Allocated table variation - fortran

PROGRAM satellite
IMPLICIT NONE
INTEGER :: i, j, ok, nc
REAL :: alph, bet, chi, ninf1, C1
REAL, DIMENSION(:), ALLOCATABLE :: uexact, x, Econs
REAL :: E, k, Lc, hc, eps, h
Read*,nc
E=25. ; k=125. ; hc=0.01 ; eps=0.01 ; Lc=1 ;
h = Lc/nc ; chi=sqrt((E*hc)/k) ; alph= -(1/h**2) ; bet=(2/h**2)+(k/(E*hc))
ALLOCATE(x(0:nc), uexact(0:nc), Econs(0:nc))
OPEN(UNIT=888,FILE="uetuexact.out",ACTION="write",STATUS='old')
OPEN(UNIT=889,FILE="consistance.out",ACTION="write",STATUS='old')
DO i = 0, nc
x(i) = h*i-Lc/2
uexact(i) = eps*chi*((sinh(x(i)/chi))/(cosh(Lc/(2*chi))))
END DO
!-------------------------------------------------------------------------------
DO i=1,nc-1
Econs(i)=(alph*(uexact(i-1)))+(bet*(uexact(i)))+(alph*(uexact(i+1)))
END DO
ninf1=maxval(Econs)
C1=ninf1*(nc**2)
DO i = 0, nc
WRITE(888,fmt='(3E15.6)') x(i), uexact(i)
WRITE(889,fmt='(3E15.6)') x(i), uexact(i), -Econs(i)
END DO
Print* , 'nc :', nc
Print* , 'h :', h
Print* , 'ninf1 :', ninf1
Print* , 'C1 :', C1
END PROGRAM satellite
I need my nc variable to change from 10,50,100,500,1000,5000,10000 in order to write out for each given nc, the ninf1 and C1 values. For now, i was doing nc manually but i will need a file .out : that gives me nc | ninf1 | C1. I want to know how can i vary my nc to this values precisely.

You could do the following:
define an array nsizes that would hold all the values you want nc to take.
declare a variable iter that would run along this array
iterate with iter over the length of nsizes
At the beginning of each iteration assign nc = nsizes(iter)
At the end of each iteration deallocate the arrays
Here is a patch that does just that.
--- satellite.f90 2020-02-16 18:13:35.662123215 +0700
+++ satellite_loop.f90 2020-02-16 18:50:09.662029872 +0700
## -1,11 +1,15 ##
PROGRAM satellite
IMPLICIT NONE
- INTEGER :: i, j, ok, nc
+ INTEGER :: i, j, ok, nc, iter
REAL :: alph, bet, chi, ninf1, C1
REAL, DIMENSION(:), ALLOCATABLE :: uexact, x, Econs
REAL :: E, k, Lc, hc, eps, h
+ INTEGER, DIMENSION(7) :: nsizes = (/ 10, 50, 100, 500, 1000, 5000, 10000/)
+
+ ! Read*,nc
+ do iter = 1, 7
+ nc = nsizes(iter)
- Read*,nc
E=25. ; k=125. ; hc=0.01 ; eps=0.01 ; Lc=1 ;
h = Lc/nc ; chi=sqrt((E*hc)/k) ; alph= -(1/h**2) ; bet=(2/h**2)+(k/(E*hc))
## -38,4 +42,8 ##
Print* , 'ninf1 :', ninf1
Print* , 'C1 :', C1
+deallocate(x, uexact, econs)
+
+end do
+
END PROGRAM satellite
The output would look like this:
nc : 10
h : 0.100000001
ninf1 : 1.17741162E-02
C1 : 1.17741168
nc : 50
h : 1.99999996E-02
ninf1 : 2.39971280E-03
C1 : 5.99928188
nc : 100
h : 9.99999978E-03
ninf1 : 7.46726990E-04
C1 : 7.46726990
nc : 500
h : 2.00000009E-03
ninf1 : 1.44958496E-04
C1 : 36.2396240
nc : 1000
h : 1.00000005E-03
ninf1 : 8.23974609E-04
C1 : 823.974609
nc : 5000
h : 1.99999995E-04
ninf1 : 2.73437500E-02
C1 : 683593.750
nc : 10000
h : 9.99999975E-05
ninf1 : 0.125000000
C1 : 12500000.0

Related

fortran gives strange results when writing to file

I am using fortran. I want to write some information to a file, and here is my code:
open(unit=114514, position="append", file="msst_info.txt")
write(114514, 100) "step =", step
write(114514, 200) "A =", A
write(114514, 200) "omega =", omega(sd)
write(114514, 300) "dilation =", dilation(sd)
write(114514, 200) "p_msst =", p_msst / (kBar * 10)
write(114514, 300) "vol =", vol / Ang**3
write(114514, 300) "temp =", temperature
write(114514, 400) "+++++++++++++++++++++++++++"
100 format(A10, i8)
200 format(A10, e12.4)
300 format(A10, f12.4)
400 format(A)
close(114514)
I wish it can append the information to this file after each step. But the result is very strange:
dilation = 0.9999
p_msst = 0.3619E+02
vol = 10 A = -0.1041E-23
omega = -0.2290E-15
dilation = 0.9999
p_msst = 0.3619E+02
vol A = -0.1041E-23
omega = -0.2290E-15
dilation = 0.9999
p_msst = 0.3619E+02
vol = 1053.0452
temp = 195.9830
+++++++++++++++++++++++++++
step = 6
A = -0.1041E-23
omega = -0.2290E-15
dilation = 0.9999
p_msst = 0.3619E+02
vol = 1053.0452
temp = 195.9830
+++++++++++++++++++++++++++
step = 7
A = -0.1249E step = 7
A = -0.1249E-23
omega = -0.2290E-15
dilation = 0.9999
p_msst = 0.4342E+02
vol = 1052.8163
temp = 198.4668
+++++++++++++++++++++++++++
the format of step 6 is what i want. but in step 7, some text is written multiple times, and their position is completely wrong. I wonder why it happens.
the whole code:
module msst
use poscar_struct_def
use dynconstr
use prec
use reader_tags
use poscar
implicit none
contains
subroutine msst_step(dyn, latt_cur, t_info, tsif, tifor, io, niond, nionpd, ntypd, ntyppd)
! =======================================================================
! Written by S. Pan 2021/5/28
! This subroutine calculate a msst step. (Evan J. Reed 2003 PRL)
! I refer to fix_msst.cpp in LAMMPS when writing this code.
! The v(t-dt/2) is needed for velocity verlet algo.
! Two step: first, calculate the velocity v(t) with the a(t) and v(t-dt/2).
! second: give the position of ion and cell x(t+dt), and v(t+dt/2).
! The parameter mu is neglected since it makes the process complex.
! dyn: the struct for some MD variables, such as x, v, force.
! t_info: the struct for type information, such as number of ions.
! step: the current number of step. Init if step == 1.
