I want to write a function to reverse one of two parts of number :
Input is: num = 1234567; part = 2
and output is: 1234765
So here is part that can be only 1 or 2
Now I know how to get part 1
int firstPartOfInt(int num) {
int ret = num;
digits = 1, halfDig = 10;
while (num > 9) {
ret = ret / 10;
digits++;
}
halfDigits = digits / 2;
for (int i = 1; i < halfDigits; i++) {
halfDigits *= 10;
}
ret = num;
while (num > halfDigits) {
ret = ret / 10;
}
return ret;
}
But I don't know how to get part 2 and reverse the number. If you post code here please do not use vector<> and other C++ feature not compatible with C
One way is to calculate the total number of digits in the number and then calculate a new number extracting digits from the original number in a certain order, complexity O(number-of-digits):
#include <stdio.h>
#include <stdlib.h>
unsigned reverse_decimal_half(unsigned n, unsigned half) {
unsigned char digits[sizeof(n) * 3];
unsigned digits10 = 0;
do digits[digits10++] = n % 10;
while(n /= 10);
unsigned result = 0;
switch(half) {
case 1:
for(unsigned digit = digits10 / 2; digit < digits10; ++digit)
result = result * 10 + digits[digit];
for(unsigned digit = digits10 / 2; digit--;)
result = result * 10 + digits[digit];
break;
case 2:
for(unsigned digit = digits10; digit-- > digits10 / 2;)
result = result * 10 + digits[digit];
for(unsigned digit = 0; digit < digits10 / 2; ++digit)
result = result * 10 + digits[digit];
break;
default:
abort();
}
return result;
}
int main() {
printf("%u %u %u\n", 0, 1, reverse_decimal_half(0, 1));
printf("%u %u %u\n", 12345678, 1, reverse_decimal_half(12345678, 1));
printf("%u %u %u\n", 12345678, 2, reverse_decimal_half(12345678, 2));
printf("%u %u %u\n", 123456789, 1, reverse_decimal_half(123456789, 1));
printf("%u %u %u\n", 123456789, 2, reverse_decimal_half(123456789, 2));
}
Outputs:
0 1 0
12345678 1 43215678
12345678 2 12348765
123456789 1 543216789
123456789 2 123459876
if understand this question well you need to reverse half of the decimal number. If the number has odd number of digits I assume that the first part is longer (for example 12345 - the first part is 123 the second 45). Because reverse is artihmetic the reverse the part 1 of 52001234 is 521234.
https://godbolt.org/z/frXvCM
(some numbers when reversed may wrap around - it is not checked)
int getndigits(unsigned number)
{
int ndigits = 0;
while(number)
{
ndigits++;
number /= 10;
}
return ndigits;
}
unsigned reverse(unsigned val, int ndigits)
{
unsigned left = 1, right = 1, result = 0;
while(--ndigits) left *= 10;
while(left)
{
result += (val / left) * right;
right *= 10;
val = val % left;
left /= 10;
}
return result;
}
unsigned reversehalf(unsigned val, int part)
{
int ndigits = getndigits(val);
unsigned parts[2], digits[2], left = 1;
if(ndigits < 3 || (ndigits == 3 && part == 2))
{
return val;
}
digits[0] = digits[1] = ndigits / 2;
if(digits[0] + digits[1] < ndigits) digits[0]++;
for(int dig = 0; dig < digits[1]; dig++) left *= 10;
parts[0] = val / left;
parts[1] = val % left;
parts[part - 1] = reverse(parts[part - 1], digits[part - 1]);
val = parts[0] * left + parts[1];
return val;
}
int main()
{
for(int number = 0; number < 40; number++)
{
unsigned num = rand();
printf("%u \tpart:%d\trev:%u\n", num,(number & 1) + 1,reversehalf(num, (number & 1) + 1));
}
}
My five cents.:)
#include <iostream>
int reverse_part_of_integer( int value, bool first_part = false )
{
const int Base = 10;
size_t n = 0;
int tmp = value;
do
{
++n;
} while ( tmp /= Base );
if ( first_part && n - n / 2 > 1 || !first_part && n / 2 > 1 )
{
n = n / 2;
