Get total number of elements in a nested STL-like container - c++

I would like to write a C++ function that can count the total number of "atomic" elements in a generic nested STL-like container, with the following conditions:
Each level may be any type of container.
The number of levels is not given a priori.
I wrote the following recursive function (using code from here):
template <typename T>
size_t get_total_size(const T & var)
{
if ( is_container<typeof(var)>::value ) { // From https://stackoverflow.com/a/9407521/2707864
typename T::const_iterator iter;
size_t sumsize = 0;
for ( iter = var.begin() ; iter!= var.end() ; iter++ ) {
sumsize += get_total_size(*iter);
}
return sumsize;
} else {
return 1;
}
};
Compiling/linking this may work.
The problem is that upon using it (otherwise, there wouldn't be any point in writing it!) does not compile, as the instantiation gets at the "atomic" level to a type that does not have iterators, e.g., in this code
typedef vector<int> vint;
typedef vector<vint> vvint;
vvint vec_heap;
for (int i=0; i < 12; i++) {
vec_heap.push_back(vint(2, i));
}
cout << get_total_size(vec_heap) << endl; // Instantiation leads to compilation errors
Is this possible?
EDIT:
As per one comment, it can be done with c++17...
Is the recursive function I wrote an overkill for the objective?

With C++17, you might use if constexpr:
template <typename T>
size_t get_total_size(const T& var)
{
if constexpr (is_container<T>::value) {
return std::accumulate(var.begin(),
var.end(),
0u,
[](int acc, const auto& e){ return acc + get_total_size(e); });
} else {
return 1u;
}
};
Before that, you might use overloads and SFINAE:
// this will be called when T is not a container (it is the "atomic" type)
template <typename T, std::enable_if_t<!is_container<T>::value, int> = 0>
size_t get_total_size(const T& var)
{
return 1u;
};
// this will be called for all container types, except for maps
template <typename T, std::enable_if_t<is_container<T>::value, int> = 0>
size_t get_total_size(const T& var)
{
return std::accumulate(var.begin(),
var.end(),
0u,
[](int acc, const auto& e){ return acc + get_total_size(e); });
};
// this will be called for maps
template <typename Key, typename T>
size_t get_total_size(const std::map<Key, T> & var)
{
return std::accumulate(var.begin(),
var.end(),
0u,
[](int acc, const auto& e){ return acc + get_total_size_sfinae(e.second); });
}

If you can't use C++17, or just want to open up what standard can be used with your function then you can switch to using two overloads and use SFINAE to determine when to call each overload. Using
// this will be called when T is not a container (it is the "atomic" type)
template <typename T, typename std::enable_if<!is_container<T>::value, bool>::type = true>
size_t get_total_size(const T & var)
{
return 1;
}
// forward declare of pair function for associative containers
template <typename T, typename U>
size_t get_total_size(const std::pair<T, U> & var);
// this will be called for all container types
template <typename T, typename std::enable_if<is_container<T>::value, bool>::type = true>
size_t get_total_size(const T & var)
{
size_t sumsize = 0;
for ( auto iter = var.begin() ; iter != var.end() ; ++iter ) {
sumsize += get_total_size(*iter);
}
return sumsize;
}
// this will be called for pair to handle associative containers
template <typename T, typename U>
size_t get_total_size(const std::pair<T, U> & var)
{
return get_total_size(var.first) + get_total_size(var.second);
}
This will work from C++11 on up which you can see in this live example

Related

Generate Arbitrarily Nested Vectors in C++

I am trying to write a function in order to generate arbitrarily nested vectors and initialize with the given specific value in C++. For example, auto test_vector = n_dim_vector_generator<2, long double>(static_cast<long double>(1), 1); is expected to create a "test_vector" object which type is std::vector<std::vector<long double>>. The content of this test_vector should as same as the following code.
std::vector<long double> vector1;
vector1.push_back(1);
std::vector<std::vector<long double>> test_vector;
test_vector.push_back(vector1);
The more complex usage of the n_dim_vector_generator function:
auto test_vector2 = n_dim_vector_generator<15, long double>(static_cast<long double>(2), 3);
In this case, the parameter static_cast<long double>(2) is as the data in vectors and the number 3 is as the push times. So, the content of this test_vector2 should as same as the following code.
std::vector<long double> vector1;
vector1.push_back(static_cast<long double>(2));
vector1.push_back(static_cast<long double>(2));
vector1.push_back(static_cast<long double>(2));
std::vector<std::vector<long double>> vector2;
vector2.push_back(vector1);
vector2.push_back(vector1);
vector2.push_back(vector1);
std::vector<std::vector<std::vector<long double>>> vector3;
vector3.push_back(vector2);
vector3.push_back(vector2);
vector3.push_back(vector2);
//...Totally repeat 15 times in order to create test_vector2
std::vector<...std::vector<long double>> test_vector2;
test_vector2.push_back(vector14);
test_vector2.push_back(vector14);
test_vector2.push_back(vector14);
The detail to implement n_dim_vector_generator function is as follows.
#include <iostream>
#include <vector>
template <typename T, std::size_t N>
struct n_dim_vector_type;
template <typename T>
struct n_dim_vector_type<T, 0> {
using type = T;
};
template <typename T, std::size_t N>
struct n_dim_vector_type {
using type = std::vector<typename n_dim_vector_type<T, N - 1>::type>;
};
template<std::size_t N, typename T>
typename n_dim_vector_type<T,N>::type n_dim_vector_generator(T t, unsigned int);
template <std::size_t N, typename T>
typename n_dim_vector_type<T, N>::type n_dim_vector_generator<N, T>(T input_data, unsigned int push_back_times) {
if (N == 0)
{
return std::move(input_data);
}
typename n_dim_vector_type<T, N>::type return_data;
for (size_t loop_number = 0; loop_number < push_back_times; loop_number++)
{
return_data.push_back(n_dim_vector_generator<N - 1, T>(input_data, push_back_times));
}
return return_data;
}
As a result, I got an error 'return': cannot convert from 'long double' to 'std::vector<std::vector<long double,std::allocator<long double>>,std::allocator<std::vector<long double,std::allocator<long double>>>>' I know that it caused by if (N == 0) block which is as the terminate condition to recursive structure. However, if I tried to edit the terminate condition into separate form.
template <typename T>
inline T n_dim_vector_generator<0, T>(T input_data, unsigned int push_back_times) {
return std::move(input_data);
}
template <std::size_t N, typename T>
typename n_dim_vector_type<T, N>::type n_dim_vector_generator<N, T>(T input_data, unsigned int push_back_times) {
typename n_dim_vector_type<T, N>::type return_data;
for (size_t loop_number = 0; loop_number < push_back_times; loop_number++)
{
return_data.push_back(n_dim_vector_generator<N - 1, T>(input_data, push_back_times));
}
return return_data;
}
The error 'n_dim_vector_generator': illegal use of explicit template arguments happened. Is there any better solution to this problem?