! =======================================================================
! the dyn info will be changed
type(dynamics), intent(in out) :: dyn
type(latt), intent(in out) :: latt_cur
type(type_info), intent(in out) :: t_info
! these are inputs, should not be modified
type(in_struct), intent(in) :: io
real(q), dimension(3, t_info%nions), intent(in) :: tifor ! force on ions
real(q), dimension(3, 3), intent(in) :: tsif ! stress
! some units
real(q), parameter :: eV = 1.60218e-19, Ang = 1e-10, fs = 1e-15, &
amu = 1.66053886e-27, kBar = 1e5, kB = 1.38064852e-23
! energy in J, length in meter, time in s, mass in kg
! stress in Pa
! internal variables
real(q), save :: dt, dthalf, tscale, qmass, vs, total_mass=0, vol0
real(q), dimension(3, t_info%nions) :: velocity_before_half_dt, velocity_now, velocity_after_half_dt, &
C_force, x
real(q), dimension(3), save :: omega = [0, 0, 0] ! the time derivative of cell
real(q), dimension(3) :: dilation = [1, 1, 1]
integer :: ierr, ii, ni, nt, niond, nionpd, ntypd, ntyppd
integer, save :: sd, step = 0
real(q), dimension(3, 3) :: kinetic_stress, total_stress
real(q), dimension(3, 3), save :: p0
real(q) :: p_msst, A, vol, vol1, vol2, fac1, sqrt_initial_temperature_scaling, temperature, ekin
if (step .eq. 0) then
dyn%init = 0
call rd_poscar(latt_cur, t_info, dyn, &
& niond, nionpd, ntypd, ntyppd, &
& io%iu0, io%iu6)
end if
dyn%posioc = dyn%posion
step = step + 1
dt = dyn%potim * fs
dthalf = dt/2
! convert x to cartsian coordination. x and velocity use standard unit.
do ii = 1, 3
x(ii, :) = dyn%posion(ii, :) * latt_cur%a(ii, ii) * Ang
end do
! there isn't anything in dyn%pomass. so must use t_info%pomass
ni=1
do nt=1,t_info%ntyp
do ni=ni,t_info%nityp(nt)+ni-1
C_force(:, ni) = tifor(:, ni)/t_info%pomass(nt)
total_mass = total_mass + t_info%pomass(nt)
enddo
enddo
C_force = C_force * (eV/Ang/amu)
total_mass = total_mass * amu
if (step .eq. 1) then
! read these tags from INCAR
call process_incar(io%lopen, io%iu0, io%iu5, 'qmass', qmass, ierr, .true.)
call process_incar(io%lopen, io%iu0, io%iu5, 'tscale', tscale, ierr, .true.)
call process_incar(io%lopen, io%iu0, io%iu5, 'shock_direction', sd, ierr, .true.)
call process_incar(io%lopen, io%iu0, io%iu5, 'shock_velocity', vs, ierr, .true.)
! use tscale to give a initial cell velocity, or the cell will stay still forever
do ii = 1, 3
velocity_now(ii, :) = dyn%vel(ii, :) * latt_cur%a(ii, ii) * (Ang/fs) / dyn%potim
end do
CALL EKINC(EKIN,T_INFO%NIONS,T_INFO%NTYP,T_INFO%ITYP,T_INFO%POMASS,DYN%POTIM,LATT_CUR%A,DYN%VEL)
temperature = 2 * ekin * eV / (kB * t_info%nions * 3 )
fac1 = tscale*total_mass/qmass*temperature
omega(sd) = -sqrt(fac1)
sqrt_initial_temperature_scaling = sqrt(1.0-tscale)
velocity_now = velocity_now * sqrt_initial_temperature_scaling
else
! =======================================================================
! 2nd half of Verlet update. this part get current velocity from t-dt/2.
! =======================================================================
! propagate particle velocities 1/2 step, it should not be done on the first step of MD.
do ii = 1, 3
velocity_before_half_dt(ii, :) = dyn%vel(ii, :) * latt_cur%a(ii, ii) * (Ang/fs) / dyn%potim
end do
velocity_now = velocity_before_half_dt + C_force*dthalf
end if
! compute new pressure and volume and temperature
call compute_kinetic_stress(t_info, latt_cur, dyn, kinetic_stress, tsif, -1)
total_stress = tsif + kinetic_stress
total_stress = total_stress * kBar
vol = latt_cur%a(1, 1) * latt_cur%a(2, 2) * latt_cur%a(3, 3) * (Ang**3)
if (step .eq. 1) then
p0 = total_stress
vol0 = vol
end if
p_msst = vs**2 * total_mass * (vol0 - vol)/vol0**2
A = total_mass * (total_stress(sd, sd) - p0(sd, sd) - p_msst) / qmass
! qmass is in mass(kg)**2 / length(m)**4
if (step .ne. 1) then
! propagate the time derivative of the volume 1/2 step at fixed V, r, rdot
! it should not be done on the first step of MD.
omega(sd) = omega(sd) + A*dthalf ! this is the current omega
end if
! =======================================================================
! 1st half of Verlet update
! in VASP, the 1st half of Verlet update cannot be performed before
! compute force and stress. So it must be placed here.
! =======================================================================
! propagate the time derivative of the volume 1/2 step at fixed vol, r, rdot
omega(sd) = omega(sd) + A*dthalf ! this is omega(t+dt/2)
! propagate velocities 1/2 step
velocity_after_half_dt = velocity_now + C_force*dthalf
! now, we need to compute the vol and pos for next step:
! propagate the volume 1/2 step
vol1 = vol + omega(sd)*dthalf
! rescale positions and change box size
dilation(sd) = vol1/vol
call remap(latt_cur, sd, x, velocity_after_half_dt, dilation,t_info)
! propagate particle positions 1 time step
x = x + dt * velocity_after_half_dt
! propagate the volume 1/2 step
vol2 = vol1 + omega(sd)*dthalf
! rescale positions and change box size
dilation(sd) = vol2/vol1
call remap(latt_cur, sd, x, velocity_after_half_dt, dilation,t_info)
do ii = 1, 3
dyn%posion(ii, :) = x(ii, :) / latt_cur%a(ii, ii) / Ang
dyn%vel(ii, :) = velocity_after_half_dt(ii, :) / latt_cur%a(ii, ii) / (Ang/fs) * dyn%potim
end do
t_info%posion = dyn%posion
CALL EKINC(EKIN,T_INFO%NIONS,T_INFO%NTYP,T_INFO%ITYP,T_INFO%POMASS,DYN%POTIM,LATT_CUR%A,DYN%VEL)
temperature = 2 * ekin * eV / (kB * t_info%nions * 3 )
! this block for debug. write the information to a file
if (.true.) then
open(unit=114514, position="append", file="msst_info.txt")
write(114514, 100) "step =", step
write(114514, 200) "A =", A
write(114514, 200) "omega =", omega(sd)
write(114514, 300) "dilation =", dilation(sd)
write(114514, 200) "p_msst =", p_msst / (kBar * 10)
write(114514, 300) "vol =", vol / Ang**3
write(114514, 300) "temp =", temperature
write(114514, 400) "+++++++++++++++++++++++++++"
100 format(A10, i8)
200 format(A10, e12.4)
300 format(A10, f12.4)
400 format(A)
close(114514)
end if
end subroutine msst_step
! change the shape of cell, along with ion pos and vel.