int divider = 1;
while ( n-- ) divider *= Base;
int first_half = value / divider;
int second_half = value % divider;
int tmp = first_part ? first_half : second_half;
value = 0;
do
{
value = Base * value + tmp % Base;
} while ( tmp /= Base );
value = first_part ? value * divider + second_half
: first_half * divider +value;
}
return value;
}
int main()
{
int value = -123456789;
std::cout << "initial value: "
<< value << '\n';
std::cout << "First part reversed: "
<< reverse_part_of_integer( value, true ) << '\n';
std::cout << "Second part reversed: "
<< reverse_part_of_integer( value ) << '\n';
}
The program output is
initial value: -123456789
First part reversed: -543216789
Second part reversed: -123459876
Just for fun, a solution that counts only half the number of digits before reversing:
constexpr int base{10};
constexpr int partial_reverse(int number, int part)
{
// Split the number finding its "halfway"
int multiplier = base;
int abs_number = number < 0 ? -number : number;
int parts[2] = {0, abs_number};
while (parts[1] >= multiplier)
{
multiplier *= base;
parts[1] /= base;
}
multiplier /= base;
parts[0] = abs_number % multiplier;
// Now reverse only one of the two parts
int tmp = parts[part];
parts[part] = 0;
while (tmp)
{
parts[part] = parts[part] * base + tmp % base;
tmp /= base;
}
// Then rebuild the number
int reversed = parts[0] + multiplier * parts[1];
return number < 0 ? -reversed : reversed;
}
int main()
{
static_assert(partial_reverse(123, 0) == 123);
static_assert(partial_reverse(-123, 1) == -213);
static_assert(partial_reverse(1000, 0) == 1000);
static_assert(partial_reverse(1009, 1) == 109);
static_assert(partial_reverse(123456, 0) == 123654);
static_assert(partial_reverse(1234567, 0) == 1234765);
static_assert(partial_reverse(-1234567, 1) == -4321567);
}
Related
I want to find the number of numbers between 1 and n that are valid numbers in base two (binary).
1 ≤ n ≤ 10^9
For example, suppose n is equal to 101.
Input: n = 101
In this case, the answer is 5
Output: 1, 10, 11, 100, 101 -> 5
Another example
Input: n = 13
Output: 1, 10, 11 -> 3
Here is my code...
#include <iostream>
using namespace std;
int main()
{
int n, c = 0;
cin >> n;
for (int i = 1; i <= n; ++i)
{
int temp = i;
bool flag = true;
while(temp != 0) {
int rem = temp % 10;
if (rem > 1)
{
flag = false;
break;
}
temp /= 10;
}
if (flag)
{
c++;
}
}
cout << c;
return 0;
}
But I want more speed.
(With only one loop or maybe without any loop)
Thanks in advance!
The highest binary number that will fit in a d-digit number d1 d2 ... dn is
b1 b2 ... bn where
bi = 0 if di = 0, and
bi = 1 otherwise.
A trivial implementation using std::to_string:
int max_binary(int input) {
int res = 0;
auto x = std::to_string(input);
for (char di : x) {
int bi = x == '0' ? 0 : 1;
res = 2 * res + bi;
}
return res;
}
Details:
In each step, if the digit was one, then we add 2 to the power of the number of digits we have.
If the number was greater than 1, then all cases are possible for that number of digits, and we can also count that digit itself and change the answer altogether (-1 is because we do not want to calculate the 0).
#include <iostream>
using namespace std;
int main()
{
long long int n, res = 0, power = 1;
cin >> n;
while(n != 0) {
int rem = n % 10;
if (rem == 1) {
res += power;
} else if (rem > 1) {
res = 2 * power - 1;
}
n /= 10;
power *= 2;
}
cout << res;
return 0;
}
I'm trying to create a simple program to convert a binary number, for example 111100010 to decimal 482. I've done the same in Python, and it works, but I can't find what I'm doing wrong in C++.
