c++ r-value reference applied to function pointer - c++

#include <iostream>
#include <utility>
template<typename T>
void f1(T&& t) // &&
{
if constexpr (std::is_function_v<typename std::remove_pointer_t<T>>)
std::cout << "function" << std::endl;
else
std::cout << "not a function" << std::endl;
}
template<typename T>
void f2(T& t) // &
{
if constexpr (std::is_function_v<typename std::remove_pointer_t<T>>)
std::cout << "function" << std::endl;
else
std::cout << "not a function" << std::endl;
}
void print(){}
int main()
{
f1(print);
f2(print);
return 0;
}
According to f1, print is not a function.
According to f2, print is a function.
Understanding why this is so would help understanding the && operator

In the both cases a function is passed by reference. And the both functions deals with lvalue reference to the function print.
Use
std::is_function_v<std::remove_reference_t<T>>
instead of
std::is_function_v<typename std::remove_pointer_t<T>>
You can also insert a statement like this in the both functions
std::cout << std::is_lvalue_reference_v<decltype( t )> << '\n';
to be sure that the functions deal with the lvalue reference to rpint.
Take into account that you need to include the header <type_traits>.
If you want that the functions would deal with function pointers then you need to use a call like this
f1(&print);
In this case the second function should be declared like
template<typename T>
void f2( const T& t);
Otherwise you may not bind a non-constant reference to rvalue.
Or call the function f2 like if you do not want to use the qualifier const.
auto p = print;
f2(p);

Related

C++20 function overloading with references [duplicate]

If we have this example functions code in C++
void foo(int x) { std::cout << "foo(int)" << std::endl; }
void foo(int& x) { std::cout << "foo(int &)" << std::endl; }
Is it possible to difference what function to call doing any modification in the calling arguments?
If the function foo is called in some of these ways:
foo( 10);
i = 10;
foo( static_cast<const int>(i));
foo( static_cast<const int&>(i));
it's called the first foo overloaded function, because it can't pass by reference a const argument to a non-const parameter.
But, how would you do to call the second foo overload function?
If I call the next way:
int i = 10;
foo( i);
It happens an ambiguous error because both functions are valid for this argument.
In this link https://stackoverflow.com/a/5465379/6717386 it's explained one way to resolve it: using objects instead of built-in types and doing private the copy constructor, so it can't do a copy of object value and it has to be called the second foo overload function and passing the object by reference. But, is there any way with the built-in types? I have to change the name of function to avoid the overloading?
You may do a cast (of the function) to select the overload function:
static_cast<void (&)(int&)>(foo)(i);
Demo
In most instance, function overloading involves distinct parameter types and different input parameter lengths.
Your attempt is generally a bad practice and the resulting compiled code is compiler dependent and code optimization may even worsen things even more.
You may consider simply adding a second parameter to the second method, something like this:
void foo(int x) { std::cout << "foo(int)" << std::endl; }
void foo(int& x, ...) { std::cout << "foo(int &, ...)" << std::endl; }
where ... could be a boolean type, say: bool anotherFunction
So calling foo(param1, param2) would simply call the second code and everybody is fine.
Very strange design, but if you want... I'll offer a solution as strange as your design Use Xreference in function signature. Then in the function you can check what you need to do using std::is_lvalue_reference, std::is_rvalue_reference.
Something like this
template<class T>
void foo(T&& x)
{
static_assert(std::is_same<std::decay_t<T>, int>::value, "!");
if (std::is_rvalue_reference<T&&>::value)
std::cout << "do here what you want in foo(int x)";
else
std::cout << "do here what you want in foo(int & x)";
}
int main()
{
int x = 5;
foo(x); //"do here what you want in foo(int x)" - will be printed
foo(std::move(x)); //"do here what you want in foo(int & x)" - will be printed
}
Despite the good answer of #Jarod42, as an alternative solution you can rely on a templated entry point and the overloading of an internal function (if you don't want to deal with explicit casts, of course).
It follows a minimal, working example:
#include<type_traits>
#include<iostream>
#include<utility>
void foo_i(char, int x) { std::cout << "foo(int)" << std::endl; }
void foo_i(int, int &x) { std::cout << "foo(int &)" << std::endl; }
template<typename T>
void foo(T &&t) {
static_assert(std::is_same<std::decay_t<T>, int>::value, "!");
foo_i(0, std::forward<T>(t));
}
int main() {
foo( 10);
int i = 10;
foo( static_cast<const int>(i));
foo( static_cast<const int &>(i));
foo(i);
}
The static_assert serves the purpose of checking the parameter to be something that involves int (that is int, int &, const int &, int &&`, and so on).
As you can see from the code above, foo(i) will print:
foo(int &)
As expected.
Another one:
#include <iostream>
#include <functional>
void foo(int x)
{
std::cout << "foo(int)\n";
}
template<typename T>
void foo(T&& x)
{
std::cout << "foo(int&)\n";
}
int main()
{
int i = 10;
foo(i); // foo(int)
foo(std::ref(i)); // foo(int&)
}
I just happened to have stumbled upon this post and was surprised not to find the typical SFINAE solution. So, there you go:
#include <iostream>
#include <type_traits>
template<typename T,
typename std::enable_if<!std::is_lvalue_reference<T>{}, int>::type = 0>
void foo(T)
{ std::cout << "foo(int)" << std::endl; }
template<typename T,
typename std::enable_if<std::is_lvalue_reference<T>{}, int>::type = 0>
void foo(T&)
{ std::cout << "foo(int &)" << std::endl; }
int main() {
int i = 42;
int& r = i;
foo<decltype(i)>(i);
foo<decltype(r)>(r);
}
Live example