subroutine remap(latt_cur, sd, x, v, dilation,t_info)
integer, intent(in):: sd
type(type_info), intent(in) :: t_info
real(q), dimension(3), intent(in) :: dilation
real(q), dimension(3, t_info%nions), intent(in out) :: x, v
type(latt), intent(in out) :: latt_cur
latt_cur%a(sd, sd) = dilation(sd) * latt_cur%a(sd, sd)
x(sd, :) = dilation(sd) * x(sd, :)
v(sd, :) = dilation(sd) * v(sd, :)
end subroutine remap
end module msst

cgeev sovle Non Hermitain matrix is incorrect

Recently I want to reproduce the Fig.1(a) of Edge States and Topological Invariants of Non-Hermitian Systems.I used cgeev to solve eigenvalue of non-Hermitian Hamiltonian matrices,I found the solution become wired.
Here is my Fortran code,the result to Fig1.(a) correspond the abs.dat.
module pub
implicit none
complex,parameter::im = (0.0,1.0)
real,parameter::pi = 3.1415926535
integer xn,N,en,kn
parameter(xn = 100,N = xn*2,en = 100)
complex Ham(N,N)
real t1,t2,t3,gam
!-----------------
integer::lda = N
integer,parameter::lwmax=2*N + N**2
complex,allocatable::w(:) ! store eigenvalues
complex,allocatable::work(:)
real,allocatable::rwork(:)
integer lwork
integer info
integer LDVL, LDVR
parameter(LDVL = N, LDVR = N )
complex VL( LDVL, N ), VR( LDVR, N )
end module pub
!=====================================================
program sol
use pub
! Physics memory allocate
allocate(w(N))
allocate(work(lwmax))
allocate(rwork(2*N))
!-----------------
t2 = 1.0
t3 = 0.0
gam = 3.0/4.0
call band()
end program sol
!======================================================
subroutine band()
use pub
integer m1,i
open(11,file="real.dat")
open(12,file="imag.dat")
open(13,file="abs.dat")
do m1 = -en,en
t1 = 3.0*m1/en
call matset()
call eigsol()
write(11,999)t1,(real(w(i)),i = 1,N)
write(12,999)t1,(aimag(w(i)),i = 1,N)
write(13,999)t1,(abs(w(i)),i = 1,N)
end do
close(11)
close(12)
close(13)
999 format(201f11.6)
end subroutine band
!======================================================
subroutine matset()
use pub
real kx
complex sx(2,2),sy(2,2),sz(2,2)
integer k,m1,m2
sx(1,2) = 1.0
sx(2,1) = 1.0
sy(1,2) = -im
sy(2,1) = im
sz(1,1) = 1.0
sz(2,2) = -1.0
!--------
Ham = 0.0
do k = 0,xn-1
if(k == 0)then
do m1 = 1,2
do m2 = 1,2
ham(m1,m2) = t1*sx(m1,m2) + im*gam/2.0*sy(m1,m2)
ham(m1,m2 + 2) = (t2 + t3)/2.0*sx(m1,m2) - im*(t2 - t3)/2.0*sy(m1,m2)
end do
end do
elseif(k == xn-1)then
do m1 = 1,2
do m2 = 1,2
ham(k*2 + m1,k*2 + m2) = t1*sx(m1,m2) + im*gam/2.0*sy(m1,m2)
ham(k*2 + m1,k*2 + m2 - 2) = (t2 + t3)/2.0*sx(m1,m2) + im*(t2 - t3)/2.0*sy(m1,m2)
end do
end do
else
do m1 = 1,2
do m2 = 1,2
ham(k*2 + m1,k*2 + m2) = t1*sx(m1,m2) + im*gam/2.0*sy(m1,m2)
! right hopping
ham(k*2 + m1,k*2 + m2 + 2) = (t2 + t3)/2.0*sx(m1,m2) - im*(t2 - t3)/2.0*sy(m1,m2)
! left hopping
ham(k*2 + m1,k*2 + m2 - 2) = (t2 + t3)/2.0*sx(m1,m2) + im*(t2 - t3)/2.0*sy(m1,m2)
end do
end do
end if
end do
return
end subroutine matset
!==============================================================================
subroutine eigsol()
use pub
! Query the optimal workspace.
LWORK = -1
CALL cgeev( 'Vectors', 'Vectors', N, Ham, LDA, W, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
! Solve eigenproblem.
CALL cgeev( 'Vectors', 'Vectors', N, Ham, LDA, W, VL, LDVL,VR, LDVR, WORK, LWORK, RWORK, INFO)
! Check for convergence.
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
STOP
END IF
! open(120,file="eigval.dat")
! do m = 1,N
! write(120,*)m,w(m)
! end do
! close(120)
return
end subroutine eigsol
If I used wrong function from Lapack or my code isn't correct.
