How to initiate a thread in a class in C++ 14? - c++

class ThreadOne {
public:
ThreadOne();
void RealThread();
void EnqueueJob(s_info job);
std::queue<s_info> q_jobs;
private:
H5::H5File* targetFile = new H5::H5File("file.h5", H5F_ACC_TRUNC);
std::condition_variable cv_condition;
std::mutex m_job_q_;
};
ThreadOne::ThreadOne() {
}
void ThreadOne::RealThread() {
while (true) {
std::unique_lock<std::mutex> lock(m_job_q_);
cv_condition.wait(lock, [this]() { return !this->q_jobs.empty(); });
s_info info = std::move(q_jobs.front());
q_jobs.pop();
lock.unlock();
//* DO THE JOB *//
}
}
void ThreadOne::EnqueueJob(s_info job) {
{
std::lock_guard<std::mutex> lock(m_job_q_);
q_jobs.push(std::move(job));
}
cv_condition.notify_one();
}
ThreadOne *tWrite = new ThreadOne();
I want to make a thread and send it a pointer of an array and its name as a struct(s_info), and then make the thread write it into a file. I think that it's better than creating a thread whenever writing is needed.
I could make a thread pool and allocate jobs to it, but it's not allowed to write the same file concurrently in my situation, I think that just making a thread will be enough and the program will still do CPU-bound jobs when writing job is in process.
To sum up, this class (hopefully) gets array pointers and their dataset names, puts them in q_jobs and RealThread writes the arrays into a file.
I referred to a C++ thread pool program and the program initiates threads like this:
std::vector<std::thread> vec_worker_threads;
vector_worker_threads.reserve(num_threads_);
vector_worker_threads.emplace_back([this]() { this->RealThread(); });
I'm new to C++ and I understand what the code above does, but I don't know how to initiate RealThread in my class without a vector. How can I make an instance of the class that has a thread(RealThread) that's already ready inside it?

From what I can gather, and as already discussed in the comments, you simply want a std::thread member for ThreadOne:
class ThreadOne {
std::thread thread;
public:
~ThreadOne();
//...
};
//...
ThreadOne::ThreadOne() {
thread = std::thread{RealThread, this};
}
ThreadOne::~ThreadOne() {
// (potentially) notify thread to finish first
if(thread.joinable())
thread.join();
}
//...
ThreadOne tWrite;
Note that I did not start the thread in the member-initializer-list of the constructor in order to avoid the thread accessing other members that have not been initialized yet. (The default constructor of std::thread does not start any thread.)
I also wrote a destructor which will wait for the thread to finish and join it. You must always join threads before destroying the std::thread object attached to it, otherwise your program will call std::terminate and abort.
Finally, I replaced tWrite from being a pointer to being a class type directly. There is probably no reason for you to use dynamic allocation there and even if you have a need for it, you should be using
auto tWrite = std::make_unique<ThreadOne>();
or equivalent, instead, so that you are not going to rely on manually deleteing the pointer at the correct place.
Also note that your current RealThread function seems to never finish. It must return at some point, probably after receiving a notification from the main thread, otherwise thread.join() will wait forever.

Related

How to start an empty thread using c++ [duplicate]