When I execute the C++ program, I get -320505788. What have I done wrong?
This is the Python code:
def digit_count(bit_number):
found = False
count = 0
while not found:
division = bit_number / (10 ** count)
if division < 1:
found = True
else:
count += 1
return count
def bin_to_number(bit_number):
digits = digit_count(bit_number)
number = 0
for i in range(digits):
exp = 10 ** i
if exp < 10:
digit = int(bit_number % 10)
digit = digit * (2 ** i)
number += digit
else:
digit = int(bit_number / exp % 10)
digit = digit * (2 ** i)
number += digit
print(number)
return number
bin_to_convert = 111100010
bin_to_number(bin_to_convert)
# returns 482
This is the C++ code:
#include <iostream>
#include <cmath>
using namespace std;
int int_length(int bin_number);
int bin_to_int(int bin_number);
int main()
{
cout << bin_to_int(111100010) << endl;
return 0;
}
int int_length(int bin_number){
bool found = false;
int digit_count = 0;
while(!found){
int division = bin_number / pow(10, digit_count);
if(division < 1){
found = true;
}
else{
digit_count++;
}
}
return digit_count;
}
int bin_to_int(int bin_number){
int number_length = int_length(bin_number);
int number = 0;
for(int i = 0; i < number_length; i++){
int e = pow(10, i);
int digit;
if(e < 10){
digit = bin_number % 10;
digit = digit * pow(2, i);
number = number + digit;
}
else{
if((e % 10) == 0){
digit = 0;
}
else{
digit = bin_number / (e % 10);
}
digit = digit * pow(2, i);
number = number + digit;
}
}
return number;
}
The problem is that you converted this fragment of Python code
else:
digit = int(bit_number / exp % 10)
digit = digit * (2 ** i)
number += digit
into this:
else{
if((e % 10) == 0){
digit = 0;
}
else{
digit = bin_number / (e % 10);
}
digit = digit * pow(2, i);
number = number + digit;
}
In other words, you are trying to apply / after applying %, and protect from division by zero in the process.
This is incorrect: you should apply them the other way around, like this:
else{
digit = (bit_number / e) % 10;
digit = digit * pow(2, i);
number = number + digit;
}
Demo 1
Note that the entire conditional is redundant - you can remove it from your for loop:
for(int i = 0; i < number_length; i++){
int e = pow(10, i);
int digit = (bit_number / e) % 10;
digit = digit * pow(2, i);
number = number + digit;
}
Demo 2
One problem is that the 111100010 in main is not a binary literal for 482 base 10 but is actually the decimal value of 111100010. If you are going to use a binary literal there is no need for any of your code, just write it out since an integer is an integer regardless of the representation.
If you are trying to process a binary string, you could do something like this instead
#include <iostream>
#include <algorithm>
using namespace std;
int bin_to_int(const std::string& binary_string);
int main()
{
cout << bin_to_int("111100010") << endl;
cout << 0b111100010 << endl;
return 0;
}
int bin_to_int(const std::string& bin_string){
//Strings index from the left but bits start from the right so reverse it
std::string binary = bin_string;
std::reverse(binary.begin(), binary.end());
int number_length = bin_string.size();
//cout << "bits " << number_length << "\n";
int number = 0;
for(int i = 0; i <= number_length; i++){
int bit_value = 1 << i;
if(binary[i] == '1')
{
//cout << "Adding " << bit_value << "\n";
number += bit_value;
}
}
return number;
}
Note that to use the binary literal you will need to compile for c++14.