calling version of is_const<> but for variables instead of types, in one line

Hi I am learning c++ and I read about type traits such as is_const.
is_const can be called in one line like,
cout << is_const<double>::value << endl;
I made my own version of is_const but to test if a variable is const, and it can be used like this,
#include<iostream>
using namespace std;
template<typename T>
struct check_const {
check_const(const T *x): val(std::true_type{})
{ }
check_const(T *x) : val(std::false_type{})
{ }
bool val;
};
int main()
{
const double pi= 3.14;
check_const<double> r(&pi);
cout << r.val << endl; // returns 1
double x= 2.7;
check_const<double> s(&x);
cout << s.val << endl; // returns 0
return(0);
}
I would like to call check_const in one line as well, but the compiler keeps giving me errors like
"typename not allowed"
when I try calling it like
cout << check_const<double> t(&pi)::val << endl;
How can I change check_const, so it can be called in one line?
You are just using a slightly wrong syntax here:
cout << check_const<double> t(&pi)::val << endl;
Instead use
cout << check_const<double>(&pi).val << endl;
check_const<double> t(&pi) is the syntax for the definition of a named variable, but you cannot have declarations/definitions inside an expression.
check_const<double>(&pi) is the syntax to create an unnamed temporary, which can be done in expressions.
Then you need . instead of ::, because val is a non-static member of check_const.
Starting with C++17 you could also write:
cout << check_const(&pi).val << endl;
and have the template argument be deduced for you.
All of this can be simplified though, as you aren't really using the class. You can just use the constructors as free functions:
template<typename T>
constexpr bool check_const(const T *x) noexcept { return true; }
template<typename T>
constexpr bool check_const(T *x) noexcept { return false; }
(The constexpr makes it possible to use the functions in constant expressions, but is otherwise not required. Similarly noexcept is just an indicator that the function doesn't throw exceptions, but is otherwise not required.)
This can be used more easily as
cout << check_const(&pi) << endl;
Also, instead of pointers, use references:
template<typename T>
constexpr bool check_const(const T &x) noexcept { return true; }
template<typename T>
constexpr bool check_const(T &x) noexcept { return false; }
and you can write
cout << check_const(pi) << endl;

Did std::bind implement std::ref and std::cref to disambiguate the function call?

