How to create a dynamic array of integers in C++ using the new keyword?
int main()
{
int size;
std::cin >> size;
int *array = new int[size];
delete [] array;
return 0;
}
Don't forget to delete every array you allocate with new.
Since C++11, there's a safe alternative to new[] and delete[] which is zero-overhead unlike std::vector:
std::unique_ptr<int[]> array(new int[size]);
In C++14:
auto array = std::make_unique<int[]>(size);
Both of the above rely on the same header file, #include <memory>
You might want to consider using the Standard Template Library . It's simple and easy to use, plus you don't have to worry about memory allocations.
http://www.cplusplus.com/reference/stl/vector/vector/
int size = 5; // declare the size of the vector
vector<int> myvector(size, 0); // create a vector to hold "size" int's
// all initialized to zero
myvector[0] = 1234; // assign values like a c++ array
int* array = new int[size];
As soon as question is about dynamic array you may want not just to create array with variable size, but also to change it's size during runtime. Here is an example with memcpy, you can use memcpy_s or std::copy as well. Depending on compiler, <memory.h> or <string.h> may be required. When using this functions you allocate new memory region, copy values of original memory regions to it and then release them.
// create desired array dynamically
size_t length;
length = 100; //for example
int *array = new int[length];
// now let's change is's size - e.g. add 50 new elements
size_t added = 50;
int *added_array = new int[added];
/*
somehow set values to given arrays
*/
// add elements to array
int* temp = new int[length + added];
memcpy(temp, array, length * sizeof(int));
memcpy(temp + length, added_array, added * sizeof(int));
delete[] array;
array = temp;
You may use constant 4 instead of sizeof(int).
dynamically allocate some memory using new:
int* array = new int[SIZE];
The answers above are all good for assigning one-dimensional int-arrays. Anyhow, I want to add that it is also possible to do this for multi-dimensional arrays you'd normally define like int[][] matrix = {{1,2}, {3,4}}.
The key is that you store all elements in one array and make use of the fact that the array is a continuous block in memory (see here for a clarification of "block"), meaning that you can "slice" yourself through dimensions. Below you can see an example for a 2d-array.
You can find a discussion regarding this topic here on SO.
/*Defining a 2d-matrix.*/
struct Matrix {
int rows, columns;
int* matrix;
Matrix(int rows, int columns) : rows(rows), columns(columns) {
// This approach uses a single array since "new" cannot create
// multidimensional arrays.
// It also spares the performance cost of an array of arrays.
matrix = new int[columns * rows];
}
~Matrix() {
// Release the memory after destroying the Matrix-object
delete[] matrix;
}
/*Access the element at position [r]ow and [c]olumn.*/
int getElement(int r, int c) {
// matrix[c][r] is rewritten as matrix[column + columns * rows]
// -> matrix <=> Single memory block
return matrix[c + columns * r];
}
/*Set the element at position [r]ow and [c]olumn with given [val]ue.*/
void setElement(int r, int c, int val) {
matrix[c + columns * r] = val;
}
};
An example to populate such a Matrix-object would be:
/*Initialize the matrix with the continuous numbers 0..N*/
void Matrix::initDummyMatrix(){
int counter = 0;
for (int row = 0; row < rows; ++row) {
for (int col = 0; col < columns; ++col) {
setElement(row, col, counter++);
}
}
}
#include <stdio.h>
#include <cstring>
#include <iostream>
using namespace std;
int main()
{
float arr[2095879];
long k,i;
char ch[100];
k=0;
do{
cin>>ch;
arr[k]=atof(ch);
k++;
}while(ch[0]=='0');
cout<<"Array output"<<endl;
for(i=0;i<k;i++){
cout<<arr[i]<<endl;
}
return 0;
}
The above code works, the maximum float or int array size that could be defined was with size 2095879, and exit condition would be non zero beginning input number
Related
How to create a dynamic array of integers in C++ using the new keyword?
int main()
{
int size;
std::cin >> size;
int *array = new int[size];
delete [] array;
return 0;
}
Don't forget to delete every array you allocate with new.
