Can a geometry shader access OpenGL culling and front face settings? - opengl

Is it possible for a OpenGL geometry shader to access the current settings for glFrontFace and glCullFace, and whether face culling is enabled? I have a geometry shader that renders normals for vertexes of triangles, and would like to render them only for triangles that will not be culled. What I would like to have is global variables, similar to built-in uniform variables, that tell whether glFrontFace was given GL_CCW or CL_CW, and whether glCullFace is set to GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK, and whether face culling is enabled.
A workaround is for my C++ program to set the values as uniform variables in the shader program, but it would be more general, and make the shader program more easily usable, if it could query the status of culling, glFrontFace and glCullFace settings from OpenGL.
Please note, I do not want the gl_FrontFacing variable that is available to the fragment shader. Instead, the geometry shader needs to be able to access the values to know whether to generate a line representing a normal at the vertices of the triangle.

No, these are all the inputs you have in geometry shaders: https://www.khronos.org/opengl/wiki/Geometry_Shader#Inputs
You will have to use use a uniform.

Think of functions that change OpenGL server's states as interfaces to their internal implementation's uniforms used by fixed pipeline shaders. As you implement your own pipeline, you have to implement your own uniforms. One of ways to switch from fixed pipeline to flexible one within preexisting code is to implement your own emulation of OpenGl functions, although it would not be very effective one.

Related

Why do we need vertex shader in OpenGL?

As far as I understand, the color of a pixel is determined by the fragment shader. Why do we need a vertex shader then? Is there anything a fragment shader cannot do (or cannot easily do) but a vertex shader can do (easily)?
But I still can't quite understand why it is named a "shader".
Because that's what programs executed as part of the rendering process are called. The Renderman interface specification was one of the first programmable rendering processes, and they called all of their programmable elements "shaders", even though they didn't all compute colors.
And therefore, "shader" has become the term used for describing any such program.
Vertex shaders convert vertex data, creating a 1:1 mapping from input vertices to output vertices. Fragment shaders operate on fragments. An FS invocation has no control over where it will be executed. They are generated in the location that the rasterizer says they go, and the FS has no way to affect this.
By contrast, a vertex shader has complete control over where the vertices will go.

OpenGL: Fragment vs Vertex shader for gradients?

I'm new to OpenGL, and I'm trying to understand vertex and fragment shaders. It seems you can use a vertex shader to make a gradient if you define the color you want each of the vertices to be, but it seems you can also make gradients using a fragment shader if you use the FragCoord variable, for example.
My question is, since you seem to be able to make color gradients using both kinds of shaders, which one is better to use? I'm guessing vertex shaders are faster or something since everyone seems to use them, but I just want to make sure.
... since everyone seems to use them
Using vertex and fragment shaders are mandatory in modern OpenGL for rendering absolutely everything.† So everyone uses both. It's the vertex shader responsibility to compute the color at the vertices, OpenGL's to interpolate it between them, and fragment shader's to write the interpolated value to the output color attachment.
† OK, you can also use a compute shader with imageStore, but I'm talking about the rasterization pipeline here.

Understanding the shader workflow in OpenGL?