I use intel fortran,complie command is
*ifort -mkl file.f90 -o a.out
Run program ./a.out&*

Reading data from files using MPI in Fortran

I want to read data from some .dat files to a Fortran code for postprocessing. As a test case, I am just using one processor for MPI and trying to read single data file to my code. The content of the data file is as follows:
qout0050.dat : 1 1 1
However, the matrix (Vn in this case) which is supposed to store the content of this data file shows all 0 values. The relevant part of the code which reads from data file and store to the matrix is as follows:
subroutine postproc()
use precision_mod
use mpicomms_mod
implicit none
integer(kind=MPI_Offset_kind) :: i, j , igrid, k, l, disp, iproc, info, lwork
integer :: rst, numvar, ifile, number, num, step, ntot
integer :: Nx_max, Ny_max, Nz_max
integer :: Nxp, Nzp, Nyp, Ngrid
integer :: Ifirst, Ilast, Jfirst, Jlast, Kfirst, Klast
character*(64) :: fname, buffer, ffname
integer :: tmp, N1, N2, N3, tmpp
real(WP), allocatable :: qout(:,:,:,:), phi_xyz(:,:,:,:,:)
real(WP), allocatable :: Vn(:,:), Vntmp(:,:), TAU(:,:)
real(WP), allocatable :: Rprime(:,:), Rtmp(:,:), Rend(:,:), Q(:,:), tmpL(:), tmpG(:)
real(WP), allocatable :: s(:), vt(:,:), u(:,:), utmp(:,:)
real(WP), allocatable :: tmp1(:,:), tmp2(:,:), tmp3(:,:), phi(:,:)
integer, dimension(2) :: view
integer :: view1
integer, dimension(3) :: lsizes, gsizes, start
real(WP) :: tmpr
real(WP), allocatable :: work(:), mu(:), eigY(:,:), wr(:), wi(:), beta(:)
integer(kind=MPI_Offset_kind) :: SP_MOK, Nx_MOK, Ny_MOK, Nz_MOK, WP_MOK
open(unit=110,file='postparameters.dat',form="formatted")
read (110,*) Nx_max
read (110,*) Ny_max
read (110,*) Nz_max
read (110,*) numvar
read (110,*) step
close(110)
! Define the size of grid on each processor
if (mod(Nx_max,px).ne.0) then
write(*,*) 'Error in preproc: Nx_max is not devisable by px'
call MPI_ABORT(MPI_COMM_WORLD,0,ierr)
end if
Nxp = Nx_max/px
if (mod(Ny_max,py).ne.0) then
write(*,*) 'Error in preproc: Nx_max is not devisable by px'
call MPI_ABORT(MPI_COMM_WORLD,0,ierr)
end if
Nyp = Ny_max/py
if (mod(Nz_max,pz).ne.0) then
write(*,*) 'Error in preproc: Nx_max is not devisable by px'
call MPI_ABORT(MPI_COMM_WORLD,0,ierr)
end if
Nzp = Nz_max/pz
Ifirst = irank*Nxp + 1
Ilast = Ifirst + Nxp - 1
Jfirst = jrank*Nyp + 1
Jlast = Jfirst + Nyp - 1
Kfirst = krank*Nzp + 1
Klast = Kfirst + Nzp - 1
! Setting the view for phi
gsizes(1) = Nx_max
gsizes(2) = Ny_max
gsizes(3) = Nz_max
lsizes(1) = Nxp
lsizes(2) = Nyp
lsizes(3) = Nzp
start(1) = Ifirst - 1
start(2) = Jfirst - 1
start(3) = Kfirst - 1
call MPI_TYPE_CREATE_SUBARRAY(3,gsizes,lsizes,start,&
MPI_ORDER_FORTRAN,MPI_REAL_SP,view,ierr)
call MPI_TYPE_COMMIT(view,ierr)
call MPI_TYPE_CREATE_SUBARRAY(3,gsizes,lsizes,start,&
MPI_ORDER_FORTRAN,MPI_REAL_WP,view1,ierr)
call MPI_TYPE_COMMIT(view1,ierr)
WP_MOK = int(8, MPI_Offset_kind)
Nx_MOK = int(Nx_max, MPI_Offset_kind)
Ny_MOK = int(Ny_max, MPI_Offset_kind)
Nz_MOK = int(Nz_max, MPI_Offset_kind)
! Reading the qout file
ffname = 'qout'
allocate(qout(Nxp,Nyp,Nzp,numvar))
allocate(Vn(Nxp*Nyp*Nzp*numvar,step))
do rst = 1,step
if (myrank == 0) print*, 'Step = ', 50 + rst -1
write(buffer,"(i4.4)") 50 + rst -1
fname = trim(ffname)//trim(buffer)
fname = trim('ufs')//":"// trim(fname)
fname = trim(adjustl(fname))//'.dat'
call MPI_FILE_OPEN(MPI_COMM_WORLD,fname,MPI_MODE_RDONLY,MPI_INFO_NULL,ifile,ierr)
call MPI_FILE_READ(ifile,Ngrid,1,MPI_INTEGER,status,ierr)
if (1 /= Ngrid) then
if (myrank == 0 ) write(*,*) Ngrid
endif
call MPI_FILE_READ(ifile,tmp,1,MPI_INTEGER,status,ierr)
if (tmp /= Nx_max) write(*,*) tmp
call MPI_FILE_READ(ifile,tmp,1,MPI_INTEGER,status,ierr)
if (tmp /= Ny_max) write(*,*) tmp
call MPI_FILE_READ(ifile,tmp,1,MPI_INTEGER,status,ierr)
if (tmp /= Nz_max) write(*,*) tmp
call MPI_FILE_READ(ifile,tmpr,1,MPI_REAL_WP,status,ierr)
call MPI_FILE_READ(ifile,tmpr,1,MPI_REAL_WP,status,ierr)
call MPI_FILE_READ(ifile,tmpr,1,MPI_REAL_WP,status,ierr)
call MPI_FILE_READ(ifile,tmpr,1,MPI_REAL_WP,status,ierr)
do l=1,numvar
disp = 4*4 + 4*WP_MOK + Nx_MOK*Ny_MOK*Nz_MOK*WP_MOK*(l-1)
call MPI_FILE_SET_VIEW(ifile,disp,MPI_REAL_WP,view1,"native",MPI_INFO_NULL,ierr)
call MPI_FILE_READ_ALL(ifile,qout(1:Nxp,1:Nyp,1:Nzp,l),Nxp*Nzp*Nyp, MPI_REAL_WP,status,ierr)
end do
call MPI_FILE_CLOSE(ifile,ierr)
!-----------------------------------------------
! Bluiding the snapshot matrix Vn --------------
!-----------------------------------------------
do i=1,numvar
do k=1,Nzp
do j=1,Nyp
Vn((1 + Nxp*(j-1) + Nxp*Nyp*(k-1) + Nxp*Nyp*Nzp*(i-1)):(Nxp*j + Nxp*Nyp*(k-1) + Nxp*Nyp*Nzp*(i-1)),rst) = qout(1:Nxp,j,k,i)
end do
end do
end do
end do
call MPI_BARRIER(MPI_COMM_WORLD,ierr)
deallocate(qout)

Program received signal SIGSEGV: Segmentation fault - invalid memory reference?

I am doing a multiple integral, there is a parameter M_D which I can modify. Both M_D=2.9d3 or M_D=3.1d3 works fine, but when I change it into M_D=3.0d0 it got an error
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
#0 0x7F831A103E08
#1 0x7F831A102F90
#2 0x7F83198344AF
#3 0x43587C in __mc_vegas_MOD_vegas
#4 0x400EBE in MAIN__ at MAINqq.f90:?
Segmentation fault (core dumped)
It's very unlikely there is a sigularity which out of range while progressing. From the answer to this kind of problem I found, I guess it's not about array dimension that is out of bounds.
This time I didn't make it to simplify the problem which can demonstrate my question in order to write less amount of code . It's unpractical to post all the code here, so I post the segment which I think is relevant to the error.
module my_fxn
implicit none
private
public :: fxn_1
public :: cos_theta
real(kind(0d0)), parameter :: S=1.690d8
real(kind(0d0)), parameter :: g_s = 0.118d0
real(kind(0d0)), parameter :: M_D = 3.0d3 !!!