I'm getting into C++11 threads and have run into a problem.
I want to declare a thread variable as global and start it later.
However all the examples I've seen seem to start the thread immediately for example
thread t(doSomething);
What I want is
thread t;
and start the thread later.
What I've tried is
if(!isThreadRunning)
{
thread t(readTable);
}
but now t is block scope. So I want to declare t and then start the thread later so that t is accessible to other functions.
Thanks for any help.
std::thread's default constructor instantiates a std::thread without starting or representing any actual thread.
std::thread t;
The assignment operator moves the state of a thread object, and sets the assigned-from thread object to its default-initialized state:
t = std::thread(/* new thread code goes here */);
This first constructs a temporary thread object representing a new thread, transfers the new thread representation into the existing thread object that has a default state, and sets the temporary thread object's state to the default state that does not represent any running thread. Then the temporary thread object is destroyed, doing nothing.
Here's an example:
#include <iostream>
#include <thread>
void thread_func(const int i) {
std::cout << "hello from thread: " << i << std::endl;
}
int main() {
std::thread t;
std::cout << "t exists" << std::endl;
t = std::thread{ thread_func, 7 };
t.join();
std::cout << "done!" << std::endl;
}
As antred says in his answer, you can use a condition variable to make the thread to wait in the beginning of its routine.
Scott Meyers in his book “Effective Modern C++” (in the “Item 39: Consider void futures for one-shot event communication”) proposes to use void-future instead of lower level entities (boolean flag, conditional variable and mutex). So the problem can be solved like this:
auto thread_starter = std::promise<void>;
auto thread = std::thread([starter_future = thread_starter.get_future()]() mutable {
starter_future.wait(); //wait before starting actual work
…; //do actual work
});
…; //you can do something, thread is like “paused” here
thread_starter.set_value(); //“start” the thread (break its initial waiting)
Scott Meyers also warns about exceptions in the second … (marked by the you can do something, thread is like “paused” here comment). If thread_starter.set_value() is never called for some reasons (for example, due to exception throws in the second …), the thread will wait forever, and any attempt to join it would result in deadlock.
As both ways (condvar-based and future-based) contain hidden unsafety, and the first way (condvar-based) needs some boilerplate code, I propose to write a wrapper class around std::thread. Its interface should be similar to the one of std::thread (except that its instances should be assignable from other instances of the same class, not from std::thread), but contain additional void start() method.
Future-based thread-wrapper
class initially_suspended_thread {
std::promise<bool> starter;
std::thread impl;
public:
template<class F, class ...Args>
explicit initially_suspended_thread(F &&f, Args &&...args):
starter(),
impl([
starter_future = starter.get_future(),
routine = std::bind(std::forward<F>(f), std::forward<Args>(args)...)
]() mutable {if (starter_future.get()) routine();})
{}
void start() {starter.set_value(true);}
~initially_suspended_thread() {
try {starter.set_value(false);}
catch (const std::future_error &exc) {
if (exc.code() != std::future_errc::promise_already_satisfied) throw;
return; //already “started”, no need to do anything
}
impl.join(); //auto-join not-yet-“started” threads
}
…; //other methods, trivial
};
Condvar-based thread-wrapper
class initially_suspended_thread {
std::mutex state_mutex;
enum {INITIAL, STARTED, ABORTED} state;
std::condition_variable state_condvar;
std::thread impl;
public:
template<class F, class ...Args>
explicit initially_suspended_thread(F &&f, Args &&...args):
state_mutex(), state(INITIAL), state_condvar(),
impl([
&state_mutex = state_mutex, &state = state, &state_condvar = state_condvar,
routine = std::bind(std::forward<F>(f), std::forward<Args>(args)...)
]() {
{
std::unique_lock state_mutex_lock(state_mutex);
state_condvar.wait(
state_mutex_lock,
[&state]() {return state != INITIAL;}
);
}
if (state == STARTED) routine();
})
{}
void start() {
{
std::lock_guard state_mutex_lock(state_mutex);
state = STARTED;
}
state_condvar.notify_one();
}
~initially_suspended_thread() {
{
std::lock_guard state_mutex_lock(state_mutex);
if (state == STARTED) return; //already “started”, no need to do anything
state = ABORTED;
}
impl.join(); //auto-join not-yet-“started” threads
}
…; //other methods, trivial
};
There is no "standard" of creating a thread "suspended" which I assume is what you wanted to do with the C++ thread library. Because it is not supported on every platform that has threads, it is not there in the C++ API.
You might want to create a class with all the data it is required but not actually run your thread function. This is not the same as creating the thread but may be what you want. If so, create that, then later bind the object and its operator() or start() function or whatever to the thread.
You might want the thread id for your thread. That means you do actually need to start the thread function. However it can start by waiting on a condition variable. You then signal or broadcast to that condition variable later when you want it to continue running. Of course you can have the function check a condition after it resumes in case you might have decided to close it and not run it after all (in which case it will just return instantly).
You might want a std::thread object with no function. You can do that and attach it to a function later to run that function in a new thread.
I would give the thread a condition variable and a boolean called startRunning (initially set to false). Effectively you would start the thread immediately upon creation, but the first thing it would do is suspend itself (using the condition_variable) and then only begin processing its actual task when the condition_variable is signaled from outside (and the startRunning flag set to true).
EDIT: PSEUDO CODE:
// in your worker thread
{
lock_guard l( theMutex );
while ( ! startRunning )
{
cond_var.wait( l );
}
}
// now start processing task
// in your main thread (after creating the worker thread)
{
lock_guard l( theMutex );
startRunning = true;
cond_var.signal_one();
}
EDIT #2: In the above code, the variables theMutex, startRunning and cond_var must be accessible by both threads. Whether you achieve that by making them globals or by encapsulating them in a struct / class instance is up to you.
first declared in class m_grabber runs nothing. We assign member class object with new one with lambda function in launch_grabber method and thread with lambda runs within source class context.
class source {
...
std::thread m_grabber;
bool m_active;
...
}
bool source::launch_grabber() {
// start grabber
m_grabber = std::thread{
[&] () {
m_active = true;
while (true)
{
if(!m_active)
break;
// TODO: something in new thread
}
}
};
m_grabber.detach();
return true;
}
You could use singleton pattern. Or I would rather say antipattern.
Inside a singleton you would have std::thread object encapsulated. Upon first access to singleton your thread will be created and started.