Since C++11, there's a safe alternative to new[] and delete[] which is zero-overhead unlike std::vector:
std::unique_ptr<int[]> array(new int[size]);
In C++14:
auto array = std::make_unique<int[]>(size);
Both of the above rely on the same header file, #include <memory>
You might want to consider using the Standard Template Library . It's simple and easy to use, plus you don't have to worry about memory allocations.
http://www.cplusplus.com/reference/stl/vector/vector/
int size = 5; // declare the size of the vector
vector<int> myvector(size, 0); // create a vector to hold "size" int's
// all initialized to zero
myvector[0] = 1234; // assign values like a c++ array
int* array = new int[size];
As soon as question is about dynamic array you may want not just to create array with variable size, but also to change it's size during runtime. Here is an example with memcpy, you can use memcpy_s or std::copy as well. Depending on compiler, <memory.h> or <string.h> may be required. When using this functions you allocate new memory region, copy values of original memory regions to it and then release them.
// create desired array dynamically
size_t length;
length = 100; //for example
int *array = new int[length];
// now let's change is's size - e.g. add 50 new elements
size_t added = 50;
int *added_array = new int[added];
/*
somehow set values to given arrays
*/
// add elements to array
int* temp = new int[length + added];
memcpy(temp, array, length * sizeof(int));
memcpy(temp + length, added_array, added * sizeof(int));
delete[] array;
array = temp;
You may use constant 4 instead of sizeof(int).
dynamically allocate some memory using new:
int* array = new int[SIZE];
The answers above are all good for assigning one-dimensional int-arrays. Anyhow, I want to add that it is also possible to do this for multi-dimensional arrays you'd normally define like int[][] matrix = {{1,2}, {3,4}}.
The key is that you store all elements in one array and make use of the fact that the array is a continuous block in memory (see here for a clarification of "block"), meaning that you can "slice" yourself through dimensions. Below you can see an example for a 2d-array.
You can find a discussion regarding this topic here on SO.
/*Defining a 2d-matrix.*/
struct Matrix {
int rows, columns;
int* matrix;
Matrix(int rows, int columns) : rows(rows), columns(columns) {
// This approach uses a single array since "new" cannot create
// multidimensional arrays.
// It also spares the performance cost of an array of arrays.
matrix = new int[columns * rows];
}
~Matrix() {
// Release the memory after destroying the Matrix-object
delete[] matrix;
}
/*Access the element at position [r]ow and [c]olumn.*/
int getElement(int r, int c) {
// matrix[c][r] is rewritten as matrix[column + columns * rows]
// -> matrix <=> Single memory block
return matrix[c + columns * r];
}
/*Set the element at position [r]ow and [c]olumn with given [val]ue.*/
void setElement(int r, int c, int val) {
matrix[c + columns * r] = val;
}
};
An example to populate such a Matrix-object would be:
/*Initialize the matrix with the continuous numbers 0..N*/
void Matrix::initDummyMatrix(){
int counter = 0;
for (int row = 0; row < rows; ++row) {
for (int col = 0; col < columns; ++col) {
setElement(row, col, counter++);
}
}
}
#include <stdio.h>
#include <cstring>
#include <iostream>
using namespace std;
int main()
{
float arr[2095879];
long k,i;
char ch[100];
k=0;
do{
cin>>ch;
arr[k]=atof(ch);
k++;
}while(ch[0]=='0');
cout<<"Array output"<<endl;
for(i=0;i<k;i++){
cout<<arr[i]<<endl;
}
return 0;
}
The above code works, the maximum float or int array size that could be defined was with size 2095879, and exit condition would be non zero beginning input number
I need to create a square matrix of a given size. I know how to create a dynamic one-dimensional array of a given size. Doesn't the same work for two dimensinal arrays like the lines below?
cin>>size;
int* a[][]=new int[size][size]
int* a[][]=new int[size][size]
No, this doesn't work.
main.cpp:4: error: only the first dimension of an allocated array may have dynamic size
new int[size][size];
^~~~
If the size of the rows were fixed then you could do:
// allocate an array with `size` rows and 10 columns
int (*array)[10] = new int[size][10];
In C++ you can't have raw arrays with two dimensions where both dimensions are dynamic. This is because raw array indexing works in terms of pointers; for example, in order to access the second row a pointer to the first needs to be incremented by the size of the row. But when the size of a row is dynamic the array doesn't know that size and so C++ doesn't know how to figure out how to do the pointer increment.