The develop environment is in Windows 10 1909 with Microsoft Visual Studio Enterprise 2019 Version 16.4.3
To achieve your specific mapping of:
auto test_vector = n_dim_vector_generator<2, long double>(2, 3)
to a 3x3 vector filled with 2's, your template can be a bit simpler if you take advantage of this vector constructor:
std::vector<std::vector<T>>(COUNT, std::vector<T>(...))
Since vector is copyable, this will fill COUNT slots with a different copy of the vector. So...
template <size_t N, typename T>
struct n_dim_vector_generator {
using type = std::vector<typename n_dim_vector_generator<N-1, T>::type>;
type operator()(T value, size_t size) {
return type(size, n_dim_vector_generator<N-1, T>{}(value, size));
}
};
template <typename T>
struct n_dim_vector_generator<0, T> {
using type = T;
type operator()(T value, size_t size) {
return value;
}
};
usage:
auto test_vector = n_dim_vector_generator<2, long double>{}(2, 3);
Demo: https://godbolt.org/z/eiDAUG
For the record, to address some concerns from the comments, C++ has an idiomatic, initializable, contiguous-memory class equivalent of a multi-dimension C array: a nested std::array:
std::array<std::array<long double, COLUMNS>, ROWS> test_array = { /*...*/ };
for (auto& row : test_array)
for (auto cell : row)
std::cout << cell << std::endl;
If you wanted to reduce the boilerplate to declare one, you can use a struct for that:
template <typename T, size_t... N>
struct multi_array;
template <typename T, size_t NFirst, size_t... N>
struct multi_array<T, NFirst, N...> {
using type = std::array<typename multi_array<T, N...>::type, NFirst>;
};
template <typename T, size_t NLast>
struct multi_array<T, NLast> {
using type = std::array<T, NLast>;
};
template <typename T, size_t... N>
using multi_array_t = typename multi_array<T, N...>::type;
Then to use:
multi_array_t<long double, ROWS, COLUMNS> test_array = { /*...*/ };
for (auto& row : test_array)
for (auto cell : row)
std::cout << cell << std::endl;
This is allocated on the stack, like a C array. That will eat up your stack space for a big array of course. But you can make a decorator range around std::unique_ptr to make a pointer to one a bit easier to access:
template <typename T, size_t... N>
struct dynamic_multi_array : std::unique_ptr<multi_array_t<T, N...>> {
using std::unique_ptr<multi_array_t<T, N...>>::unique_ptr;
constexpr typename multi_array_t<T, N...>::value_type& operator [](size_t index) { return (**this)[index]; }
constexpr const typename multi_array_t<T, N...>::value_type& operator [](size_t index) const { return (**this)[index]; }
constexpr typename multi_array_t<T, N...>::iterator begin() { return (**this).begin(); }
constexpr typename multi_array_t<T, N...>::iterator end() { return (**this).end(); }
constexpr typename multi_array_t<T, N...>::const_iterator begin() const { return (**this).begin(); }
constexpr typename multi_array_t<T, N...>::const_iterator end() const { return (**this).end(); }
constexpr typename multi_array_t<T, N...>::const_iterator cbegin() const { return (**this).cbegin(); }
constexpr typename multi_array_t<T, N...>::const_iterator cend() const { return (**this).cend(); }
constexpr typename multi_array_t<T, N...>::size_type size() const { return (**this).size(); }
constexpr bool empty() const { return (**this).empty(); }
constexpr typename multi_array_t<T, N...>::value_type* data() { return (**this).data(); }
constexpr const typename multi_array_t<T, N...>::value_type* data() const { return (**this).data(); }
};
(let the buyer beware if you use those methods with nullptr)
Then you can still brace-initialize a new expression and use it like a container:
dynamic_multi_array<long double, ROWS, COLUMNS> test_array {
new multi_array_t<long double, ROWS, COLUMNS> { /* ... */ }
};
for (auto& row : test_array)
for (auto cell : row)
std::cout << cell << std::endl;
Demo: https://godbolt.org/z/lUwVE_

Constructing an iterator_range with variadic templates and runtime indices

I have a collection of equally-sized vectors and want to provide an interface for the user to obtain an iterator range over a subset of these vectors.
The following example shows the problematic line inside getRange: its idea is to receive a bunch of types (specifying the types of vectors) and equally many indices (specifying the locations of the vectors). The code compiles, but the problem is that i++ never gets executed as intended, i.e., the call is always with just i (which equals 0). This will also lead to runtime errors via boost::get if the user tries to get distinct types.
This is probably a well-known issue. What's a neat solution to it?
#include <vector>
#include <boost/variant.hpp>
#include <boost/range/combine.hpp>
template <typename... T>
struct VectorHolder
{
template<typename X>
using Iterator = typename std::vector<X>::const_iterator;
std::vector<boost::variant<std::vector<T>...> > vecs_;
template <typename X>
auto begin(int idx) const {
return boost::get<std::vector<X> >(vecs_.at(idx)).cbegin();
}
template <typename X>
auto end(int idx) const {
return boost::get<std::vector<X> >(vecs_.at(idx)).cend();
}
};
template <typename... T, typename VectorHolder>
auto getRange(const VectorHolder& vh, const std::vector<int>& idx)
{
assert(sizeof...(T) == idx.size());
// Fetch a boost::iterator_range over the specified indices
std::size_t i = 0;
std::size_t j = 0;
// PROBLEM: i and j not incremented as intended
return boost::combine(
boost::iterator_range<VectorHolder::Iterator<T>>(
vh.begin<T>(idx[i++]), vh.end<T>(idx[j++]))...);
}
int main()
{
VectorHolder<bool, int, double> vh;
vh.vecs_.push_back(std::vector<int>(5, 5));
vh.vecs_.push_back(std::vector<bool>(5));
vh.vecs_.push_back(std::vector<double>(5, 2.2));
vh.vecs_.push_back(std::vector<int>(5, 1));
const std::vector<int> idx = { 0, 3 };
for (auto t : getRange<int, int>(vh, idx))
{
std::cout << t.get<0>() << " " << t.get<1>() << "\n";
}
}
std::index_sequence helps:
template <typename... Ts, typename VectorHolder, std::size_t ... Is>
auto getRange(const VectorHolder& vh, const std::vector<int>& idx, std::index_sequence<Is...>)
{
assert(sizeof...(Ts) == idx.size());
return boost::combine(
boost::iterator_range<typename VectorHolder::template Iterator<Ts>>(
vh.template begin<Ts>(idx[Is]), vh.template end<Ts>(idx[Is]))...);
}
template <typename... Ts, typename VectorHolder>
auto getRange(const VectorHolder& vh, const std::vector<int>& idx)
{
return getRange<Ts...>(vh, idx, std::index_sequence_for<Ts...>());
}
Demo

How to overload a template function to match specific containers?