I know that I shouldn't overload a function for just parameters differ only in one of them passed by copy and the other by reference:
void foo(int x)
{
cout << "in foo(int x) x: " << x << endl;
}
void foo(int& x)
{
cout << "in foo(int& x) x: " << x << endl;
}
int main()
{
int a = 1;
foo(5); // ok as long as there is one best match foo(int)
foo(a); // error: two best candidates so the call is ambiguous
//foo(std::move(a));
//foo(std::ref(an)); // why also this doesn't work?
}
So a code that uses std::bind can be like this:
std::ostream& printVec(std::ostream& out, const std::vector<int> v)
{
for (auto i : v)
out << i << ", ";
return out;
}
int main()
{
//auto func = std::bind(std::cout, std::placeholders::_1); // error: stream objects cannot be passed by value
auto func = std::bind(std::ref(std::cout), std::placeholders::_1); // ok.
}
So std::ref here to ensure passing by reference rather than by value to avoid ambiguity?
* The thing that matters me: Does std::bind() implemented some wrapper to overcome this issue?
Why I can't use std::ref in my example to help the compiler in function matching?
Now that you know passing by value and reference are ambiguous when overload resolution tries to compare them for choosing a best viable function, let's answer how would you use std::ref (or std::cref) to differentiate between pass-by-value and pass-by-reference.
It turns out to be ... pretty simple. Just write the overloads such that one accepts a int, and the other accepts a std::reference_wrapper<int>:
#include <functional>
#include <iostream>
void foo(int x) {
std::cout << "Passed by value.\n";
}
void foo(std::reference_wrapper<int> x) {
std::cout << "Passed by reference.\n";
int& ref_x = x;
ref_x = 42;
/* Do whatever you want with ref_x. */
}
int main() {
int x = 0;
foo(x);
foo(std::ref(x));
std::cout << x << "\n";
return 0;
}
Output:
Passed by value.
Passed by reference.
42
The function pass the argument by value by default. If you want to pass by reference, use std::ref explicitly.
Now let's answer your second question: how does std::bind deal with this type of scenario. Here is a simple demo I have created:
#include <functional>
#include <type_traits>
#include <iostream>
template <typename T>
struct Storage {
T data;
};
template <typename T>
struct unwrap_reference {
using type = T;
};
template <typename T>
struct unwrap_reference<std::reference_wrapper<T>> {
using type = std::add_lvalue_reference_t<T>;
};
template <typename T>
using transform_to_storage_type = Storage<typename unwrap_reference<std::decay_t<T>>::type>;
template <typename T>
auto make_storage(T&& obj) -> transform_to_storage_type<T> {
return transform_to_storage_type<T> { std::forward<T>(obj) };
}
int main() {
int a = 0, b = 0, c = 0;
auto storage_a = make_storage(a);
auto storage_b = make_storage(std::ref(b));
auto storage_c = make_storage(std::cref(c));
storage_a.data = 42;
storage_b.data = 42;
// storage_c.data = 42; // Compile error: Cannot modify const.
// 0 42 0
std::cout << a << " " << b << " " << c << "\n";
return 0;
}
It is not std::bind, but the method used is similar (it's also similar to std::make_tuple, which has the same semantic). make_storage by default copies the parameter, unless you explicitly use std::ref.
As you can see, std::ref is not magic. You need to do something extra for it to work, which in our case is to first decay the type (all references are removed in this process), and then check whether the final type is a reference_wrapper or not; if it is, unwrap it.

Safe Callback Provider (SFINAE, std::forward and overload resolution)

I'm working on a mechanism for creating "safe" callbacks, that won't cause undefined behavior when called after their parent object has been destroyed. The class should be generic enough to be able to wrap any callback, with void(...) callbacks simply being executed or not, depending on the status of the object that they are bound to, and callbacks that return a value returning a boost::optional with the returned value, if executed, or boost::none if not executed.The implementation is almost complete, but there are 2 things that make me worried that I don't fully understand my code...
If line 19 is uncommented and 18 commented out, the template won't compile - is this merely a syntactic problem that can be solved, or am I trying to use the result_of mechanism incorrectly (does the std::forward there change the semantics or is it superfluous?)
If line 88 is uncommented and 89 commented out, the compilation results in failure due to ambiguousness of the function call to fun, which I don't quite understand - it seems to me that fun(int&&) is an exact match, so why does the compiler complain of ambiguousness with fun(int) version?
If there are other subtle (or gross) errors, please comment as well.
Thanks.
#include <iostream>
#include <string>
#include <type_traits>
#include <utility>
#include <memory>
#include <boost/optional.hpp>
template<class Func>
class SafeCallback
{
public:
SafeCallback(std::shared_ptr<bool> guard, const Func& callback)
: guard_(guard)
, callback_(callback)
{}
template<class... Args>
// auto operator()(Args&&... args) -> typename std::enable_if<std::is_void<typename std::result_of<Func(std::forward<Args>(args)...)>::type>::value, // won't compile with: 19:91: error: invalid use of template-name 'std::result_of' without an argument list
auto operator()(Args&&... args) -> typename std::enable_if<std::is_void<typename std::result_of<Func(Args...)>::type>::value,
void>::type
{
std::cout << "trying void callback" << std::endl;
if(guard_.lock())
{
std::cout << "callback is still alive :)" << std::endl;
callback_(std::forward<Args>(args)...);
return;
}
std::cout << "uh-oh, callback is dead!" << std::endl;
}
template<class... Args>
auto operator()(Args&&... args) -> typename std::enable_if<!std::is_void<typename std::result_of<Func(Args...)>::type>::value,
boost::optional<typename std::result_of<Func(Args...)>::type>>::type
{
std::cout << "trying non-void callback" << std::endl;
if(guard_.lock())
{
std::cout << "callback is still alive :)" << std::endl;
return callback_(std::forward<Args>(args)...);
}
std::cout << "uh-oh, callback is dead!" << std::endl;
return boost::none;
}
bool isAlive()
{
return guard_.lock();
}
private:
std::weak_ptr<bool> guard_;
Func callback_;
};
class SafeCallbackProvider
{
public:
SafeCallbackProvider()
: guard_(new bool(true))
{}
virtual ~SafeCallbackProvider() = default;
template<class Func>
SafeCallback<Func> makeSafeCallback(const Func& callback)
{
return SafeCallback<Func>(guard_, callback);
}
private:
std::shared_ptr<bool> guard_;
};
struct A : SafeCallbackProvider
{
void fun()
{
std::cout << "---this is fun---" << std::endl;
}
int fun(int&& i)
{
std::cout << "&& this is && " << i << " && fun &&" << std::endl;
return i;
}
// int fun(int i) // fails to compile with: 123:48: error: call of overloaded 'fun(int)' is ambiguous
int fun(int& i)
{
std::cout << "---this is ---" << i << "--- fun---" << std::endl;
return i;
}
};
int main()
{
A* a= new A;
auto cb = a->makeSafeCallback(
[&]()
{
a->fun();
});
cb();
delete a;
cb();
std::cout << "\n----------\n\n";
A* a2= new A;
auto cb2 = a2->makeSafeCallback(
[&](int i)
{
return a2->fun(i);
});
cb2(5);
delete a2;
cb2(5);
std::cout << "\n----------\n\n";
A* a3= new A;
auto cb3 = a3->makeSafeCallback(
[&](int&& i)
{
return a3->fun(std::forward<int>(i));
});
cb3(5);
delete a3;
cb3(5);
return 0;
}
Note: this only answers the first question, because I apparently have the attention span of a fly. More coming soon.
std::result_of essentially performs some magic based on a function type that looks like a function call. In the line that works:
typename std::result_of<Func(Args...)>::type
This is the intended use, simulating the call of an instance of Func with values of types Args.... On the other hand:
typename std::result_of<Func(std::forward<Args>(args)...)>::type
This expands Args and args into a group of values, which then form a chain of ,-operators inside a functoin-style cast to Func. The whole thing is an expression instead of the type std::result_of expects.
It looks like you're halfway to using decltype instead, which would look like:
decltype(std::declval<Func&>()(std::forward<Args>(args)...))
... or, if you can be bothered to move it underneath callback_'s declaration:
decltype(callback_(std::forward<Args>(args)...))
Rules of Overloading are that .
Signature of function should be different.
In both the case compiler is finding same signature, try to change the signature and see the result.

