col1=''*sum=''
_name_='Percent'*col1=''*rowpctsum=''
/ nocellmerge;
run;
I have a SAS code (SQL) that has to repeat for 25 times; for each month/year combination (see code below). How can I use a macro in this code?
proc sql;
create table hh_oud_AUG_17 as
select hh_key
,sum(RG_count) as RG_count_aug_17
,case when sum(RG_count) >=2 then 1 else 0 end as loyabo_recht_aug_17
from basis_RG_oud
where valid_from_dt <= "01AUG2017"d <= valid_to_dt
group by hh_key
order by hh_key
;
quit;
proc sql;
create table hh_oud_SEP_17 as
select hh_key
,sum(RG_count) as RG_count_sep_17
,case when sum(RG_count) >=2 then 1 else 0 end as loyabo_recht_sep_17
from basis_RG_oud
where valid_from_dt <= "01SEP2017"d <= valid_to_dt
group by hh_key
order by hh_key
;
quit;
If you use a data step to do this, you can put all the desired columns in the same output dataset rather than using a macro to create 25 separate datasets:
/*Generate lists of variable names*/
data _null_;
stem1 = "RG_count_";
stem2 = "loyabo_recht_";
month = '01aug2017'd;
length suffix $4 vlist1 vlist2 $1000;
do i = 0 to 24;
suffix = put(intnx('month', month, i, 's'), yymmn4.);
vlist1 = catx(' ', vlist1, cats(stem1,suffix));
vlist2 = catx(' ', vlist2, cats(stem2,suffix));
end;
call symput("vlist1",vlist1);
call symput("vlist2",vlist2);
run;
%put vlist1 = &vlist1;
%put vlist2 = &vlist2;
/*Produce output table*/
data want;
if 0 then set have;
start_month = '01aug2017'd;
array rg_count[2, 0:24] &vlist1 &vlist2;
do _n_ = 1 by 1 until(last.hh_key);
set basis_RG_oud;
by hh_key;
do i = 0 to hbound2(rg_count);
if valid_from_dt <= intnx('month', start_month, i, 's') <= valid_to_dt
then rg_count[1,i] = sum(rg_count[1,i],1);
end;
end;
do _n_ = 1 to _n_;
set basis_RG_oud;
do i = 0 to hbound2(rg_count);
rg_count[2,i] = rg_count[1,i] >= 2;
end;
end;
run;
Create a second data set that enumerates (is a list of) the months to be examined. Cross Join the original data to that second data set. Create a single output table (or view) that contains the month as a categorical variable and aggregates based on that. You will be able to by-group process, classify or subset based on the month variable.
data months;
do month = '01jan2017'd to '31dec2018'd;
output;
month = intnx ('month', month, 0, 'E');
end;
format month monyy7.;
run;
proc sql;
create table want as
select
month, hh_key,
sum(RG_count) as RG_count,
case when sum(RG_count) >=2 then 1 else 0 end as loyabo_recht
from
basis_RG_oud
cross join
months
where
valid_from_dt <= month <= valid_to_dt
group
by month, hh_key
order
by month, hh_key
;
…
/* Some analysis */
BY MONTH;
…
/* Some tabulation */
CLASS MONTH;
TABLE … MONTH …
WHERE year(month) = 2018;
I have been trying to create a demographic table like below this but I can't seem append the different tables. Please advise on where I can make adjustments in the code.
Group A Group B
chort 1 cohort 2 cohort 3 subtotal cohort 4 cohort 5 cohort 6 subtotal
Age
n
mean
sd
median
min
Gender
n
female
male
Race
n
white
asian
hispanic
black
My Code:
PROC FORMAT;
value content
1=' '
2='Age'
3='Gender'
4='Race'
value sex
1=' n'
2=' female'
3=' male';
value race
1=' n'
2=' white'
3=' asian'
4=' hispanic'
5=' black';
value stat
1=' n'
2=' Mean'
3=' Std. Dev.'
4=' Median'
5=' Minimum';
RUN;
DATA testtest;
SET test.test(keep = id group cohort age gender race);
RUN;
data tottest;
set testtest;
output;
if prxmatch('m/COHORT 1|COHORT 2|COHORT 3/oi', cohort) then do;
cohort='Subtotal';
output;
end;
if prxmatch('m/COHORT 4|COHORT 5|COHORT 6/oi', cohort) then do;
cohort='Subtotal';
output;
end;
run;
data count;
if 0 then set testtest nobs=npats;
call symput('npats',put(npats,1.));
stop;
run;
proc freq data=tottest;
tables cohort /out=patk0 noprint;
tables cohort*sex /out=sex0 noprint;
tables cohort*race /out=race0 noprint;
run;
PROC MEANS DATA = testtest n mean std min median;
class cohort;
VAR age;
RUN;
I know that I would have to transpose it and out it in a report. But before I do that, how do I get the variable out of my proc means, proc freq, etc?