I have the following function to retrieve the n element of a container - O(n):
template<typename Container>
const typename Container::value_type& getNthElement(const Container& container, size_t n) {
auto itr = cbegin(container);
for (auto i = 0u; i < n; ++i) {
++itr;
}
return *itr;
}
And for vectors I have this overload - O(1):
template<typename T>
T getNthElement(const vector<T>& container, size_t n) {
return container[n];
}
Now if I wanna use a deque (which also has the O(1) implementation), the first template function will be called with the O(n) implementation.
How can the second overload function be adapted to works for vectors and deques ?
My question is taken from this article.
The simple approach is to tag-dipatch based on the iterator category, i.e., something like this:
template <typename It>
typename std::iterator_traits<It>::value_type
nth_element(It begin, It end, std::size_t n, std::input_iterator_tag) {
for (std::size_t i(0); it != end && i != n; ++i) {
++i;
}
return it != end? *it: throw std::runtime_error("out of range");
}
template <typename It>
typename std::iterator_traits<It>::value_type
nth_element(It begin, It end, std::size_t n, std::random_access_iterator_tag) {
return n < std::size_t(end - begin)? it[n]: std::runtime_error("out of range");
}
template <typename C>
typename C::value_type
nth_element(Container const& c, std::size_t n) {
return nth_element(c.begin(), c.end(), n,
typename std::iterator_traits<C>::iterator_category());
}
If it weren't for n possibly being too big, you could actually just have std::advance() do the trick:
template <typename C>
typename C::value_type
nth_element(Container const& c, std::size_t n) {
auto it = c.begin();
std::advance(it, n);
return *it;
}
With C++11 extended SFINAE you can sniff-out whether this capability is available even without traits.

How to do pre-increment on variadic template arguments?

Saw this question, Best STL transform - like template function for ternary operators, thought it would be cool to make an narry transform for kicks and giggles.
So I threw this together, seems to work...with a caviate. My preincrement method is...odd to me. I couldn't figure out how to do with without unpacking. I expected the syntax to be something like (++args)... (similar to the deference syntax of (*args)...) but that returns an error. Anyone know how to do it?
#include <iostream>
#include <vector>
inline void preincrement(){}
template <typename T,typename... Ts>
inline void preincrement(T& t,Ts&... ts)
{
++t;
preincrement(ts...);
}
template <class OutputIterator, class NArryOperator, class InputIterator, class... InputIterators>
OutputIterator transform_n(OutputIterator out_iter, NArryOperator oper, InputIterator iter1begin, InputIterator iter1end,InputIterators... args)
{
for (; iter1begin != iter1end; ++out_iter,++iter1begin,preincrement(args...))
{
*out_iter = oper(*iter1begin,(*args)...);
}
return out_iter;
}
template <typename T>
struct noop
{
T operator()(const T& val){return val;}
};
template <typename Ot,typename T,typename... Ts>
struct nsum
{
Ot operator()(const T& t,const Ts&... ts)
{
return (Ot)t+nsum<Ot,Ts...>()(ts...);
}
};
template <typename Ot, typename T>
struct nsum<Ot,T>
{
Ot operator()(const T& t)
{
return (Ot)t;
}
};
int main(int argc,char** argv)
{
std::vector<int> rng;
for (int i = 0; i < 10; i++) {rng.push_back(i);}
std::vector<int> rng1 = rng;
std::vector<int> rng2 = rng;
std::vector<int> rng3 = rng;
std::vector<float> out(rng.size());
auto beg = out.begin();
auto end = transform_n(beg,nsum<double,int,int,int,int>(),
rng.begin(),rng.end(),
rng1.begin(),
rng2.begin(),
rng3.begin());
for (auto i = beg; i != end; ++i)
{
std::cout << *i << std::endl;
}
}
A solution using postincrement directly:
template <class OutputIterator, class NArryOperator,
class InputIterator, class... InputIterators>
OutputIterator transform_n(OutputIterator out_iter, NArryOperator oper,
InputIterator iter1begin, InputIterator iter1end,
InputIterators... args)
{
while(iter1begin != iter1end)
{
*out_iter++ = oper(*iter1begin++, (*args++)...);
}
return out_iter;
}
About incrementing in the "increment-expression" of a for-statement:
You can't expand in the "increment-expression" of the for-statement; pack expansion is restricted to a few contexts, such that operator, overloads cannot apply [temp.variadic]/4. The usual tricks are required, such as expanding in a function call (what you used) or using a dummy array:
using iarr = int[];
for (; iter1begin != iter1end;
++out_iter,++iter1begin,(void)iarr{0, (++args,void(),0)...})

Which C++ Standard Library wrapper functions do you use?

This question, asked this morning, made me wonder which features you think are missing from the C++ Standard Library, and how you have gone about filling the gaps with wrapper functions. For example, my own utility library has this function for vector append:
template <class T>
std::vector<T> & operator += ( std::vector<T> & v1,
const std::vector <T> & v2 ) {
v1.insert( v1.end(), v2.begin(), v2.end() );
return v1;
}
and this one for clearing (more or less) any type - particularly useful for things like std::stack:
template <class C>
void Clear( C & c ) {
c = C();
}
I have a few more, but I'm interested in which ones you use? Please limit answers to wrapper functions - i.e. no more than a couple of lines of code.
Quite often I'd use vector as a set of items in no particular order (and, obviously, when I don't need fast is-this-element-in-the-set checks). In these cases, calling erase() is a waste of time since it will reorder the elements and I don't care about order. That's when the O(1) function below comes in handy - just move the last element at the position of the one you'd want to delete:
template<typename T>
void erase_unordered(std::vector<T>& v, size_t index)
{
v[index] = v.back();
v.pop_back();
}
boost::array
contains(container, val) (quite simple, but convenient).
template<typename C, typename T>
bool contains(const C& container, const T& val) {
return std::find(std::begin(container), std::end(container), val) != std::end(container);
}
remove_unstable(begin, end, value)
A faster version of std::remove with the exception that it doesn't preserve the order of the remaining objects.
template <typename T>
T remove_unstable(T start, T stop, const typename T::value_type& val){
while(start != stop) {
if (*start == val) {
--stop;
::std::iter_swap(start, stop);
} else {
++start;
}
}
return stop;
}
(in the case of a vector of pod types (int, float etc) and almost all objects are removed, std::remove might be faster).
template < class T >
class temp_value {
public :
temp_value(T& var) : _var(var), _original(var) {}
~temp_value() { _var = _original; }
private :
T& _var;
T _original;
temp_value(const temp_value&);
temp_value& operator=(const temp_value&);
};
Ok, since it seems this isn't as straight-forward as I thought, here's an explanation:
In its constructor temp_value stores a reference to a variable and a copy of the variable's original value. In its destructor it restores the referenced variable to its original value. So, no matter what you did to the variable between construction and destruction, it will be reset when the temp_value object goes out of scope.