A little hazy about std::ref() and std::bind() with variadic templates

I have read many posts about variadic templates and std::bind but I think I am still not understanding how they work together. I think my concepts are a little hazy when it comes to using variadic templates, what std::bind is used for and how they all tie together.
In the following code my lambda uses the dot operator with objects of type TestClass but even when I pass in objects of type std::ref they still work. How is this exactly? How does the implicit conversion happen?
#include <iostream>
using std::cout;
using std::endl;
#include <functional>
#include <utility>
using std::forward;
class TestClass {
public:
TestClass(const TestClass& other) {
this->integer = other.integer;
cout << "Copy constructed" << endl;
}
TestClass() : integer(0) {
cout << "Default constructed" << endl;
}
TestClass(TestClass&& other) {
cout << "Move constructed" << endl;
this->integer = other.integer;
}
int integer;
};
template <typename FunctionType, typename ...Args>
void my_function(FunctionType function, Args&&... args) {
cout << "in function" << endl;
auto bound_function = std::bind(function, args...);
bound_function();
}
int main() {
auto my_lambda = [](const auto& one, const auto& two) {
cout << one.integer << two.integer << endl;
};
TestClass test1;
TestClass test2;
my_function(my_lambda, std::ref(test1), std::ref(test2));
return 0;
}
More specifically, I pass in two instances of a reference_wrapper with the two TestClass objects test1 and test2, but when I pass them to the lambda the . operator works magically. I would expect that you have use the ::get() function in the reference_wrapper to make this work but the call to the .integer data member works..
The reference unwrapping is performed by the result of std::bind():
If the argument is of type std::reference_wrapper<T> (for example, std::ref or std::cref was used in the initial call to bind), then the reference T& stored in the bound argument is passed to the invocable object.
Corresponding standardese can be found in N4140 draft, [func.bind.bind]/10.
It is important to note that with std::bind;
The arguments to bind are copied or moved, and are never passed by reference unless wrapped in std::ref or std::cref.
The "passed by reference" above is achieved because std::ref provides a result of std::reference_wrapper that is a value type that "wraps" the reference provided.
std::reference_wrapper is a class template that wraps a reference in a copyable, assignable object. It is frequently used as a mechanism to store references inside standard containers (like std::vector) which cannot normally hold references.
By way of an example of what bind's unwrapping of the reference does (without the bind);
#include <iostream>
#include <utility>
#include <functional>
int main()
{
using namespace std;
int a = 1;
auto b = std::ref(a);
int& c = b;
cout << a << " " << b << " " << c << " " << endl; // prints 1 1 1
c = 2;
cout << a << " " << b << " " << c << " " << endl; // prints 2 2 2
}
Demo code.