I'm having a little bit of trouble conceptualizing the workflow used in a shader-based OpenGL program. While I've never really done any major projects using either the fixed-function or shader-based pipelines, I've started learning and experimenting, and it's become quite clear to me that shaders are the way to go.
However, the fixed-function pipeline makes much more sense to me from an intuitive perspective. Rendering a scene with that method is simple and procedural—like painting a picture. If I want to draw a box, I tell the graphics card to draw a box. If I want a lot of boxes, I draw my box in a loop. The fixed-function pipeline fits well with my established programming tendencies.
These all seem to go out the window with shaders, and this is where I'm hitting a block. A lot of shader-based tutorials show how to, for example, draw a triangle or a cube on the screen, which works fine. However, they don't seem to go into at all how I would apply these concepts in, for example, a game. If I wanted to draw three procedurally generated triangles, would I need three shaders? Obviously not, since that would be infeasible. Still, it's clearly not as simple as just sticking the drawing code in a loop that runs three times.
Therefore, I'm wondering what the "best practices" are for using shaders in game development environments. How many shaders should I have for a simple game? How do I switch between them and use them to render a real scene?
I'm not looking for specifics, just a general understanding. For example, if I had a shader that rendered a circle, how would I reuse that shader to draw different sized circles at different points on the screen? If I want each circle to be a different color, how can I pass some information to the fragment shader for each individual circle?
There is really no conceptual difference between the fixed-function pipeline and the programmable pipeline. The only thing shaders introduce is the ability to program certain stages of the pipeline.
On current hardware you have (for the most part) control over the vertex, primitive assembly, tessellation and fragment stages. Some operations that occur inbetween and after these stages are still fixed-function, such as depth/stencil testing, blending, perspective divide, etc.
Because shaders are actually nothing more than programs that you drop-in to define the input and output of a particular stage, you should think of input to a fragment shader as coming from the output of one of the previous stages. Vertex outputs are interpolated during rasterization and these are often what you're dealing with when you have an in variable in a fragment shader.
You can also have program-wide variables, known as uniforms. These variables can be accessed by any stage simply by using the same name in each stage. They do not vary across invocations of a shader, hence the name uniform.
Now you should have enough information to figure out this circle example... you can use a uniform to scale your circle (likely a simple scaling matrix) and you can either rely on per-vertex color or a uniform that defines the color.
You don't have shaders that draws circles (ok, you may with the right tricks, but's let's forget it for now, because it is misleading and has very rare and specific uses). Shaders are little programs you write to take care of certain stages of the graphic pipeline, and are more specific than "drawing a circle".
Generally speaking, every time you make a draw call, you have to tell openGL which shaders to use ( with a call to glUseProgram You have to use at least a Vertex Shader and a Fragment Shader. The resulting pipeline will be something like
Vertex Shader: the code that is going to be executed for each of the vertices you are going to send to openGL. It will be executed for each indices you sent in the element array, and it will use as input data the correspnding vertex attributes, such as the vertex position, its normal, its uv coordinates, maybe its tangent (if you are doing normal mapping), or whatever you are sending to it. Generally you want to do your geometric calculations here. You can also access uniform variables you set up for your draw call, which are global variables whic are not goin to change per vertex. A typical uniform variable you might watn to use in a vertex shader is the PVM matrix. If you don't use tessellation, the vertex shader will be writing gl_Position, the position which the rasterizer is going to use to create fragments. You can also have the vertex outputs different things (as the uv coordinates, and the normals after you have dealt with thieri geometry), give them to the rasterizer an use them later.
Rasterization
Fragment Shader: the code that is going to be executed for each fragment (for each pixel if that is more clear). Generally you do here texture sampling and light calculation. You will use the data coming from the vertex shader and the rasterizer, such as the normals (to evaluate diffuse and specular terms) and the uv coordinates (to fetch the right colors form the textures). The texture are going to be uniform, and probably also the parameters of the lights you are evaluating.
Depth Test, Stencil Test. (which you can move before the fragment shader with the early fragments optimization ( http://www.opengl.org/wiki/Early_Fragment_Test )
Blending.
I suggest you to look at this nice program to develop simple shaders http://sourceforge.net/projects/quickshader/ , which has very good examples, also of some more advanced things you won't find on every tutorial.