If you want an array with multiple dynamic dimensions, then you need to either structure the array allocations such that C++'s default array indexing logic can handle it (such as the top answers to this duplicate question), or you need to implement the logic for figuring out the appropriate pointer increments yourself.
For an array where each row has the same size I would recommend against using multiple allocations such as those answers suggest, or using a vector of vectors. Using a vector of vectors addresses the difficulty and dangerousness of doing the allocations by hand, but it still uses more memory than necessary and doesn't allow faster memory access patterns.
A different approach, flattening the multi-dimensional array, can make for code as easy to read and write as any other approach, doesn't use extra memory, and can perform much, much better.
A flattened array means you use just a single dimentional array that has the same number of elements as your desired 2D array, and you perform arithmetic for converting between the multi-dimensional indices and the corresponding single dimensional index. With new it looks like:
int *arr = new int[row_count * column_count];
Row i, column j in the 2d array corresponds to arr[column_count*i + j]. arr[n] corresponds to the element at row n/column_count and column n% column_count. For example, in an array with 10 columns, row 0 column 0 corresponds to arr[0]; row 0, column 1 correponds to arr[1]; row 1 column 0 correponds to arr[10]; row 1, column 1 corresponds to arr[11].
You should avoid doing manual memory management using raw new and delete, such as in the case of int *arr = new int[size];. Instead resource management should be wrapped up inside a RAII class. One example of a RAII class for managing dynamically allocated memory is std::vector.
std::vector<int> arr(row_count * column_count);
arr[column_count*i + j]
You can further wrap the logic for computing indices up in another class:
#include <vector>
class Array2d {
std::vector<int> arr;
int columns;
public:
Array2d(int rows, int columns)
: arr(rows * columns)
, columns(columns)
{}
struct Array2dindex { int row; int column; };
int &operator[] (Array2dindex i) {
return arr[columns*i.row + i.column];
}
};
#include <iostream>
int main() {
int size;
std::cin >> size;
Array2d arr(size, size);
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
arr[{i, j}] = 100;
}
}
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
std::cout << arr[{i, j}] << ' ';
}
std::cout << '\n';
}
}
If you're using C++11 you can also use std::array.
const int iRows = 3, iCols = 3; // number of rows and columns
std::array<std::array<int, iCols>, iRows> matrix;
// fill with 1,2,3 4,5,6 7,8,9
for(int i=0;i<iRows;++i)
for(int j=0;j<iCols;++j)
matrix[i][j] = i * iCols + j + 1;
This class also allows for bounds checking by using the function
std::array::at
which (just like operator[]) returns a const reference if the array-object is const-qualified or a reference if it is not. Please note that
std::array
is not a variable-sized array-type, like
std::vector
You can use std::vector:
std::vector<std::vector<int*>> a(size, std::vector<int*>(size));
This will create a dynamically allocated 2D array of int* with width and height equal to size.
Or the same with new:
int*** a = new int**[size];
for (size_t i = 0; i < size; ++i)
a[i] = new int*[size];
...
for (size_t i = 0; i < size; ++i)
delete a[i];
delete a;
Note that there's no new[][] operator in C++, you just have to call new[] twice.
However, if you want to do it with new and delete instead of std::vector, you should use smart pointers instead of raw pointers, for example:
std::unique_ptr<std::unique_ptr<int*>[]> a(new std::unique_ptr<int*>[size]);
for (size_t i = 0; i < size; ++i)
a[i].reset(new int*[size]);
...
// No need to call `delete`, std::unique_ptr does it automatically.