Use it like this:
void f(some_type& var)
{
temp_value<some_type> restorer(var); // remembers var's value
// change var as you like
g(var);
// upon destruction restorer will restore var to its original value
}
Here's another approach that uses the scope-guard trick:
namespace detail
{
// use scope-guard trick
class restorer_base
{
public:
// call to flag the value shouldn't
// be restored at destruction
void dismiss(void) const
{
mDismissed = true;
}
protected:
// creation
restorer_base(void) :
mDismissed(false)
{}
restorer_base(const restorer_base& pOther) :
mDismissed(pOther.is_dismissed())
{
// take "ownership"
pOther.dismiss();
}
~restorer_base(void) {} // non-virtual
// query
bool is_dismissed(void) const
{
return mDismissed;
}
private:
// not copy-assignable, copy-constructibility is ok
restorer_base& operator=(const restorer_base&);
mutable bool mDismissed;
};
// generic single-value restorer, could be made
// variadic to store and restore several variables
template <typename T>
class restorer_holder : public restorer_base
{
public:
restorer_holder(T& pX) :
mX(pX),
mValue(pX)
{}
~restorer_holder(void)
{
if (!is_dismissed())
mX = mValue;
}
private:
// not copy-assignable, copy-constructibility is ok
restorer_holder& operator=(const restorer_holder&);
T& mX;
T mValue;
};
}
// store references to generated holders
typedef const detail::restorer_base& restorer;
// generator (could also be made variadic)
template <typename T>
detail::restorer_holder<T> store(T& pX)
{
return detail::restorer_holder<T>(pX);
}
It's just a bit more boiler-plate code, but allows a cleaner usage:
#include <iostream>
template <typename T>
void print(const T& pX)
{
std::cout << pX << std::endl;
}
void foo(void)
{
double d = 10.0;
double e = 12.0;
print(d); print(e);
{
restorer f = store(d);
restorer g = store(e);
d = -5.0;
e = 3.1337;
print(d); print(e);
g.dismiss();
}
print(d); print(e);
}
int main(void)
{
foo();
int i = 5;
print(i);
{
restorer r = store(i);
i *= 123;
print(i);
}
print(i);
}
It removes its ability to be used in a class, though.
Here's a third way to achieve the same effect (which doesn't suffer from the problems of potentially throwing destructors):
Implementation:
//none -- it is built into the language
Usage:
#include <iostream>
template <typename T>
void print(const T& pX)
{
std::cout << pX << std::endl;
}
void foo(void)
{
double d = 10.0;
double e = 12.0;
print(d); print(e);
{
double f(d);
double g(e);
f = -5.0;
g = 3.1337;
print(f); print(g);
e = std::move(g);
}
print(d); print(e);
}
int main(void)
{
foo();
int i = 5;
print(i);
{
int r(i);
r *= 123;
print(r);
}
print(i);
}
Not really a wrapper, but the infamous missing copy_if. From here
template<typename In, typename Out, typename Pred>
Out copy_if(In first, In last, Out res, Pred Pr)
{
while (first != last) {
if (Pr(*first)) {
*res++ = *first;
}
++first;
}
return res;
}
template< typename T, std::size_t sz >
inline T* begin(T (&array)[sz]) {return array;}
template< typename T, std::size_t sz >
inline T* end (T (&array)[sz]) {return array + sz;}
Sometimes I feel like I'm in begin() and end() hell. I'd like to have some functions like:
template<typename T>
void sort(T& x)
{
std::sort(x.begin(), x.end());
}
and other similar ones for std::find, std::for_each, and basically all the STL algorithms.
I feel that sort(x) is much quicker to read/understand than sort(x.begin(), x.end()).
I don't use this one nearly as much anymore, but it used to be a staple:
template<typename T>
std::string make_string(const T& data) {
std::ostringstream stream;
stream << data;
return stream.str();
}
Will update with more as I remember them. :P
The utility function in everyones toolbox is of course copy_if. Not really a wrapper though.
Another helper I commonly use is deleter, a functor I use with std::for_each to delete all pointers in a container.
[edit]
Digging through my "sth.h" I also found vector<wstring> StringSplit(wstring const&, wchar_t);
I have a header which puts the following in the "util" namespace:
// does a string contain another string
inline bool contains(const std::string &s1, const std::string &s2) {
return s1.find(s2) != std::string::npos;
}
// remove trailing whitespace
inline std::string &rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
return s;
}
// remove leading whitespace
inline std::string &ltrim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun<int, int>(std::isspace))));
return s;
}
// remove whitespace from both ends
inline std::string &trim(std::string &s) {
return ltrim(rtrim(s));
}
// split a string based on a delimeter and return the result (you pass an existing vector for the results)
inline std::vector<std::string> &split(const std::string &s, char delim, std::vector<std::string> &elems) {
std::stringstream ss(s);
std::string item;
while(std::getline(ss, item, delim)) {
elems.push_back(item);
}
return elems;
}
// same as above, but returns a vector for you
inline std::vector<std::string> split(const std::string &s, char delim) {
std::vector<std::string> elems;
return split(s, delim, elems);
}
// does a string end with another string
inline bool endswith(const std::string &s, const std::string &ending) {
return ending.length() <= s.length() && s.substr(s.length() - ending.length()) == ending;
}
// does a string begin with another string
inline bool beginswith(const std::string &s, const std::string &start) {
return s.compare(0, start.length(), start) == 0;
}
The infamously missing erase algorithm:
template <
class Container,
class Value
>
void erase(Container& ioContainer, Value const& iValue)
{
ioContainer.erase(
std::remove(ioContainer.begin(),
ioContainer.end(),
iValue),
ioContainer.end());
} // erase
template <
class Container,
class Pred
>
void erase_if(Container& ioContainer, Pred iPred)
{
ioContainer.erase(
std::remove_if(ioContainer.begin(),
ioContainer.end(),
iPred),
ioContainer.end());
} // erase_if
Wrapping sprintf
string example = function("<li value='%d'>Buffer at: 0x%08X</li>", 42, &some_obj);
// 'function' is one of the functions below: Format or stringf
The goal is decoupling formatting from output without getting into trouble with sprintf and its ilk. It's not pretty, but it's very useful, especially if your coding guidelines ban iostreams.