class BigInt
{
private:
string data;
bool isNegative;
};
BigInt multiplication(BigInt left, BigInt right)
{
BigInt sum;
BigInt result;
sum.data.pop_back();
result.data.pop_back();
int count = 0;
int l1 = static_cast<int>(left.data.size());
int l2 = static_cast<int>(right.data.size());
int carry = 0;
for(int x = 0; x < l1 + l2; x++)
{
result.data.push_back('0');
}
for(int i = 0; i < l1; i++)
{
for(int k = count; k > 0 ; --k)
{
result.data.push_back('0');
}
for(int j = 0; j < l2; j++)
{
result = (left.data[j] - '0') * (right.data[i] - '0');
sum = sum + result;
if(result.data[i] >= 10)
{
carry = result.data[i + 1] / (10 - '0');
result.data[i] = (result.data[i] + '0') % 10;
}
else
{
carry = 0;
}
}
count++;
}
return sum;
}
I am suppose to be able to multiply very large numbers using strings. My code is working for single digits numbers only. Does anyone know why? Any insight would help greatly.
I can't multiply any numbers with more than one digit. I'm getting nothing for results.
This is a solution from geeksforgeeks which is very similar to what you are trying to do. I modified it to fit your class there might be an error as I have not compiled it.
BigInt multiplication(BigInt num1, BigInt num2)
{
int n1 = num1.data.size();
int n2 = num2.data.size();
if (n1 == 0 || n2 == 0)
return "0";
// will keep the result number in vector
// in reverse order
vector<int> result(n1 + n2, 0);
// Below two indexes are used to find positions
// in result.
int i_n1 = 0;
int i_n2 = 0;
// Go from right to left in num1
for (int i=n1-1; i>=0; i--)
{
int carry = 0;
int n1 = num1.data[i] - '0';
// To shift position to left after every
// multiplication of a digit in num2
i_n2 = 0;
// Go from right to left in num2
for (int j=n2-1; j>=0; j--)
{
// Take current digit of second number
int n2 = num2[j].data - '0';
// Multiply with current digit of first number
// and add result to previously stored result
// at current position.
int sum = n1*n2 + result[i_n1 + i_n2] + carry;
// Carry for next iteration
carry = sum/10;
// Store result
result[i_n1 + i_n2] = sum % 10;
i_n2++;
}
// store carry in next cell
if (carry > 0)
result[i_n1 + i_n2] += carry;
// To shift position to left after every
// multiplication of a digit in num1.
i_n1++;
}
// ignore '0's from the right
int i = result.size() - 1;
while (i>=0 && result[i] == 0)
i--;
// If all were '0's - means either both or
// one of num1 or num2 were '0'
if (i == -1)
return "0";
// generate the result string
string s = "";
while (i >= 0)
s += std::to_string(result[i--]);
BigInt temp(s, num1.isNegative ^ num2.isNegative);
return temp;
}
Hope this helps.
How to create all possible numbers, starting from a given one, where all digits of the new ones are moved one slot to the right? For example if we have 1234. I want to generate 4123, 3412 and 2341.
What I have come out with so far is this:
int move_digits(int a)
{
int aux = 0;
aux = a % 10;
for(int i=pow(10, (number_digits(a) - 1)); i>0; i=i/10)
aux = aux * 10 + ((a % i) / (i/10));
return aux;
}
But it doesn't work.
The subprogram number_digits looks like this (it just counts how many digits the given number has):
int number_digits(int a)
{
int ct = 0;
while(a != 0)
{
a = a/10;
ct++;
}
return ct;
}
I think there is no need to write separate function number_digits.
I would write function move_digits simpler
#include <iostream>
#include <cmath>
int move_digits( int x )
{
int y = x;
double n = 0.0;
while ( y /= 10 ) ++n;
return ( x / 10 + x % 10 * std::pow( 10.0, n ) );
}
int main()
{
int x = 1234;
std::cout << x << std::endl;
std::cout << move_digits( x ) << std::endl;
}
Retrieving the last digit of n: n % 10.
To "cut off" the last digit, you could use number / 10.