I am a Fortran user and do not know C++ well enough. I need to make some additions into an existing C++ code. I need to create a 2d matrix (say A) of type double whose size (say m x n) is known only during the run. With Fortran this can be done as follows
real*8, allocatable :: A(:,:)
integer :: m, n
read(*,*) m
read(*,*) n
allocate(a(m,n))
A(:,:) = 0.0d0
How do I create a matrix A(m,n), in C++, when m and n are not known at the time of compilation? I believe the operator new in C++ can be useful but not not sure how to implement it with doubles. Also, when I use following in C++
int * x;
x = new int [10];
and check the size of x using sizeof(x)/sizeof(x[0]), I do not have 10, any comments why?
To allocate dynamically a construction similar to 2D array use the following template.
#include <iostream>
int main()
{
int m, n;
std::cout << "Enter the number of rows: ";
std::cin >> m;
std::cout << "Enter the number of columns: ";
std::cin >> n;
double **a = new double * [m];
for ( int i = 0; i < m; i++ ) a[i] = new double[n]();
//...
for ( int i = 0; i < m; i++ ) delete []a[i];
delete []a;
}
Also you can use class std::vector instead of the manually allocated pointers.
#include <iostream>
#include <vector>
int main()
{
int m, n;
std::cout << "Enter the number of rows: ";
std::cin >> m;
std::cout << "Enter the number of columns: ";
std::cin >> n;
std::vector<std::vector<double>> v( m, std::vector<double>( n ) );
//...
}
As for this code snippet
int * x;
x = new int [10];
then x has type int * and x[0] has type int. So if the size of the pointer is equal to 4 and the size of an object of type int is equal also to 4 then sizeof( x ) / sizeof( x[0] ) will yields 1. Pointers do not keep the information whether they point to only a single object or the first object pf some sequence of objects.
I would recommend using std::vector and avoid all the headache of manually allocating and deallocating memory.
Here's an example program:
#include <iostream>
#include <vector>
typedef std::vector<double> Row;
typedef std::vector<Row> Matrix;
void testMatrix(int M, int N)
{
// Create a row with all elements set to 0.0
Row row(N, 0.0);
// Create a matrix with all elements set to 0.0
Matrix matrix(M, row);
// Test accessing the matrix.
for ( int i = 0; i < M; ++i )
{
for ( int j = 0; j < N; ++j )
{
matrix[i][j] = i+j;
std::cout << matrix[i][j] << " ";
}
std::cout << std::endl;
}
}
int main()
{
testMatrix(10, 20);
}
The formal C++ way of doing it would be this:
std::vector<std::vector<int>> a;
This creates container which contains a zero size set of sub-containers. C++11/C++13 provide std::array for fixed-sized containers, but you specified runtime sizing.
We now have to impart our dimensions on this and, unfortunately. Lets assign the top-level:
a.resize(10);
(you can also push or insert elements)
What we now have is a vector of 10 vectors. Unfortunately, they are all independent, so you would need to:
for (size_t i = 0; i < a.size(); ++i) {
a[i].resize(10);
}
We now have a 10x10. We can also use vectors constructor:
std::vector<std::vector<int>> a(xSize, std::vector<int>(ySize)); // assuming you want a[x][y]
Note that vectors are fully dynamic, so we can resize elements as we need:
a[1].push_back(10); // push value '10' onto a[1], creating an 11th element in a[1]
a[2].erase(2); // remove element 2 from a[2], reducing a[2]s size to 9
To get the size of a particular slot:
a.size(); // returns 10
a[1].size(); // returns 11 after the above
a[2].size(); // returns 9 after teh above.
Unfortunately C++ doesn't provide a strong, first-class way to allocate an array that retains size information. But you can always create a simple C-style array on the stack:
int a[10][10];
std::cout << "sizeof a is " << sizeof(a) <<'\n';
But using an allocator, that is placing the data onto the heap, requires /you/ to track size.
int* pointer = new int[10];
At this point, "pointer" is a numeric value, zero to indicate not enough memory was available or the location in memory where the first of your 10 consecutive integer storage spaces are located.