Here is a version which allocates as needed, from Neil Butterworth. [View revision history for Mike's version, which I removed as a subset of the remaining two. It is similar to Neil's, except the latter is exception-safe by using vector instead of delete[]: string's ctor will throw on allocation failure. Mike's also uses the same technique shown later to determine size up front. –RP]
string Format( const char * fmt, ... ) {
const int BUFSIZE = 1024;
int size = BUFSIZE, rv = -1;
vector <char> buf;
do {
buf.resize( size );
va_list valist;
va_start( valist, fmt );
// if _vsnprintf() returns < 0, the buffer wasn't big enough
// so increase buffer size and try again
// NOTE: MSFT's _vsnprintf is different from C99's vsnprintf,
// which returns non-negative on truncation
// http://msdn.microsoft.com/en-us/library/1kt27hek.aspx
rv = _vsnprintf( &buf[0], size, fmt, valist );
va_end( valist );
size *= 2;
}
while( rv < 0 );
return string( &buf[0] );
}
Here is a version which determines the needed size up front, from Roger Pate. This requires writable std::strings, which are provided by popular implementations, but are explicitly required by C++0x. [View revision history for Marcus' version, which I removed as it is slightly different but essentially a subset of the below. –RP]
Implementation
void vinsertf(std::string& s, std::string::iterator it,
char const* fmt, int const chars_needed, va_list args
) {
using namespace std;
int err; // local error code
if (chars_needed < 0) err = errno;
else {
string::size_type const off = it - s.begin(); // save iterator offset
if (it == s.end()) { // append to the end
s.resize(s.size() + chars_needed + 1); // resize, allow snprintf's null
it = s.begin() + off; // iterator was invalidated
err = vsnprintf(&*it, chars_needed + 1, fmt, args);
s.resize(s.size() - 1); // remove snprintf's null
}
else {
char saved = *it; // save char overwritten by snprintf's null
s.insert(it, chars_needed, '\0'); // insert needed space
it = s.begin() + off; // iterator was invalidated
err = vsnprintf(&*it, chars_needed + 1, fmt, args);
*(it + chars_needed) = saved; // restore saved char
}
if (err >= 0) { // success
return;
}
err = errno;
it = s.begin() + off; // above resize might have invalidated 'it'
// (invalidation is unlikely, but allowed)
s.erase(it, it + chars_needed);
}
string what = stringf("vsnprintf: [%d] ", err);
what += strerror(err);
throw runtime_error(what);
}
Public interface
std::string stringf(char const* fmt, ...) {
using namespace std;
string s;
va_list args;
va_start(args, fmt);
int chars_needed = vsnprintf(0, 0, fmt, args);
va_end(args);
va_start(args, fmt);
try {
vinsertf(s, s.end(), fmt, chars_needed, args);
}
catch (...) {
va_end(args);
throw;
}
va_end(args);
return s;
}
// these have nearly identical implementations to stringf above:
std::string& appendf(std::string& s, char const* fmt, ...);
std::string& insertf(std::string& s, std::string::iterator it,
char const* fmt, ...);
The is_sorted utility, to test containers before applying algorithms like include which expect a sorted entry:
template <
class FwdIt
>
bool is_sorted(FwdIt iBegin, FwdIt iEnd)
{
typedef typename std::iterator_traits<FwdIt>::value_type value_type;
return adjacent_find(iBegin, iEnd, std::greater<value_type>()) == iEnd;
} // is_sorted
template <
class FwdIt,
class Pred
>
bool is_sorted_if(FwdIt iBegin, FwdIt iEnd, Pred iPred)
{
if (iBegin == iEnd) return true;
FwdIt aIt = iBegin;
for (++aIt; aIt != iEnd; ++iBegin, ++aIt)
{
if (!iPred(*iBegin, *aIt)) return false;
}
return true;
} // is_sorted_if
Yeah, I know, would be better to negate the predicate and use the predicate version of adjacent_find :)
Definitely boost::addressof
//! \brief Fills reverse_map from map, so that all keys of map
// become values of reverse_map and all values become keys.
//! \note This presumes that there is a one-to-one mapping in map!
template< typename T1, typename T2, class TP1, class TA1, class TP2, class TA2 >
inline void build_reverse_map( const std::map<T1,T2,TP1,TA1>& map
, std::map<T2,T1,TP2,TA2>& reverse_map)
{
typedef std::map<T1,T2,TP1,TA1> map_type;
typedef std::map<T2,T1,TP2,TA2> r_map_type;
typedef typename r_map_type::value_type r_value_type;
for( typename map_type::const_iterator it=map.begin(),
end=map.end(); it!=end; ++it ) {
const r_value_type v(it->second,it->first);
const bool was_new = reverse_map.insert(v).second;
assert(was_new);
}
}
Looking at my stl_util.h, many of the classics (deleter functions, copy_if), and also this one (probably also quite common, but I don't see it given in the responses so far) for searching through a map and returning either the found value or a default, ala get in Python's dict:
template<typename K, typename V>
inline V search_map(const std::map<K, V>& mapping,
const K& key,
const V& null_result = V())
{
typename std::map<K, V>::const_iterator i = mapping.find(key);
if(i == mapping.end())
return null_result;
return i->second;
}
Using the default null_result of a default-constructed V is much as same as the behavior of std::map's operator[], but this is useful when the map is const (common for me), or if the default-constructed V isn't the right thing to use.
Here's my set of extra-utils, built on top of a boost.range'ish std-algo wrapper that you might need for some functions. (that's trivial to write, this is the interesting stuff)
#pragma once
/** #file
#brief Defines various utility classes/functions for handling ranges/function objects
in addition to bsRange (which is a ranged version of the \<algorithm\> header)
Items here uses a STL/boost-style naming due to their 'templatised' nature.
If template variable is R, anything matching range_concept can be used.