real(kind(0d0)), parameter :: m=172d0
real(kind(0d0)), parameter :: Q=2d0
real(kind(0d0)), parameter :: pi=3.14159d0
real(kind(0d0)), external :: CT14pdf
real(kind(0d0)) :: cos_theta
real(kind(0d0)) :: s12
integer :: i
contains
function jacobian( upper, lower) result(jfactor)
implicit none
real(kind(0d0)), dimension(1:6) :: upper, lower
real(kind(0d0)) :: jfactor
jfactor = 1d0
do i = 1, 6
jfactor = jfactor * (upper(i) - lower(i))
end do
end function jacobian
function dot_vec(p,q) result(fourvectordot)
implicit none
real(kind(0d0)) :: fourvectordot
real(kind(0d0)), dimension(0:3) :: p,q
fourvectordot = p(0) * q(0)
do i = 1, 3
fourvectordot = fourvectordot - p(i) * q(i)
end do
end function dot_vec
subroutine commonpart(p3_0, p4_0, eta, k_v,P3_v, p4_v, s13, s14, s23, s24)
implicit none
real(kind(0d0)), intent(in) :: p3_0, p4_0, eta, k_v, p3_v, p4_v
real(kind(0d0)), intent(out):: s13, s14, s23, s24
real(kind(0d0)) :: sin_theta, &
cos_eta, sin_eta, &
cos_ksi, sin_ksi
real(kind(0d0)), dimension(0:3) :: k1, k2, p3, p4, k
sin_theta = sqrt(1-cos_theta**2)
cos_eta = cos(eta)
sin_eta = sqrt(1-cos_eta**2)
cos_ksi = (k_v**2-p3_v**2-p4_v**2)/(2*p3_v*p4_v)
sin_ksi = sqrt(1-cos_ksi**2)
k1 = [sqrt(s12)/2d0,0d0,0d0, sqrt(s12)/2d0]
k2 = [sqrt(s12)/2d0,0d0,0d0, -sqrt(s12)/2d0]
p3 = [p3_0, p3_v*(cos_theta*cos_eta*sin_ksi+sin_theta*cos_ksi), &
p3_v* sin_eta*sin_ksi, p3_v*( cos_theta*cos_ksi-sin_theta*cos_eta*sin_ksi)]
p4 = [p4_0, p4_v*sin_theta, 0d0, p4_v*cos_theta]
do i = 1, 3
k(i) = 0 - p3(i) - p4(i)
end do
k(0) = sqrt(s12) - p3_0-p4_0
s13 = m**2- 2*dot_vec(k1,p3)
s14 = m**2- 2*dot_vec(k1,p4)
s23 = m**2- 2*dot_vec(k2,p3)
s24 = m**2- 2*dot_vec(k2,p3)
end subroutine commonpart
function fxn_1(z, wgt) result(fxn_qq)
implicit none
real(kind(0d0)), dimension(1:6) :: z
real(kind(0d0)) :: wgt
real(kind(0d0)) :: tau_0
real(kind(0d0)) :: sigma, tau, m_plus, m_minus, & ! intermediate var
p3_v, p4_v, k_v, phi
real(kind(0d0)) :: s13,s14,s23, s24, gm
real(kind(0d0)) :: part1_qq,part_qq,fxn_qq
real(kind(0d0)) :: p3_0_max, p4_0_max, eta_max, gm_max, x1_max, x2_max, &
p3_0_min, p4_0_min, eta_min, gm_min, x1_min, x2_min
real(kind(0d0)), dimension(1:6) :: upper, lower
real(kind(0d0)) :: jfactor
wgt = 0
gm_max = M_D
gm_min = 0.1d0
z(1)= (gm_max-gm_min)*z(1) + gm_min
tau_0 = (2*m)**2/S
eta_max = 2*pi
eta_min = 0
z(2) = (eta_max-eta_min)*z(2)+eta_min
x1_max = 1
x1_min = tau_0
z(3) = (x1_max-x1_min)*z(3) + x1_min
x2_max = 1
x2_min = tau_0/z(3)
z(4) = (x2_max-x2_min)*z(4)+x2_min
s12 = z(3)*z(4) * S
if (sqrt(s12) < (2*m+z(1)))then
fxn_qq = 0d0
return
else
end if
p4_0_max = sqrt(s12)/2 - ((m+z(1))**2-m**2)/(2*sqrt(s12))
p4_0_min = m
z(5) = (p4_0_max-p4_0_min)*z(5)+p4_0_min
p4_v = sqrt(z(5)**2-m**2)
sigma = sqrt(s12)-z(5)
tau = sigma**2 - p4_v**2
m_plus = m + z(1)
m_minus = m - z(1)
p3_0_max = 1/(2*tau)*(sigma*(tau+m_plus*m_minus)+p4_v*sqrt((tau-m_plus**2)*(tau-m_minus**2)))
p3_0_min = 1/(2*tau)*(sigma*(tau+m_plus*m_minus)-p4_v-sqrt((tau-m_plus**2)*(tau-m_minus**2)))
z(6) = (p3_0_max-p3_0_min)*z(6)+p3_0_min
p3_v = sqrt(z(6)**2-m**2)
k_v = sqrt((sqrt(s12)-z(5)-z(6))**2-z(1)**2)
gm = z(1)
upper = [gm_max, eta_max, x1_max, x2_max, p4_0_max, p3_0_max]
lower = [gm_min, eta_min, x1_min, x2_min, p4_0_min, p3_0_min]
jfactor = jacobian(upper, lower)
call commonpart(z(6),z(5),z(2), k_v,p3_v, p4_v, s13, s14, s23, s24)
include "juicy.m"
part1_qq = 0d0
do i = 1, 5
part1_qq = part1_qq+CT14Pdf(i, z(3), Q)*CT14Pdf(-i, z(4), Q)*part_qq
end do
phi = 1/(8*(2*pi)**4) * 1/(2*s12)
fxn_qq = jfactor * g_s**4/M_D**5*pi*z(1)**2*phi*part1_qq
end function fxn_1
end module my_fxn
MC_VEGAS
MODULE MC_VEGAS
!*****************************************************************
! This module is a modification f95 version of VEGA_ALPHA.for
! by G.P. LEPAGE SEPT 1976/(REV)AUG 1979.
!*****************************************************************
IMPLICIT NONE
SAVE
INTEGER,PARAMETER :: MAX_SIZE=20 ! The max dimensions of the integrals
INTEGER,PRIVATE :: i_vegas
REAL(KIND(1d0)),DIMENSION(MAX_SIZE),PUBLIC:: XL=(/(0d0,i_vegas=1,MAX_SIZE)/),&
XU=(/(1d0,i_vegas=1,MAX_SIZE)/)
INTEGER,PUBLIC :: NCALL=50000,& ! The number of integrand evaluations per iteration
!+++++++++++++++++++++++++++++++++++++++++++++++++++++
! You can change NCALL to change the precision
!+++++++++++++++++++++++++++++++++++++++++++++++++++++
ITMX=5,& ! The maximum number of iterations
NPRN=5,& ! printed or not
NDEV=6,& ! device number for output
IT=0,& ! number of iterations completed
NDO=1,& ! number of subdivisions on an axis
NDMX=50,& ! determines the maximum number of increments along each axis
MDS=1 ! =0 use importance sampling only
! =\0 use importance sampling and stratified sampling
! increments are concentrated either wehre the
! integrand is largest in magnitude (MDS=1), or
! where the contribution to the error is largest(MDS=-1)
INTEGER,PUBLIC :: IINIP
REAL(KIND(1d0)),PUBLIC :: ACC=-1d0 ! Algorithm stops when the relative accuracy,
! |SD/AVGI|, is less than ACC; accuracy is not
! cheched when ACC<0
REAL(KIND(1d0)),PUBLIC :: MC_SI=0d0,& ! sum(AVGI_i/SD_i^2,i=1,IT)
SWGT=0d0,& ! sum(1/SD_i^2,i=1,IT)
SCHI=0d0,& ! sum(AVGI_i^2/SD_i^2,i=1,IT)
ALPH=1.5d0 ! controls the rate which the grid is modified from
! iteration to iteration; decreasing ALPH slows
! modification of the grid
! (ALPH=0 implies no modification)
REAL(KIND(1d0)),PUBLIC :: DSEED=1234567d0 ! seed of
! location of the I-th division on the J-th axi, normalized to lie between 0 and 1.