The use of the pointer decorator syntax tells the compiler that this integer value will be used as a pointer to store addresses and so allow pointer operations via the variable.
The important thing here is that all we have is an address, and the original C standard didn't specify how the memory allocator would track size information, and so there is no way to retrieve the size information. (OK, technically there is, but it requires using compiler/os/implementation specific information that is subject to frequent change)
These integers must be treated as a single object when interfacing with the memory allocation system -- you can't, for example:
delete pointer + 5;
to delete the 5th integer. They are a single allocation unit; this notion allows the system to track blocks rather than individual elements.
To delete an array, the C++ syntax is
delete[] pointer;
To allocate a 2-dimensional array, you will need to either:
Flatten the array and handle sizing/offsets yourself:
static const size_t x = 10, y = 10;
int* pointer = new int[x * y];
pointer[0] = 0; // position 0, the 1st element.
pointer[x * 1] = 0; // pointer[1][0]
or you could use
int access_2d_array_element(int* pointer, const size_t xSize, const size_t ySize, size_t x, size_t y)
{
assert(x < xSize && y < ySize);
return pointer[y * xSize + x];
}
That's kind of a pain, so you would probably be steered towards encapsulation:
class Array2D
{
int* m_pointer;
const size_t m_xSize, m_ySize;
public:
Array2D(size_t xSize, size_t ySize)
: m_pointer(new int[xSize * ySize])
, m_xSize(xSize)
, m_ySize(ySize)
{}
int& at(size_t x, size_t y)
{
assert(x < m_xSize && y < m_ySize);
return m_pointer[y * m_xSize + x];
}
// total number of elements.
size_t arrsizeof() const
{
return m_xSize * m_ySize;
}
// total size of all data elements.
size_t sizeof() const
{
// this sizeof syntax makes the code more generic.
return arrsizeof() * sizeof(*m_pointer);
}
~Array2D()
{
delete[] m_pointer;
}
};
Array2D a(10, 10);
a.at(1, 3) = 13;
int x = a.at(1, 3);
Or,
For each Nth dimension (N < dimensions) allocate an array of pointers-to-pointers, only allocating actual ints for the final dimension.
const size_t xSize = 10, ySize = 10;
int* pointer = new int*(x); // the first level of indirection.
for (size_t i = 0; i < x; ++i) {
pointer[i] = new int(y);
}
pointer[0][0] = 0;
for (size_t i = 0; i < x; ++i) {
delete[] pointer[i];
}
delete[] pointer;
This last is more-or-less doing the same work, it just creates more memory fragmentation than the former.
-----------EDIT-----------
To answer the question "why do I not have 10" you're probably compiling in 64-bit mode, which means that "x" is an array of 10 pointers-to-int, and because you're in 64-bit mode, pointers are 64-bits long, while ints are 32 bits.
The C++ equivalent of your Fortran code is:
int cols, rows;
if ( !(std::cin >> cols >> rows) )
// error handling...
std::vector<double> A(cols * rows);
To access an element of this array you would need to write A[r * rows + c] (or you could do it in a column-major fashion, that's up to you).
The element access is a bit clunky, so you could write a class that wraps up holding this vector and provides a 2-D accessor method.
In fact your best bet is to find a free library that already does this, instead of reinventing the wheel. There isn't a standard Matrix class in C++, because somebody would always want a different option (e.g. some would want row-major storage, some column-major, particular operations provided, etc. etc.)
Someone suggested boost::multi_array; that stores all its data contiguously in row-major order and is probably suitable. If you want standard matrix operations consider something like Eigen, again there are a lot of alternatives out there.
If you want to roll your own then it could look like:
struct FortranArray2D // actually easily extensible to any number of dimensions
{
FortranArray2D(size_t n_cols, size_t n_rows)
: n_cols(n_cols), n_rows(n_rows), content(n_cols * n_rows) { }
double &operator()(size_t col, size_t row)
{ return content.at(row * n_rows + col); }
void resize(size_t new_cols, size_t new_rows)
{
FortranArray2D temp(new_cols, new_rows);
// insert some logic to move values from old to new...