Drawing geometry in opengl

Taking the standard opengl 4.0+ functions & specifications into consideration; i've seen that geometries and shapes can be created in either two ways:
making use of VAO & VBO s.
using shader programs.
which one is the standard way of creating shapes?? are they consistent with each other? or they are two different ways for creating geometry and shapes?
Geometry is loaded into the GPU with VAO & VBO.
Geometry shaders produce new geometry based on uploaded. Use them to make special effects like particles, shadows(Shadow Volumes) in more efficient way.
tessellation shaders serve to subdivide geometry for some effects like displacement mapping.
I strongly (like really strongly) recommend you reading this http://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
VAOs and VBOs how about what geometry to draw (specifying per-vertex data). Shader programs are about how to draw them (which program gets applied to each provided vertex, each fragment and so on).
Let's lay out the full facts.
Shaders need input. Without input that changes, every shader invocation will produce exactly the same values. That's how shaders work. When you issue a draw call, a number of shader invocations are launched. The only variables that will change from invocation to invocation within this draw call are in variables. So unless you use some sort of input, every shader will produce the same outputs.
However, that doesn't mean you absolutely need a VAO that actually contains things. It is perfectly legal (though there are some drivers that don't support it) to render with a VAO that doesn't have any attributes enabled (though you have to use array rendering, not indexed rendering). In which case, all user-defined inputs to the vertex shader (if any) will be filled in with context state, which will be constant.
The vertex shader does have some other, built-in per-vertex inputs generated by the system. Namely gl_VertexID. This is the index used by OpenGL to uniquely identify this particular vertex. It will be different for every vertex.
So you could, for example, fetch geometry data yourself based on this index through uniform buffers, buffer textures, or some other mechanism. Or you can procedurally generate vertex data based on the index. Or something else. You could pass that data along to tessellation shaders for them to tessellate the generated data. Or to geometry shaders to do whatever it is you want with those. However you want to turn that index into real data is up to you.
Here's an example from my tutorial series that generates vertex data from nothing more than an index.
i've seen that geometries and shapes can be created in either two ways:
Not either. In modern OpenGL-4 you need both data and programs.
VBOs and VAOs do contain the raw geometry data. Shaders are the programs (usually executed on the GPU) that turn the raw data into pixels on the screen.
Vertex shaders can be used to displace vertices, or to generate them from a builtin formula and the vertex index, which is available as a built in attribute in later open gl versions.
The difference between vertex and geometry shaders is that vertex shader is a 1:1 mapping, while geometry shader can create more vertices -- can be utilized in automatic Level of Detail generation for e.g. NURBS or perlin noise based terrains etc.

GLSL Geometry Shaders and projection matrices

So from playing around with it so far, I gather that GLSL geometry shaders work after the input vertices are transformed by the projection/modelview matrices. In other words, the geometry shaders processes things on clip coordinate.
What if I was to use the geometry shader to transform GL_POINTS into, say, cubes made out of GL_TRIANGLES? When calculating things on clip coordinates, the resulting shape always seem to face you / ignore rotations/scaling etc.
Also, it seems that GL_TRIANGLES is not supported as one of the possible geometry output types. But I tried anyways, and it seems to work. I suppose this is video card dependent? Is it possible to make cubes if GL_TRIANGLES is not supported? Make zero width triangle strips in between spaces maybe??
You are using shaders: geometry shaders work on whatever the vertex shader passed them. If you want that to be clip-space values, then the geometry shader works on clip-space values. If your vertex shader passes them eye-space values, then the geometry shader must work on eye-space values.
What matters is what the final pre-rasterization shader stage outputs to gl_Position. That is what needs to be in homogeneous clip-space. A vertex shader that has a geometry shader behind it doesn't even need to write to gl_Position.
Also, it seems that GL_TRIANGLES is not supported as one of the possible geometry output types.
You must be using ARB_geometry_shader4, not the actual core geometry shader functionality. You probably should avoid that extension if you are able. Any hardware that has geometry shaders can run OpenGL 3.2.
In any case, the core feature doesn't support triangles as output. It supports points, line strips, and triangle strips.
Is it possible to make cubes if GL_TRIANGLES is not supported?
That's what EndPrimitive() is for. You call it when you are finished with a primitive; there's nothing that stops you from emitting a second primitive. Or third.
Also, you should be advised that this will probably be slow. Geometry shaders are not known for fast rendering performance.