REAL(KIND(1d0)),DIMENSION(50,MAX_SIZE),PUBLIC::XI=1d0
REAL(KIND(1d0)),PUBLIC :: CALLS,TI,TSI
CONTAINS
SUBROUTINE RANDA(NR,R)
IMPLICIT NONE
INTEGER,INTENT(IN) :: NR
REAL(KIND(1d0)),DIMENSION(NR),INTENT(OUT) :: R
INTEGER :: I
! D2P31M=(2**31) - 1 D2P31 =(2**31)(OR AN ADJUSTED VALUE)
REAL(KIND(1d0))::D2P31M=2147483647.d0,D2P31=2147483711.d0
!FIRST EXECUTABLE STATEMENT
DO I=1,NR
DSEED = DMOD(16807.d0*DSEED,D2P31M)
R(I) = DSEED / D2P31
ENDDO
END SUBROUTINE RANDA
SUBROUTINE VEGAS(NDIM,FXN,AVGI,SD,CHI2A,INIT)
!***************************************************************
! SUBROUTINE PERFORMS NDIM-DIMENSIONAL MONTE CARLO INTEG'N
! - BY G.P. LEPAGE SEPT 1976/(REV)AUG 1979
! - ALGORITHM DESCRIBED IN J COMP PHYS 27,192(1978)
!***************************************************************
! Without INIT or INIT=0, CALL VEGAS
! INIT=1 CALL VEGAS1
! INIT=2 CALL VEGAS2
! INIT=3 CALL VEGAS3
!***************************************************************
IMPLICIT NONE
INTEGER,INTENT(IN) :: NDIM
REAL(KIND(1d0)),EXTERNAL :: FXN
INTEGER,INTENT(IN),OPTIONAL :: INIT
REAL(KIND(1d0)),INTENT(INOUT) :: AVGI,SD,CHI2A
REAL(KIND(1d0)),DIMENSION(50,MAX_SIZE):: D,DI
REAL(KIND(1d0)),DIMENSION(50) :: XIN,R
REAL(KIND(1d0)),DIMENSION(MAX_SIZE) :: DX,X,DT,RAND
INTEGER,DIMENSION(MAX_SIZE) :: IA,KG
INTEGER :: initflag
REAL(KIND(1d0)),PARAMETER :: ONE=1.d0
INTEGER :: I, J, K, NPG, NG, ND, NDM, LABEL = 0
REAL(KIND(1d0)) :: DXG, DV2G, XND, XJAC, RC, XN, DR, XO, TI2, WGT, FB, F2B, F, F2
!***************************
!SAVE AVGI,SD,CHI2A
!SQRT(A)=DSQRT(A)
!ALOG(A)=DLOG(A)
!ABS(A)=DABS(A)
!***************************
IF(PRESENT(INIT))THEN
initflag=INIT
ELSE
initflag=0
ENDIF
! INIT=0 - INITIALIZES CUMULATIVE VARIABLES AND GRID
ini0:IF(initflag.LT.1) THEN
NDO=1
DO J=1,NDIM
XI(1,J)=ONE
ENDDO
ENDIF ini0
! INIT=1 - INITIALIZES CUMULATIVE VARIABLES, BUT NOT GRID
ini1:IF(initflag.LT.2) THEN
IT=0
MC_SI=0.d0
SWGT=MC_SI
SCHI=MC_SI
ENDIF ini1
! INIT=2 - NO INITIALIZATION
ini2:IF(initflag.LE.2)THEN
ND=NDMX
NG=1
IF(MDS.NE.0) THEN
NG=(NCALL/2.d0)**(1.d0/NDIM)
MDS=1
IF((2*NG-NDMX).GE.0) THEN
MDS=-1
NPG=NG/NDMX+1
ND=NG/NPG
NG=NPG*ND
ENDIF
ENDIF
K=NG**NDIM ! K sub volumes
NPG=NCALL/K ! The number of random numbers in per sub volumes Ms
IF(NPG.LT.2) NPG=2
CALLS=DBLE(NPG*K) ! The total number of random numbers M
DXG=ONE/NG
DV2G=(CALLS*DXG**NDIM)**2/NPG/NPG/(NPG-ONE) ! 1/(Ms-1)
XND=ND ! ~NDMX!
! determines the number of increments along each axis
NDM=ND-1 ! ~NDMX-1
DXG=DXG*XND ! determines the number of increments along each axis per sub-v
XJAC=ONE/CALLS
DO J=1,NDIM
DX(J)=XU(J)-XL(J)
XJAC=XJAC*DX(J) ! XJAC=Volume/M
ENDDO
! REBIN, PRESERVING BIN DENSITY
IF(ND.NE.NDO) THEN
RC=NDO/XND ! XND=ND
outer:DO J=1, NDIM ! Set the new division
K=0
XN=0.d0
DR=XN
I=K
LABEL=0
inner5:DO
IF(LABEL.EQ.0) THEN
inner4:DO
K=K+1
DR=DR+ONE
XO=XN
XN=XI(K,J)
IF(RC.LE.DR) EXIT
ENDDO inner4
ENDIF
I=I+1
DR=DR-RC
XIN(I)=XN-(XN-XO)*DR
IF(I.GE.NDM) THEN
EXIT
ELSEIF(RC.LE.DR) THEN
LABEL=1
ELSE
LABEL=0
ENDIF
ENDDO inner5
inner:DO I=1,NDM
XI(I,J)=XIN(I)
ENDDO inner
XI(ND,J)=ONE
ENDDO outer
NDO=ND
ENDIF
IF(NPRN.GE.0) WRITE(NDEV,200) NDIM,CALLS,IT,ITMX,ACC,NPRN,&
ALPH,MDS,ND,(XL(J),XU(J),J=1,NDIM)
ENDIF ini2
!ENTRY VEGAS3(NDIM,FXN,AVGI,SD,CHI2A) INIT=3 - MAIN INTEGRATION LOOP
mainloop:DO
IT=IT+1
TI=0.d0
TSI=TI
DO J=1,NDIM
KG(J)=1
DO I=1,ND
D(I,J)=TI
DI(I,J)=TI
ENDDO
ENDDO
LABEL=0
level1:DO
level2:DO
ifla:IF(LABEL.EQ.0)THEN
FB=0.d0
F2B=FB
level3:DO K=1,NPG
CALL RANDA(NDIM,RAND)
WGT=XJAC
DO J=1,NDIM
XN=(KG(J)-RAND(J))*DXG+ONE
IA(J)=XN
IF(IA(J).LE.1) THEN
XO=XI(IA(J),J)
RC=(XN-IA(J))*XO
ELSE
XO=XI(IA(J),J)-XI(IA(J)-1,J)
RC=XI(IA(J)-1,J)+(XN-IA(J))*XO
ENDIF
X(J)=XL(J)+RC*DX(J)
WGT=WGT*XO*XND
ENDDO
F=WGT
F=F*FXN(X,WGT)
F2=F*F
FB=FB+F
F2B=F2B+F2
DO J=1,NDIM
DI(IA(J),J)=DI(IA(J),J)+F
IF(MDS.GE.0) D(IA(J),J)=D(IA(J),J)+F2
ENDDO
ENDDO level3
! K=K-1 !K=NPG
F2B=DSQRT(F2B*DBLE(NPG))
F2B=(F2B-FB)*(F2B+FB)
TI=TI+FB
TSI=TSI+F2B
IF(MDS.LT.0) THEN
DO J=1,NDIM
D(IA(J),J)=D(IA(J),J)+F2B
ENDDO
ENDIF
K=NDIM
ENDIF ifla
KG(K)=MOD(KG(K),NG)+1
IF(KG(K).EQ.1) THEN
EXIT
ELSE
LABEL=0
ENDIF
ENDDO level2
K=K-1
IF(K.GT.0) THEN
LABEL=1
ELSE
EXIT
ENDIF
ENDDO level1
! COMPUTE FINAL RESULTS FOR THIS ITERATION