*this = std::move(temp);
}
private:
size_t n_rows, n_cols;
std::vector<double> content;
};
Note in particular that by avoiding new you avoid the thousand and one headaches that come with manual memory management. Your class is copyable and movable by default. You could add further methods to replicate any functionality that the Fortran array has which you need.
int ** x;
x = new int* [10];
for(int i = 0; i < 10; i++)
x[i] = new int[5];
Unfortunately you'll have to store the size of matrix somewhere else.
C/C++ won't do it for you. sizeof() works only when compiler knows the size, which is not true in dynamic arrays.
And if you wan to achieve it with something more safe than dynamic arrays:
#include <vector>
// ...
std::vector<std::vector<int>> vect(10, std::vector<int>(5));
vect[3][2] = 1;
I originally asked using nested std::array to create an multidimensional array without knowing dimensions or extents until runtime but this had The XY Problem of trying to accomplish it with std::array.
The questions One-line initialiser for Boost.MultiArray and How do I make a multidimensional array of undetermined size a member of a class in c++? and their answers give some helpful information how to use Boost::MultiArray to avoid needing to know the extents of the dimensions at runtime, but fail to demonstrate how to have a class member that can store an array (created at runtime) whose dimensions and extents are not known until runtime.
Just avoid multidimensional arrays:
template<typename T>
class Matrix
{
public:
Matrix(unsigned m, unsigned n)
: n(n), data(m * n)
{}
T& operator ()(unsigned i, unsigned j) {
return data[ i * n + j ];
}
private:
unsigned n;
std::vector<T> data;
};
int main()
{
Matrix<int> m(3, 5);
m(0, 0) = 0;
// ...
return 0;
}
A 3D access (in a proper 3D matrix) would be:
T& operator ()(unsigned i, unsigned j, unsigned k) {
// Please optimize this (See #Alexandre C)
return data[ i*m*n + j*n + k ];
}
Getting arbitrary dimensions and extent would follow the scheme and add overloads (and dimensional/extent information) and/or take advantage of variadic templates.
Having a lot of dimensions you may avoid above (even in C++11) and replace the arguments by a std::vector. Eg: T& operator(std::vector indices).
Each dimension (besides the last) would have an extend stored in a vector n (as the first dimension in the 2D example above).
Yes. with a single pointer member.
A n multidimensional array is actually a pointer. so you can alocate a dynamic n array and with casting, and put this array in the member pointer.
In your class should be something like this
int * holder;
void setHolder(int* anyArray){
holder = anyArray;
}
use:
int *** multy = new int[2][1][56];
yourClass.setHolder((int*)multy);
You can solve the problem in at least two ways, depending on your preferences. First of all - you don't need the Boost library, and you can do it yourself.
class array{
unsigned int dimNumber;
vector<unsigned int> dimSizes;
float *array;
array(const unsigned int dimNumber, ...){
va_list arguments;
va_start(arguments,dimNumber);
this->dimNumber = dimNumber;
unsigned int totalSize = 1;
for(unsigned int i=0;i<dimNumber;i++)
{
dimSizes.push_back(va_arg(arguments,double));
totalSize *= dimSizes[dimSizes.size()-1];
}
va_end(arguments);
array = new float[totalSize];
};
float getElement(unsigned int dimNumber, ...){
va_list arguments;
va_start(arguments,dimNumber);
unsgned int elementPos = 0, dimAdd = 1;
for(unsigned int i=0;i<dimNumber;i++)
{
unsigned int val = va_arg(arguments,double);
elementPos += dimAdd * val;
dimAdd *= dimsizes[i];
}
return array[elementPos]
};
};
Setting an element value would be the same, you will just have to specify the new value. Of course you can use any type you want, not just float... and of course remember to delete[] the array in the destructor.
I haven't tested the code (just wrote it straight down here from memory), so there can be some problems with calculating the position, but I'm sure you'll fix them if you encounter them. This code should give you the general idea.
The second way would be to create a dimension class, which would store a vector<dimension*> which would store sub-dimensions. But that's a bit complicated and too long to write down here.