Say you have a three-digit number n, then you can prepend a new digit d using 1000 * d + n
That said, you probably want to compute
aux = pow(10, number_digits - 1) * (aux % 10) + (aux / 10)
Calculatea/(number_digits(a) - 1) and a%(number_digits(a) - 1)
And your answer is (a%(number_digits(a) - 1))*10 + a/(number_digits(a) - 1)
int i =0 ;
int len = number_digits(a);
while(i < len){
cout << (a%(len - 1))*10 + a/(len - 1) <<endl;
a = (a%(len - 1))*10 + a/(len - 1);
}
void move_digits(int a)
{
int digits = 0;
int b = a;
while(b / 10 ){
digits++;
b = b / 10;
}
for (int i = 0; i < digits; ++i)
{
int c = a / 10;
int d = a % 10;
int res = c + pow(10, digits) * d;
printf("%d\n", res);
a = res;
}
printf("\n");
}
int main()
{
move_digits(12345);
}
I've tried to check whether a number is a palindrome with the following code:
unsigned short digitsof (unsigned int x)
{
unsigned short n = 0;
while (x)
{
x /= 10;
n++;
}
return n;
}
bool ispalindrome (unsigned int x)
{
unsigned short digits = digitsof (x);
for (unsigned short i = 1; i <= digits / 2; i++)
{
if (x % (unsigned int)pow (10, i) != x % (unsigned int)pow (10, digits - 1 + i))
{
return false;
}
}
return true;
}
However, the following code isn't able to check for palindromes - false is always returned even if the number is a palindrome.
Can anyone point out the error?
(Please note: I'm not interested to make it into a string and reverse it to see where the problem is: rather, I'm interested to know where the error is in the above code.)
I personally would just build a string from the number, and then treat it as a normal palindrome check (check that each character in the first half matches the ones at length()-index).
x % (unsigned int)pow (10, i) is not the ith digit.
The problem is this:
x % (unsigned int)pow (10, i)
Lets try:
x =504405
i =3
SO I want 4.
x % 10^3 => 504405 %1000 => 405 NOT 4
How about
x / (unsigned int)pow (10, i -1) % 10
Just for more info! The following two functions are working for me:
double digitsof (double x)
{
double n = 0;
while (x > 1)
{
x /= 10;
n++;
}
return n;
}
bool ispalindrome (double x)
{
double digits = digitsof (x);
double temp = x;
for(double i = 1; i <= digits/2; i++)
{
float y = (int)temp % 10;
cout<<y<<endl;
temp = temp/10;
float z = (int)x / (int)pow(10 , digits - i);
cout<<(int)z<<endl;
x = (int)x % (int)pow(10 , digits - i);
if(y != z)
return false;
}
return true;
}
Code to check if given number is palindrome or not in JAVA
import java.util.*;
public class HelloWorld{
private static int countDigits(int num) {
int count = 0;
while(num>0) {
count++;
num /= 10;
}
return count;
}
public static boolean isPalin(int num) {
int digs = HelloWorld.countDigits(num);
int divderToFindMSD = 1;
int divderToFindLSD = 1;
for (int i = 0; i< digs -1; i++)
divderToFindMSD *= 10;
int mid = digs/2;
while(mid-- != 0)
{
int msd = (num/divderToFindMSD)%10;
int lsd = (num/divderToFindLSD)%10;
if(msd!=lsd)
return false;
divderToFindMSD /= 10;
divderToFindLSD *= 10;
}
return true;
}
public static void main(String []args) {
boolean isPalin = HelloWorld.isPalin(1221);
System.out.println("Results: " + isPalin);
}
}
I have done this with my own solution which is restricted with these conditions
Do not convert int to string.
Do not use any helper function.
var inputNumber = 10801
var firstDigit = 0
var lastDigit = 0
var quotient = inputNumber
while inputNumber > 0 {
lastDigit = inputNumber % 10
var tempNum = inputNumber
var count = 0
while tempNum > 0 {
tempNum = tempNum / 10
count = count + 1
}
var n = 1
for _ in 1 ..< count {
n = n * 10
}
firstDigit = quotient / n
if firstDigit != lastDigit {
print("Not a palindrome :( ")
break
}
quotient = quotient % n
inputNumber = inputNumber / 10
}
if firstDigit == lastDigit {
print("It's a palindrome :D :D ")
}