Synchronization technique to wait till all objects have been processed

In this code, I am first creating a thread that keeps running always. Then I am creating objects and adding them one by one to a queue. The thread picks up object from queue one by one processes them and deletes them.
class MyClass
{
public:
MyClass();
~MyClass();
Process();
};
std::queue<class MyClass*> MyClassObjQueue;
void ThreadFunctionToProcessAndDeleteObjectsFromQueue()
{
while(1)
{
// Get and Process and then Delete Objects one by one from MyClassObjQueue.
}
}
void main()
{
CreateThread (ThreadFunctionToProcessAndDeleteObjectsFromQueue);
int N = GetNumberOfObjects(); // Call some function that gets value of number of objects
// Create objects and queue them
for (int i=0; i<N; i++)
{
try
{
MyClass* obj = NULL;
obj = new MyClass;
MyClassObjQueue.push(obj);
}
catch(std::bad_alloc&)
{
if(obj)
delete obj;
}
}
// Wait till all objects have been processed and destroyed (HOW ???)
}
PROBLEM:
I am not sure how to wait till all objects have been processed before I quit. One way is to keep on checking size of queue periodically by using while(1) loop and Sleep. But I think it's novice way to do the things. I really want to do it in elegant way by using thread synchronization objects (e.g. semaphore etc.) so that synchronization function will wait for all objects to finish. But not sure how to do that. Any input will be appreciated.
(Note: I've not used synchronization objects to add/delete from queue in the code above. This is only to keep the code simple & readable. I know STL containers are not thread safe)

Using a boost thread: Signal and wait for termination

i'm currently writing a c/c++ dll for later use mostly in Delphi and i'm more familiar with threads in Delphi than c/c++ and especially boost. So i wonder how i can achieve the following scenario?
class CMyClass
{
private:
boost::thread* doStuffThread;
protected:
void doStuffExecute(void)
{
while(!isTerminationSignal()) // loop until termination signal
{
// do stuff
}
setTerminated(); // thread is finished
};
public:
CMyClass(void)
{
// create thread
this->doStuffThread = new boost::thread(boost::bind(&CMyClass::doStuffExecute, this));
};
~CMyClass(void)
{
// finish the thread
signalThreadTermination();
waitForThreadFinish();
delete this->doStuffThread;
// do other cleanup
};
}
I have red countless articles about boost threading, signals and mutexes but i don't get it, maybe because it's friday ;) or is it not doable how i think to do it?
Regards
Daniel
Just use an atomic boolean to tell the thread to stop:
class CMyClass
{
private:
boost::thread doStuffThread;
boost::atomic<bool> stop;
protected:
void doStuffExecute()
{
while(!stop) // loop until termination signal
{
// do stuff
}
// thread is finished
};
public:
CMyClass() : stop(false)
{
// create thread
doStuffThread = boost::thread(&CMyClass::doStuffExecute, this);
};
~CMyClass()
{
// finish the thread
stop = true;
doStuffThread.join();
// do other cleanup
};
}
To wait for the thread to finish you just join it, that will block until it is finished and can be joined. You need to join the thread anyway before you can destroy it, or it will terminate your program.
There is no need to use a pointer and create the thread with new, just use a boost::thread object directly. Creating everything on the heap is wasteful, unsafe and poor style.
There is no need to use boost::bind to pass arguments to the thread constructor. For many many years boost::thread has supported passing multiple arguments to its constructor directly and it does the binding internally.
It's important that stop has been initialized to false before the new thread is created, otherwise if the new thread is spawned very quickly it could check the value of stop before it is initialized, and might happen to read a true value from the uninitialized memory, and then it would never enter the loop.
On the subject of style, writing foo(void) is considered by many C++ programmers to be a disgusting abomination. If you want to say your function takes no arguments then just write foo().