Instead of a multidimensional array you could use a 1D-array with an equal amount of indices. I could not test this code, but I hope it will work or give you an idea of how to solve your problem. You should remember that arrays, which do not have a constant length from the time of being compiled, should be allocated via malloc() or your code might not run on other computers.
(Maybe you should create a class array for the code below)
#include <malloc.h>
int* IndexOffset; //Array which contains how many indices need to be skipped per dimension
int DimAmount; //Amount of dimensions
int SizeOfArray = 1; //Amount of indices of the array
void AllocateArray(int* output, //pointer to the array which will be allocated
int* dimLengths, //Amount of indices for each dimension: {1D, 2D, 3D,..., nD}
int dimCount){ //Length of the array above
DimAmount = dimCount;
int* IndexOffset = (int*) malloc(sizeof(int) * dimCount);
int temp = 1;
for(int i = 0; i < dimCount; i++){
temp = temp * dimLengths[i];
IndexOffset[i] = temp;
}
for(int i = 0; i < dimCount; i++){
SizeOfArray = SizeOfArray * dimLengths[i];
}
output = (int*)malloc(sizeof(int) * SizeOfArray);
}
To get an index use this:
int getArrayIndex(int* coordinates //Coordinates of the wished index as an array (like dimLengths)
){
int index;
int temp = coordinates[0];
for(int i = 1; i < DimAmount; i++){
temp = temp + IndexOffset[i-1] * coordinates[i];
}
index = temp;
return index;
}
Remember to free() your array as soon as you do not need it anymore:
for(int i = 0; i < SizeOfArray; i++){
free(output[i]);
}
free(output);
I have a dynamically created array of integers. Now I have to remove all elements which have index %3 == 0. (for example, 3, 6, 9, ...). So, what is the best way to decrease array size? With malloc I can use realloc for the same part of memory, but what about new operator? What to do this way. Just slide all elements left, make zero to all another elements?
#include <algorithm>
#include <iostream>
#include <vector>
bool IsDividedByThree (int i) { return ((i%3)==0); }
int RandomNumber () { return (rand()%100); }
int main()
{
std::vector<int> myInts(50);
std::generate(myInts.begin(), myInts.end(), RandomNumber);
std::copy(myInts.begin(), myInts.end(), std::ostream_iterator<int>(std::cout, " "));
myInts.erase(std::remove_if(myInts.begin(), myInts.end(), IsDividedByThree), myInts.end());
std::copy(myInts.begin(), myInts.end(), std::ostream_iterator<int>(std::cout, " "));
}
Isn't so nice that STL takes care everything for you?
Hm didn't see comment, in which one is forced not to use STL.
The C version:
int *temp = new int[NEW_SIZE];
memcpy( temp , old_array, size_of_old_array * sizeof(int) );
delete[] old_array;
old_array = temp;
create the array dynamically
create a new array with the new size
copy the elements from the first to the second array
delete the first array
redirect the pointer to the first array to the second
All these answer So, what is the best way to decrease array size? - I assumed you already knew how to solve the rest of your problem.
I'd simply allocate a new smaller array and then copy elements to it. Something like this (this includes the element at 0 index):
int* array = new int [original_size];
// fill array
size_t new_size = original_size - original_size / 3 - 1; // i think i got this right, untested
int* new_array = new int [new_size];
for (int i = 0, int j = 0; i < original_size; i++)
{
if (i % 3 == 0)
{
new_array[j] = array[i];
j++
}
}
delete [] array;
array = new_array;
new_array = nullptr;
You can of course work in place and shift elements to the left. But you can't delete a part of array that was allocated via new[].
Since this is an exercise, and you can't use STL, why don't you try to implement a simple vector class yourself?
You can use placement new operator in C++. (#include <new> is required). For example
#include <new>
int main(int argc, char **argv) {
double *b = new double[10];
new(b) double[8];
delete [] b;
}
Simply setting data elements to 0 wont free them. And when you allocate new memory for the resized array, you need to copy all of the elements from previous memory.
I would suggest you to implement it as a linked list.