What I've got:
a table of 20 rows in SAS (originally 100k)
various binary attributes (columns)
What I'm looking to get:
A crosstable displaying the frequency of the attribute combinations
like this:
Attribute1 Attribute2 Attribute3 Attribute4
Attribute1 5 0 1 2
Attribute2 0 3 0 3
Attribute3 2 0 5 4
Attribute4 1 2 0 10
*The actual sum of combinations is made up and probably not 100% logical
The code I currently have:
/*create dummy data*/
data monthly_sales (drop=i);
do i=1 to 20;
Attribute1=rand("Normal")>0.5;
Attribute2=rand("Normal")>0.5;
Attribute3=rand("Normal")>0.5;
Attribute4=rand("Normal")>0.5;
output;
end;
run;
I guess this can be done smarter, but this seem to work. First I created a table that should hold all the frequencies:
data crosstable;
Attribute1=.;Attribute2=.;Attribute3=.;Attribute4=.;output;output;output;output;
run;
Then I loop through all the combinations, inserting the count into the crosstable:
%macro lup();
%do i=1 %to 4;
%do j=&i %to 4;
proc sql noprint;
select count(*) into :Antall&i&j
from monthly_sales (where=(Attribute&i and Attribute&j));
quit;
data crosstable;
set crosstable;
if _n_=&j then Attribute&i=&&Antall&i&j;
if _n_=&i then Attribute&j=&&Antall&i&j;
run;
%end;
%end;
%mend;
%lup;
Note that since the frequency count for (i,j)=(j,i) you do not need to do both.
I'd recommend using the built-in SAS tools for this sort of thing, and probably displaying your data slightly differently as well, unless you really want a diagonal table. e.g.
data monthly_sales (drop=i);
do i=1 to 20;
Attribute1=rand("Normal")>0.5;
Attribute2=rand("Normal")>0.5;
Attribute3=rand("Normal")>0.5;
Attribute4=rand("Normal")>0.5;
count = 1;
output;
end;
run;
proc freq data = monthly_sales noprint;
table attribute1 * attribute2 * attribute3 * attribute4 / out = frequency_table;
run;
proc summary nway data = monthly_sales;
class attribute1 attribute2 attribute3 attribute4;
var count;
output out = summary_table(drop = _TYPE_ _FREQ_) sum(COUNT)= ;
run;
Either of these gives you a table with 1 row for each contribution of attributes in your data, which is slightly different from what you requested, but conveys the same information. You can force proc summary to include rows for combinations of class variables that don't exist in your data by using the completetypes option in the proc summary statement.
It's definitely worth taking the time to get familiar with proc summary if you're doing statistical analysis in SAS - you can include additional output statistics and process multiple variables with minimal additional code and processing overhead.
Update: it's possible to produce the desired table without resorting to macro logic, albeit a rather complex process:
proc summary data = monthly_sales completetypes;
ways 1 2; /*Calculate only 1 and 2-way summaries*/
class attribute1 attribute2 attribute3 attribute4;
var count;
output out = summary_table(drop = _TYPE_ _FREQ_) sum(COUNT)= ;
run;
/*Eliminate unnecessary output rows*/
data summary_table;
set summary_table;
array a{*} attribute:;
sum = sum(of a[*]);
missing = 0;
do i = 1 to dim(a);
missing + missing(a[i]);
a[i] = a[i] * count;
end;
/*We want rows where two attributes are both 1 (sum = 2),
or one attribute is 1 and the others are all missing*/
if sum = 2 or (sum = 1 and missing = dim(a) - 1);
drop i missing sum;
edge = _n_;
run;
/*Transpose into long format - 1 row per combination of vars*/
proc transpose data = summary_table out = tr_table(where = (not(missing(col1))));
by edge;
var attribute:;
run;
/*Use cartesian join to produce table containing desired frequencies (still not in the right shape)*/
option linesize = 150;
proc sql noprint _method _tree;
create table diagonal as
select a._name_ as aname,
b._name_ as bname,
a.col1 as count
from tr_table a, tr_table b
where a.edge = b.edge
group by a.edge
having (count(a.edge) = 4 and aname ne bname) or count(a.edge) = 1
order by aname, bname
;
quit;
/*Transpose the table into the right shape*/
proc transpose data = diagonal out = want(drop = _name_);
by aname;
id bname;
var count;
run;
/*Re-order variables and set missing values to zero*/
data want;
informat aname attribute1-attribute4;
set want;
array a{*} attribute:;
do i = 1 to dim(a);
a[i] = sum(a[i],0);
end;
drop i;
run;
Yeah, user667489 was right, I just added some extra code to get the cross-frequency table looking good. First, I created a table with 10 million rows and 10 variables:
data monthly_sales (drop=i);
do i=1 to 10000000;
Attribute1=rand("Normal")>0.5;
Attribute2=rand("Normal")>0.5;
Attribute3=rand("Normal")>0.5;
Attribute4=rand("Normal")>0.5;
Attribute5=rand("Normal")>0.5;
Attribute6=rand("Normal")>0.5;
Attribute7=rand("Normal")>0.5;
Attribute8=rand("Normal")>0.5;
Attribute9=rand("Normal")>0.5;
Attribute10=rand("Normal")>0.5;
output;
end;
run;
Create an empty 10x10 crosstable:
data crosstable;
Attribute1=.;Attribute2=.;Attribute3=.;Attribute4=.;Attribute5=.;Attribute6=.;Attribute7=.;Attribute8=.;Attribute9=.;Attribute10=.;
output;output;output;output;output;output;output;output;output;output;
run;
Create a frequency table using proc freq:
proc freq data = monthly_sales noprint;
table attribute1 * attribute2 * attribute3 * attribute4 * attribute5 * attribute6 * attribute7 * attribute8 * attribute9 * attribute10
/ out = frequency_table;
run;
Loop through all the combinations of Attributes and sum the "count" variable. Insert it into the crosstable:
%macro lup();
%do i=1 %to 10;
%do j=&i %to 10;
proc sql noprint;
select sum(count) into :Antall&i&j
from frequency_table (where=(Attribute&i and Attribute&j));
quit;
data crosstable;
set crosstable;
if _n_=&j then Attribute&i=&&Antall&i&j;
if _n_=&i then Attribute&j=&&Antall&i&j;
run;
%end;
%end;
%mend;
%lup;
I have to calculate the correlation and covariance for my daily sales values for an event window. The event window is of 45 day period and my data looks like -
store_id date sales
5927 12-Jan-07 3,714.00
5927 12-Jan-07 3,259.00
5927 14-Jan-07 3,787.00
5927 14-Jan-07 3,480.00
5927 17-Jan-07 3,646.00
5927 17-Jan-07 3,316.00
4978 18-Jan-07 3,530.00
4978 18-Jan-07 3,103.00
4978 18-Jan-07 3,026.00
4978 21-Jan-07 3,448.00
Now, for every store_id, date combination, I need to go back 45 days (there is more data for each combination in my original data set) calculate the correlation between sales and lag(sales) i.e. autocorrelation of degree one. As you can see, the date column is not continuous. So something like (date - 45) is not going to work.
I have gotten till this part -
data ds1;
set ds;
by store_id;
LAG_SALE = lag(sales);
IF FIRST.store_idTHEN DO;
LAG_SALE = .;
END;
run;
For calculating correlation and covariances -
proc corr data=ds1 outp=Corr
by store_id date;
cov; /** include covariances **/
var sales lag_sale;
run;
But how do I insert the event window for each date, store_id combination? My final output should look something like this -
id date corr cov
5927 12-Jan-07 ... ...
5927 14-Jan-07 ... ...
Here is what I've come up with:
First I convert the date to a SAS date, which is the number of days since Jan. 1 1960:
data ds;
set ds (rename=(date=old_date));
date = input(old_date, date11.);
drop old_date;
run;
Then compute lag_sale (I am using the same calculation you used in the question, but make sure this is what you want to do. For some observations the lag sale is the previous recorded date, but for some it is the same store_id and date, just a different observation.):
proc sort data=ds; by store_id; run;
data ds;
set ds;
by store_id;
lag_sale = lag(sales);
if first.store_id then lag_sale = .;
run;
Then set up the final data set:
data final;
length store_id 8 date 8 cov 8 corr 8;
if _n_ = 0;
run;
Then create a macro which takes a store_id and date and runs proc corr. The first part of the macro selects only the data with that store_id and within the past 45 days of the date. Then it runs proc corr. Then it formats proc corr how you want it and appends the results to the "final" data set.
%macro corr(store_id, date);
data ds2;
set ds;
where store_id = &store_id and %eval(&date-45) <= date <=&date
and lag_sale ne .;
run;
proc corr noprint data=ds2 cov outp=corr;
by store_id;
var sales lag_sale;
run;
data corr2;
set corr;
where _type_ in ('CORR', 'COV') and _name_ = 'sales';
retain cov;
date = &date;
if _type_ = 'COV' then cov = lag_sale;
else do;
corr = lag_sale;
output;
end;
keep store_id date corr cov;
run;
proc append base=final data=corr2 force; run;
%mend corr;
Finally run the macro for each store_id/date combination.
proc sort data=ds out=ds3 nodupkey;
by store_id date;
run;
data _null_;
set ds3;
call execute('%corr('||store_id||','||date||');');
run;
proc sort data=final;
by store_id date;
run;