If template variable is C, it must be a container object (supporting C::erase())
*/
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/smart_ptr.hpp>
namespace boost
{
struct use_default;
template<class T>
class iterator_range;
#pragma warning(disable: 4348) // redeclaration of template default parameters (this clashes with fwd-decl in boost/transform_iterator.hpp)
template <
class UnaryFunction
, class Iterator
, class Reference = use_default
, class Value = use_default
>
class transform_iterator;
template <
class Iterator
, class Value = use_default
, class Category = use_default
, class Reference = use_default
, class difference = use_default
>
class indirect_iterator;
template<class T>
struct range_iterator;
template <
class Incrementable
, class CategoryOrTraversal = use_default
, class difference = use_default
>
class counting_iterator;
template <class Predicate, class Iterator>
class filter_iterator;
}
namespace orz
{
/// determines if any value that compares equal exists in container
template<class R, class T>
inline bool contains(const R& r, const T& v)
{
return std::find(boost::begin(r), boost::end(r), v) != boost::end(r);
}
/// determines if predicate evaluates to true for any value in container
template<class R, class F>
inline bool contains_if(const R& r, const F& f)
{
return std::find_if(boost::begin(r), boost::end(r), f) != boost::end(r);
}
/// insert elements in range r at end of container c
template<class R, class C>
inline void insert(C& c, const R& r)
{
c.insert(c.end(), boost::begin(r), boost::end(r));
}
/// copy elements that match predicate
template<class I, class O, class P>
inline void copy_if(I i, I end, O& o, const P& p)
{
for (; i != end; ++i) {
if (p(*i)) {
*o = *i;
++o;
}
}
}
/// copy elements that match predicate
template<class R, class O, class P>
inline void copy_if(R& r, O& o, const P& p)
{
copy_if(boost::begin(r), boost::end(r), o, p);
}
/// erases first element that compare equal
template<class C, class T>
inline bool erase_first(C& c, const T& v)
{
typename C::iterator end = boost::end(c);
typename C::iterator i = std::find(boost::begin(c), end, v);
return i != c.end() ? c.erase(i), true : false;
}
/// erases first elements that match predicate
template<class C, class F>
inline bool erase_first_if(C& c, const F& f)
{
typename C::iterator end = boost::end(c);
typename C::iterator i = std::find_if(boost::begin(c), end, f);
return i != end ? c.erase(i), true : false;
}
/// erase all elements (doesn't deallocate memory for std::vector)
template<class C>
inline void erase_all(C& c)
{
c.erase(c.begin(), c.end());
}
/// erase all elements that compare equal
template<typename C, typename T>
int erase(C& c, const T& value)
{
int n = 0;
for (boost::range_iterator<C>::type i = boost::begin(c); i != boost::end(c);) {
if (*i == value) {
i = c.erase(i);
++n;
} else {
++i;
}
}
return n;
}
/// erase all elements that match predicate
template<typename C, typename F>
int erase_if(C& c, const F& f)
{
int n = 0;
for (boost::range_iterator<C>::type i = boost::begin(c); i != boost::end(c);) {
if (f(*i)) {
i = c.erase(i);
++n;
} else {
++i;
}
}
return n;
}
/// erases all consecutive duplicates from container (sort container first to get all)
template<class C>
inline int erase_duplicates(C& c)
{
boost::range_iterator<C>::type i = std::unique(c.begin(), c.end());
typename C::size_type n = std::distance(i, c.end());
c.erase(i, c.end());
return n;
}
/// erases all consecutive duplicates, according to predicate, from container (sort container first to get all)
template<class C, class F>
inline int erase_duplicates_if(C& c, const F& f)
{
boost::range_iterator<C>::type i = std::unique(c.begin(), c.end(), f);
typename C::size_type n = std::distance(i, c.end());
c.erase(i, c.end());
return n;
}
/// fill but for the second value in each pair in range
template<typename R, typename V>
inline void fill_second(R& r, const V& v)
{
boost::range_iterator<R>::type i(boost::begin(r)), end(boost::end(r));
for (; i != end; ++i) {
i->second = v;
}
}
/// applying function to corresponding pair through both ranges, min(r1.size(), r2,size()) applications
template<typename R1, typename R2, typename F>
void for_each2(R1& r1, R2& r2, const F& f)
{
boost::range_iterator<R1>::type i(boost::begin(r1)), i_end(boost::end(r1));
boost::range_iterator<R2>::type j(boost::begin(r2)), j_end(boost::end(r2));
for(;i != i_end && j != j_end; ++i, ++j) {
f(*i, *j);
}
}
/// applying function to corresponding pair through both ranges, min(r1.size(), r2,size()) applications
template<typename R1, typename R2, typename R3, typename F>
void for_each3(R1& r1, R2& r2, R3& r3, const F& f)
{
boost::range_iterator<R1>::type i(boost::begin(r1)), i_end(boost::end(r1));
boost::range_iterator<R2>::type j(boost::begin(r2)), j_end(boost::end(r2));
boost::range_iterator<R3>::type k(boost::begin(r3)), k_end(boost::end(r3));
for(;i != i_end && j != j_end && k != k_end; ++i, ++j, ++k) {
f(*i, *j, *k);
}
}
/// applying function to each possible permutation of objects, r1.size() * r2.size() applications
template<class R1, class R2, class F>
void for_each_permutation(R1 & r1, R2& r2, const F& f)
{
typedef boost::range_iterator<R1>::type R1_iterator;
typedef boost::range_iterator<R2>::type R2_iterator;
R1_iterator end_1 = boost::end(r1);
R2_iterator begin_2 = boost::begin(r2);
R2_iterator end_2 = boost::end(r2);
for(R1_iterator i = boost::begin(r1); i != end_1; ++i) {
for(R2_iterator j = begin_2; j != end_2; ++j) {
f(*i, *j);
}
}
}
template <class R>
inline boost::iterator_range<boost::indirect_iterator<typename boost::range_iterator<R>::type > >
make_indirect_range(R& r)
{
return boost::iterator_range<boost::indirect_iterator<typename boost::range_iterator<R>::type > > (r);
}
template <class R, class F>
inline boost::iterator_range<boost::transform_iterator<F, typename boost::range_iterator<R>::type> >
make_transform_range(R& r, const F& f)
{
return boost::iterator_range<boost::transform_iterator<F, typename boost::range_iterator<R>::type> >(
boost::make_transform_iterator(boost::begin(r), f),
boost::make_transform_iterator(boost::end(r), f));
}
template <class T>
inline boost::iterator_range<boost::counting_iterator<T> >
make_counting_range(T begin, T end)
{
return boost::iterator_range<boost::counting_iterator<T> >(
boost::counting_iterator<T>(begin), boost::counting_iterator<T>(end));
}
template <class R, class F>
inline boost::iterator_range<boost::filter_iterator<F, typename boost::range_iterator<R>::type> >
make_filter_range(R& r, const F& f)
{
return boost::iterator_range<boost::filter_iterator<F, typename boost::range_iterator<R>::type> >(
boost::make_filter_iterator(f, boost::begin(r), boost::end(r)),
boost::make_filter_iterator(f, boost::end(r), boost::end(r)));
}
namespace detail {
template<class T>
T* get_pointer(T& p) {
return &p;
}
}
/// compare member function/variable equal to value. Create using #ref mem_eq() to avoid specfying types
template<class P, class V>
struct mem_eq_type
{
mem_eq_type(const P& p, const V& v) : m_p(p), m_v(v) { }
template<class T>
bool operator()(const T& a) const {
using boost::get_pointer;
using orz::detail::get_pointer;
return (get_pointer(a)->*m_p) == m_v;
}
P m_p;
V m_v;
};
template<class P, class V>
mem_eq_type<P,V> mem_eq(const P& p, const V& v)
{
return mem_eq_type<P,V>(p, v);
}
/// helper macro to define function objects that compare member variables of a class
#define ORZ_COMPARE_MEMBER(NAME, OP) \
template <class P> \
struct NAME##_type \
{ \
NAME##_type(const P&p) : m_p(p) {} \