TSI=TSI*DV2G
TI2=TI*TI
WGT=ONE/TSI
MC_SI=MC_SI+TI*WGT
SWGT=SWGT+WGT
SCHI=SCHI+TI2*WGT
AVGI=MC_SI/SWGT
CHI2A=(SCHI-MC_SI*AVGI)/(IT-0.9999d0)
SD=DSQRT(ONE/SWGT)
IF(NPRN.GE.0) THEN
TSI=DSQRT(TSI)
WRITE(NDEV,201) IT,TI,TSI,AVGI,SD,CHI2A
ENDIF
IF(NPRN.GT.0) THEN
DO J=1,NDIM
WRITE(NDEV,202) J,(XI(I,J),DI(I,J),I=1+NPRN/2,ND,NPRN)
ENDDO
ENDIF
!*************************************************************************************
! REFINE GRID
! XI(k,j)=XI(k,j)-(XI(k,j)-XI(k-1,j))*(sum(R(i),i=1,k)-s*sum(R(i),i=1,ND)/M)/R(k)
! divides the original k-th interval into s parts
!*************************************************************************************
outer2:DO J=1,NDIM
XO=D(1,J)
XN=D(2,J)
D(1,J)=(XO+XN)/2.d0
DT(J)=D(1,J)
inner2:DO I=2,NDM
D(I,J)=XO+XN
XO=XN
XN=D(I+1,J)
D(I,J)=(D(I,J)+XN)/3.d0
DT(J)=DT(J)+D(I,J)
ENDDO inner2
D(ND,J)=(XN+XO)/2.d0
DT(J)=DT(J)+D(ND,J)
ENDDO outer2
le1:DO J=1,NDIM
RC=0.d0
DO I=1,ND
R(I)=0.d0
IF(D(I,J).GT.0.) THEN
XO=DT(J)/D(I,J)
R(I)=((XO-ONE)/XO/DLOG(XO))**ALPH
ENDIF
RC=RC+R(I)
ENDDO
RC=RC/XND
K=0
XN=0.d0
DR=XN
I=K
LABEL=0
le2:DO
le3:DO
IF(LABEL.EQ.0)THEN
K=K+1
DR=DR+R(K)
XO=XN
XN=XI(K,J)
ENDIF
IF(RC.LE.DR) THEN
EXIT
ELSE
LABEL=0
ENDIF
ENDDO le3
I=I+1
DR=DR-RC
XIN(I)=XN-(XN-XO)*DR/R(K)
IF(I.GE.NDM) THEN
EXIT
ELSE
LABEL=1
ENDIF
ENDDO le2
DO I=1,NDM
XI(I,J)=XIN(I)
ENDDO
XI(ND,J)=ONE
ENDDO le1
IF(IT.GE.ITMX.OR.ACC*ABS(AVGI).GE.SD) EXIT
ENDDO mainloop
200 FORMAT(/," INPUT PARAMETERS FOR MC_VEGAS: ",/," NDIM=",I3," NCALL=",F8.0,&
" IT=",I3,/," ITMX=",I3," ACC= ",G9.3,&
" NPRN=",I3,/," ALPH=",F5.2," MDS=",I3," ND=",I4,/,&
"(XL,XU)=",(T10,"(" G12.6,",",G12.6 ")"))
201 FORMAT(/," INTEGRATION BY MC_VEGAS ", " ITERATION NO. ",I3, /,&
" INTEGRAL = ",G14.8, /," SQURE DEV = ",G10.4,/,&
" ACCUMULATED RESULTS: INTEGRAL = ",G14.8,/,&
" DEV = ",G10.4, /," CHI**2 PER IT'N = ",G10.4)
! X is the division of the coordinate
! DELTA I is the sum of F in this interval
202 FORMAT(/,"DATA FOR AXIS ",I2,/," X DELTA I ", &
24H X DELTA I ,18H X DELTA I, &
/(1H ,F7.6,1X,G11.4,5X,F7.6,1X,G11.4,5X,F7.6,1X,G11.4))
END SUBROUTINE VEGAS
END MODULE MC_VEGAS
Main.f90
program main
use my_fxn
use MC_VEGAS
implicit none
integer, parameter :: NDIM = 6
real(kind(0d0)) :: avgi, sd, chi2a
Character(len=40) :: Tablefile
data Tablefile/'CT14LL.pds'/
Call SetCT14(Tablefile)
call vegas(NDIM,fxn_1,avgi,sd,chi2a)
print *, avgi
end program main
After running build.sh
#!/bin/sh
rm -rf *.mod
rm -rf *.o
rm -rf ./calc
rm DATAqq.txt
gfortran -c CT14Pdf.for
gfortran -c FXNqq.f90
gfortran -c MC_VEGAS.f90
gfortran -c MAINqq.f90
gfortran -g -fbacktrace -fcheck=all -Wall -o calc MAINqq.o CT14Pdf.o FXNqq.o MC_VEGAS.o
./calc
rm -rf *.mod
rm -rf *.o
rm -rf ./calc
The whole output has not changed
rm: cannot remove 'DATAqq.txt': No such file or directory
INPUT PARAMETERS FOR MC_VEGAS:
NDIM= 6 NCALL= 46875. IT= 0
ITMX= 5 ACC= -1.00 NPRN= 5
ALPH= 1.50 MDS= 1 ND= 50
(XL,XU)= ( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
INTEGRATION BY MC_VEGAS ITERATION NO. 1
INTEGRAL = NaN
SQURE DEV = NaN
ACCUMULATED RESULTS: INTEGRAL = NaN
DEV = NaN
CHI**2 PER IT'N = NaN
DATA FOR AXIS 1
X DELTA I X DELTA I X DELTA I
.060000 0.2431E-14 .160000 0.5475E-15 .260000 0.8216E-14
.360000 0.3641E-14 .460000 0.6229E-12 .560000 0.6692E-13
.660000 0.9681E-15 .760000 0.9121E-15 .860000 0.2753E-13
.960000 -0.9269E-16
DATA FOR AXIS 2
X DELTA I X DELTA I X DELTA I
.060000 0.1658E-13 .160000 0.5011E-14 .260000 0.8006E-12
.360000 0.1135E-14 .460000 0.9218E-13 .560000 0.7337E-15
.660000 0.6192E-12 .760000 0.3676E-14 .860000 0.2315E-14
.960000 0.5426E-13
DATA FOR AXIS 3
X DELTA I X DELTA I X DELTA I
.060000 0.3197E-14 .160000 0.1096E-12 .260000 0.5996E-14
.360000 0.5695E-13 .460000 0.3240E-14 .560000 0.5504E-13
.660000 0.9276E-15 .760000 0.6193E-12 .860000 0.1151E-13
.960000 0.7968E-17
DATA FOR AXIS 4
X DELTA I X DELTA I X DELTA I
.060000 0.3605E-13 .160000 0.1656E-14 .260000 0.7266E-12
.360000 0.2149E-13 .460000 0.8086E-13 .560000 0.9119E-14
.660000 0.3692E-15 .760000 0.6499E-15 .860000 0.1906E-17
.960000 0.1542E-19
DATA FOR AXIS 5
X DELTA I X DELTA I X DELTA I
.060000 -0.4229E-15 .160000 -0.4056E-14 .260000 -0.1121E-14