template<class T> \
bool operator()(const T& a, const T& b) const { \
return (a.*m_p) OP (b.*m_p); \
} \
P m_p; \
}; \
template <class P> \
NAME##_type<P> NAME(const P& p) { return NAME##_type<P>(p); }
#define ORZ_COMPARE_MEMBER_FN(NAME, OP) \
template <class P> \
struct NAME##_type \
{ \
NAME##_type(const P&p) : m_p(p) {} \
template<class T> \
bool operator()(const T& a, const T& b) const { \
return (a.*m_p)() OP (b.*m_p)(); \
} \
P m_p; \
}; \
template <class P> \
NAME##_type<P> NAME(const P& p) { return NAME##_type<P>(p); }
/// helper macro to wrap range functions as function objects (value return)
#define ORZ_RANGE_WRAP_VALUE_2(FUNC, RESULT) \
struct FUNC##_ \
{ \
typedef RESULT result_type; \
template<typename R, typename F> \
inline RESULT operator() (R& r, const F& f) const \
{ \
return FUNC(r, f); \
} \
};
/// helper macro to wrap range functions as function objects (void return)
#define ORZ_RANGE_WRAP_VOID_2(FUNC) \
struct FUNC##_ \
{ \
typedef void result_type; \
template<typename R, typename F> \
inline void operator() (R& r, const F& f) const \
{ \
FUNC(r, f); \
} \
};
/// helper macro to wrap range functions as function objects (void return, one argument)
#define ORZ_RANGE_WRAP_VOID_1(FUNC) \
struct FUNC##_ \
{ \
typedef void result_type; \
template<typename R> \
inline void operator() (R& r) const \
{ \
FUNC(r); \
} \
};
ORZ_RANGE_WRAP_VOID_2(for_each);
ORZ_RANGE_WRAP_VOID_1(erase_all);
ORZ_RANGE_WRAP_VALUE_2(contains, bool);
ORZ_RANGE_WRAP_VALUE_2(contains_if, bool);
ORZ_COMPARE_MEMBER(mem_equal, ==)
ORZ_COMPARE_MEMBER(mem_not_equal, !=)
ORZ_COMPARE_MEMBER(mem_less, <)
ORZ_COMPARE_MEMBER(mem_greater, >)
ORZ_COMPARE_MEMBER(mem_lessequal, <=)
ORZ_COMPARE_MEMBER(mem_greaterequal, >=)
ORZ_COMPARE_MEMBER_FN(mem_equal_fn, ==)
ORZ_COMPARE_MEMBER_FN(mem_not_equal_fn, !=)
ORZ_COMPARE_MEMBER_FN(mem_less_fn, <)
ORZ_COMPARE_MEMBER_FN(mem_greater_fn, >)
ORZ_COMPARE_MEMBER_FN(mem_lessequal_fn, <=)
ORZ_COMPARE_MEMBER_FN(mem_greaterequal_fn, >=)
#undef ORZ_COMPARE_MEMBER
#undef ORZ_RANGE_WRAP_VALUE_2
#undef ORZ_RANGE_WRAP_VOID_1
#undef ORZ_RANGE_WRAP_VOID_2
}
I seem to need a Cartesian product, for example {A, B}, {1, 2} -> {(A,1), (A,2), (B,1), (B,2)}
// OutIt needs to be an iterator to a container of std::pair<Type1, Type2>
template <typename InIt1, typename InIt2, typename OutIt>
OutIt
cartesian_product(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt out)
{
for (; first1 != last1; ++first1)
for (InIt2 it = first2; it != last2; ++it)
*out++ = std::make_pair(*first1, *it);
return out;
}
I would call such an append function by its name and would use operator+= , operator*= and so on for element-wise operations, such as:
template<typename X> inline void operator+= (std::vector<X>& vec1, const X& value)
{
std::transform( vec1.begin(), vec1.end(), vec1.begin(), std::bind2nd(std::plus<X>(),value) );
}
template<typename X> inline void operator+= (std::vector<X>& vec1, const std::vector<X>& vec2)
{
std::transform( vec1.begin(), vec1.end(), vec2.begin(), vec1.begin(), std::plus<X>() );
}
some other simple and obvious wrappers as implied before:
template<typename X> inline void sort_and_unique(std::vector<X> &vec)
{
std::sort( vec.begin(), vec.end() );
vec.erase( std::unique( vec.begin(), vec.end() ), vec.end() );
}
template<typename X> inline void clear_vec(std::vector<X> &vec)
{
std::vector<X>().swap(vec);
}
template<typename X> inline void trim_vec(std::vector<X> &vec, std::size_t new_size)
{
if (new_size<vec.size())
std::vector<X>(vec.begin(),vec.begin() + new_size).swap(vec);
else
std::vector<X>(vec).swap(vec);
}
Insert a new item and return it, useful for simple move semantics like push_back(c).swap(value) and related cases.
template<class C>
typename C::value_type& push_front(C& container) {
container.push_front(typename C::value_type());
return container.front();
}
template<class C>
typename C::value_type& push_back(C& container) {
container.push_back(typename C::value_type());
return container.back();
}
template<class C>
typename C::value_type& push_top(C& container) {
container.push(typename C::value_type());
return container.top();
}
Pop and return an item:
template<class C>
typename C::value_type pop_front(C& container) {
typename C::value_type copy (container.front());
container.pop_front();
return copy;
}
template<class C>
typename C::value_type pop_back(C& container) {
typename C::value_type copy (container.back());
container.pop_back();
return copy;
}
template<class C>
typename C::value_type pop_top(C& container) {
typename C::value_type copy (container.top());
container.pop();
return copy;
}
IMO there needs to be more functionality for pair:
#ifndef pair_iterator_h_
#define pair_iterator_h_
#include <boost/iterator/transform_iterator.hpp>
#include <functional>
#include <utility>
// pair<T1, T2> -> T1
template <typename PairType>
struct PairGetFirst : public std::unary_function<PairType, typename PairType::first_type>
{
typename typename PairType::first_type& operator()(PairType& arg) const
{ return arg.first; }
const typename PairType::first_type& operator()(const PairType& arg) const
{ return arg.first; }
};
// pair<T1, T2> -> T2
template <typename PairType>
struct PairGetSecond : public std::unary_function<PairType, typename PairType::second_type>
{
typename PairType::second_type& operator()(PairType& arg) const
{ return arg.second; }
const typename PairType::second_type& operator()(const PairType& arg) const
{ return arg.second; }
};
// iterator over pair<T1, T2> -> iterator over T1
template <typename Iter>
boost::transform_iterator<PairGetFirst<typename std::iterator_traits<Iter>::value_type>, Iter>
make_first_iterator(Iter i)
{
return boost::make_transform_iterator(i,
PairGetFirst<typename std::iterator_traits<Iter>::value_type>());
}
// iterator over pair<T1, T2> -> iterator over T2
template <typename Iter>
boost::transform_iterator<PairGetSecond<typename std::iterator_traits<Iter>::value_type>, Iter>
make_second_iterator(Iter i)
{
return boost::make_transform_iterator(i,
PairGetSecond<typename std::iterator_traits<Iter>::value_type>());
}
// T1 -> pair<T1, T2>
template <typename FirstType, typename SecondType>
class InsertIntoPair1st : public std::unary_function<FirstType, std::pair<FirstType, SecondType> >
{
public:
InsertIntoPair1st(const SecondType& second_element) : second_(second_element) {}
result_type operator()(const FirstType& first_element)
{
return result_type(first_element, second_);
}
private:
SecondType second_;
};
// T2 -> pair<T1, T2>
template <typename FirstType, typename SecondType>
class InsertIntoPair2nd : public std::unary_function<SecondType, std::pair<FirstType, SecondType> >
{
public:
InsertIntoPair2nd(const FirstType& first_element) : first_(first_element) {}
result_type operator()(const SecondType& second_element)
{
return result_type(first_, second_element);
}
private:
FirstType first_;
};
#endif // pair_iterator_h_
template <typename T> size_t bytesize(std::vector<T> const& v) { return sizeof(T) * v.size(); }
If you need to use a lot of functions that take pointer + number of bytes, it's always just
fun(vec.data(), bytesize(vec));
Duplicate a string with *:
std::string operator*(std::string s, size_t n)
{
std::stringstream ss;
for (size_t i=0; i<n; i++) ss << s;
return ss.str();
}
One of my favorite is the Transposer that finds a transpose of a tuple of containers of the same size. That is, if you have a tuple<vector<int>,vector<float>>, it converts it into a vector<tuple<int, float>>. Comes handy in XML programming. Here is how I did it.
#include <iostream>
#include <iterator>
#include <vector>
#include <list>
#include <algorithm>
#include <stdexcept>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <boost/type_traits.hpp>
using namespace boost;
template <class TupleOfVectors>
struct GetTransposeTuple;
template <>
struct GetTransposeTuple<tuples::null_type>
{
typedef tuples::null_type type;
};
template <class TupleOfVectors>
struct GetTransposeTuple
{
typedef typename TupleOfVectors::head_type Head;
typedef typename TupleOfVectors::tail_type Tail;
typedef typename
tuples::cons<typename remove_reference<Head>::type::value_type,
typename GetTransposeTuple<Tail>::type> type;
};
template <class TupleOfVectors,
class ValueTypeTuple =
typename GetTransposeTuple<TupleOfVectors>::type,
unsigned int TUPLE_INDEX = 0>
struct Transposer
: Transposer <typename TupleOfVectors::tail_type,
ValueTypeTuple,
TUPLE_INDEX + 1>
{
typedef typename remove_reference<typename TupleOfVectors::head_type>::type
HeadContainer;
typedef typename TupleOfVectors::tail_type Tail;
typedef Transposer<Tail, ValueTypeTuple, TUPLE_INDEX + 1> super;
typedef std::vector<ValueTypeTuple> Transpose;
Transposer(TupleOfVectors const & tuple)
: super(tuple.get_tail()),
head_container_(tuple.get_head()),
head_iter_(head_container_.begin())
{}
Transpose get_transpose ()
{
Transpose tran;
tran.reserve(head_container_.size());
for(typename HeadContainer::const_iterator iter = head_container_.begin();
iter != head_container_.end();
++iter)
{
ValueTypeTuple vtuple;
this->populate_tuple(vtuple);
tran.push_back(vtuple);
}
return tran;
}
private:
HeadContainer const & head_container_;
typename HeadContainer::const_iterator head_iter_;
protected:
void populate_tuple(ValueTypeTuple & vtuple)
{
if(head_iter_ == head_container_.end())
throw std::runtime_error("Container bound exceeded.");
else
{
vtuple.get<TUPLE_INDEX>() = *head_iter_++;
super::populate_tuple (vtuple);
}
}
};
template <class ValueTypeTuple,
unsigned int INDEX>
struct Transposer <tuples::null_type, ValueTypeTuple, INDEX>
{
void populate_tuple(ValueTypeTuple &) {}
Transposer (tuples::null_type const &) {}
};
template <class TupleOfVectors>
typename Transposer<TupleOfVectors>::Transpose
transpose (TupleOfVectors const & tupleofv)
{
return Transposer<TupleOfVectors>(tupleofv).get_transpose();
}
int main (void)
{
typedef std::vector<int> Vint;
typedef std::list<float> Lfloat;
typedef std::vector<long> Vlong;
Vint vint;
Lfloat lfloat;
Vlong vlong;
std::generate_n(std::back_inserter(vint), 10, rand);
std::generate_n(std::back_inserter(lfloat), 10, rand);
std::generate_n(std::back_inserter(vlong), 10, rand);
typedef tuples::tuple<Vint, Lfloat, Vlong> TupleOfV;
typedef GetTransposeTuple<TupleOfV>::type TransposeTuple;
Transposer<TupleOfV>::Transpose tran =
transpose(make_tuple(vint, lfloat, vlong));
// Or alternatively to avoid copying
// transpose(make_tuple(ref(vint), ref(lfloat), ref(vlong)));
std::copy(tran.begin(), tran.end(),
std::ostream_iterator<TransposeTuple>(std::cout, "\n"));
return 0;
}
Not sure if these qualify as std wrappers, but my commonly used helper functions are:
void split(string s, vector<string> parts, string delims);
string join(vector<string>& parts, string delim);
int find(T& array, const V& value);
void assert(bool condition, string message);
V clamp(V value, V minvalue, V maxvalue);
string replace(string s, string from, string to);
const char* stristr(const char* a,const char*b);
string trim(string str);
T::value_type& dyn(T& array,int index);
T and V here are template arguments. The last function works the same way as []-operator, but with automating resizing to fit needed index.
Similar to what people posted before, I have convenience overloads of algorithms for simplifying passing iterator arguments. I call algorithms like this:
for_each(iseq(vec), do_it());
I overloaded all the algorithms such that they take a single parameter of type input_sequence_range<> instead of the two input iterators (input as in anything that isn't mere output).
template<typename In>
struct input_sequence_range
: public std::pair<In,In>
{
input_sequence_range(In first, In last)
: std::pair<In,In>(first, last)
{ }
};
And this is how iseq() works:
template<typename C>
input_sequence_range<typename C::const_iterator> iseq(const C& c)
{
return input_sequence_range<typename C::const_iterator>(c.begin(),
c.end());
}
Similarly, I have specializations for
const_iterators
pointers (primitive arrays)
stream iterators
any range [begin,end) just for a uniform use: use iseq() for everything
Unordered erase for std::vector. The most efficient way to erase an element from a vector but it does not preserve the order of elements. I didn't see the point of extending it to other containers since most don't have the same penalty for removing items from the middle. It's similar to some other templates already posted but it uses std::swap to move items instead of copying.
template<typename T>
void unordered_erase(std::vector<T>& vec, const typename std::vector<T>::iterator& it)
{
if (it != vec.end()) // if vec is empty, begin() == end()
{
std::swap(vec.back(), *it);
vec.pop_back();
}
}
Signum returns the sign of a type. Returns -1 for negative, 0 for zero and 1 for positive.
template <typename T>
int signum(T val)
{
return (val > T(0)) - (val < T(0));
}
Clamp is pretty self explanatory, it clamps a value so that it lies within the given range. It boggles my mind that the Standard Library includes min and max but not clamp
template<typename T>
T clamp(const T& value, const T& lower, const T& upper)
{
return value < lower ? lower : (value > upper ? upper : value);
}