.360000 0.6757E-15 .460000 0.7460E-14 .560000 0.9331E-15
.660000 0.8301E-14 .760000 0.6595E-14 .860000 -0.5203E-11
.960000 0.6361E-12
DATA FOR AXIS 6
X DELTA I X DELTA I X DELTA I
.060000 0.2111E-12 .160000 0.5410E-13 .260000 0.1418E-12
.360000 0.1103E-13 .460000 0.8338E-14 .560000 -0.5840E-14
.660000 0.1263E-14 .760000 -0.1501E-15 .860000 0.4647E-14
.960000 0.3134E-15
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
#0 0x7F9D828B0E08
#1 0x7F9D828AFF90
#2 0x7F9D81FE24AF
#3 0x43586C in __mc_vegas_MOD_vegas
#4 0x400EAE in MAIN__ at MAINqq.f90:?
Segmentation fault (core dumped)

Error: Unclassifiable statement in if conditional

This is the program I wrote to calculate the distance between carbon and hydrogen atom coordinates as a practice. But some errors occurred and I don't know how to fix them.
program C_H_bdlength
implicit none
integer :: ia ! integer atoms number
integer :: na ! number of atoms
real*8 :: x , y , z ! x y z coordinates of all atoms
real*8 :: x1 , y1 , z1 ! x y z coordinates of C atoms
real*8 :: x2 , y2 , z2 ! x y z coordinates of H atoms
character(len=2) :: ele ! element name
real*8 :: dis ! distance between C and H
open(100,file='cnt.ini',action='read',status='old')
na = 0
do
read(100,*,end=101)
na = na + 1
end do
101 continue
open(200, file='cnt.ini',action='wtire',status='replace')
rewind(100)
write(200,*)
do ia = 1 , na
read(100,*) ele, x, y, z
if ele == 'C' then x1 = x, y1 = y, z1 = z
do ia = ia , na
read(100,*) ele, x, y, z
if ele == 'H' then x2 = x, y2 = y, z2 = z
dis = sqrt((x1 - x2)**2 + (y1 - y2)**2 + (z1 - z2)**2)
write(200,*) dis
end if
end do
end if
end do
end program C_H_bdlength
Errors:
In file C_H_bdlength.f90:26
if ele == 'C' then x1 = x, y1 = y, z1 = z
1
Error: Unclassifiable statement at (1)
In file C_H_bdlength.f90:27
do ia = ia , na
1
In file C_H_bdlength.f90:24
do ia = 1 , na
2
Error: Variable 'ia' at (1) cannot be redefined inside loop beginning at (2)
In file C_H_bdlength.f90:29
if ele == 'H' then x2 = x, y2 = y, z2 = z
1
Error: Unclassifiable statement at (1)
In file C_H_bdlength.f90:33
end if
1
Error: Expecting END DO statement at (1)
In file C_H_bdlength.f90:35
end if
1
Error: Expecting END DO statement at (1)
You have a nested loop, and are using the same variable (ia) to control both the inner and outer loop. Use a variable with a different name in the inner loop.
The if <condition> then construct cannot have additional operations following the then on the same line.
In addition to #Peter's answer, another (not syntactic) problem is that your DO loops do not take into account all the C-H pairs. For example, if "cnt.ini" contains the following data
O 1.0 1.0 1.0
H 8.0 1.0 6.0 # ia=2
C 2.0 3.0 1.0 # ia=3
N 3.0 3.0 3.0
H 4.0 1.0 6.0 # ia=5
O 5.0 5.0 5.0
C 1.0 7.0 8.0 # ia=7
it only takes into account ia = 3 and 5 pair. Further, because you are writing output data onto the input file (cnt.ini) while reading the input from the latter, data transfer may be broken. So I suggest first reading in the input data into arrays, calculate C-H distances, and then write the result onto a different file. For example, the code may look like this.
integer :: ia, ja, na
real*8 :: dist
real*8, allocatable :: pos(:,:)
character(len=2), allocatable :: ele(:)
open(100,file='cnt.ini',status='old')
!! First, determine the number of atoms in the file.
na = 0
do
read( 100, *, end=101 )
na = na + 1
end do
101 continue
!! Then, allocate necessary arrays for atomic positions and element names.
allocate( pos( 3, na ), ele( na ) )
!! Now read the actual data in the file.
rewind( 100 )
do ia = 1, na
read( 100, * ) ele( ia ), pos( 1:3, ia )
! Alternative way using implied DO-loop.
! read( 100, * ) ele( ia ), ( pos( k, ia ), k = 1, 3 )
enddo
close( 100 )
!! Now calculate C-H distances.
open(200, file='dist.dat')
!! Loop over unique atom pairs.
do ia = 1 , na - 1
do ja = ia + 1, na
if ( ( ele(ia) == 'C' .and. ele(ja) == 'H' ) .or. &
( ele(ia) == 'H' .and. ele(ja) == 'C' ) ) then
dist = norm2( pos( :, ia ) - pos( :, ja ) )
! dist = sqrt( sum( (pos(:,ia) - pos(:,ja))**2 ) ) !! if norm2() not available
write(200,*) ia, ja, dist
endif
enddo
enddo