Best way to handle multi-thread cleanup

I have a server-type application, and I have an issue with making sure thread's aren't deleted before they complete. The code below pretty much represents my server; the cleanup is required to prevent a build up of dead threads in the list.
using namespace std;
class A {
public:
void doSomethingThreaded(function<void()> cleanupFunction, function<bool()> getStopFlag) {
somethingThread = thread([cleanupFunction, getStopFlag, this]() {
doSomething(getStopFlag);
cleanupFunction();
});
}
private:
void doSomething(function<bool()> getStopFlag);
thread somethingThread;
...
}
class B {
public:
void runServer();
void stop() {
stopFlag = true;
waitForListToBeEmpty();
}
private:
void waitForListToBeEmpty() { ... };
void handleAccept(...) {
shared_ptr<A> newClient(new A());
{
unique_lock<mutex> lock(listMutex);
clientData.push_back(newClient);
}
newClient.doSomethingThreaded(bind(&B::cleanup, this, newClient), [this]() {
return stopFlag;
});
}
void cleanup(shared_ptr<A> data) {
unique_lock<mutex> lock(listMutex);
clientData.remove(data);
}
list<shared_ptr<A>> clientData;
mutex listMutex;
atomc<bool> stopFlag;
}
The issue seems to be that the destructors run in the wrong order - i.e. the shared_ptr is destructed at when the thread's function completes, meaning the 'A' object is deleted before thread completion, causing havok when the thread's destructor is called.
i.e.
Call cleanup function
All references to this (i.e. an A object) removed, so call destructor (including this thread's destructor)
Call this thread's destructor again -- OH NOES!
I've looked at alternatives, such as maintaining a 'to be removed' list which is periodically used to clean the primary list by another thread, or using a time-delayed deletor function for the shared pointers, but both of these seem abit chunky and could have race conditions.
Anyone know of a good way to do this? I can't see an easy way of refactoring it to work ok.
Are the threads joinable or detached? I don't see any detach,
which means that destructing the thread object without having
joined it is a fatal error. You might try simply detaching it,
although this can make a clean shutdown somewhat complex. (Of
course, for a lot of servers, there should never be a shutdown
anyway.) Otherwise: what I've done in the past is to create
a reaper thread; a thread which does nothing but join any
outstanding threads, to clean up after them.
I might add that this is a good example of a case where
shared_ptr is not appropriate. You want full control over
when the delete occurs; if you detach, you can do it in the
clean up function (but quite frankly, just using delete this;
at the end of the lambda in A::doSomethingThreaded seems more
readable); otherwise, you do it after you've joined, in the
reaper thread.
EDIT:
For the reaper thread, something like the following should work:
class ReaperQueue
{
std::deque<A*> myQueue;
std::mutex myMutex;
std::conditional_variable myCond;
A* getOne()
{
std::lock<std::mutex> lock( myMutex );
myCond.wait( lock, [&]( !myQueue.empty() ) );
A* results = myQueue.front();
myQueue.pop_front();
return results;
}
public:
void readyToReap( A* finished_thread )
{
std::unique_lock<std::mutex> lock( myMutex );
myQueue.push_back( finished_thread );
myCond.notify_all();
}
void reaperThread()
{
for ( ; ; )
{
A* mine = getOne();
mine->somethingThread.join();
delete mine;
}
}
};
(Warning: I've not tested this, and I've tried to use the C++11
functionality. I've only actually implemented it, in the past,
using pthreads, so there could be some errors. The basic
principles should hold, however.)
To use, create an instance, then start a thread calling
reaperThread on it. In the cleanup of each thread, call
readyToReap.
To support a clean shutdown, you may want to use two queues: you
insert each thread into the first, as it is created, and then
move it from the first to the second (which would correspond to
myQueue, above) in readyToReap. To shut down, you then wait
until both queues are empty (not starting any new threads in
this interval, of course).
The issue is that, since you manage A via shared pointers, the this pointer captured by the thread lambda really needs to be a shared pointer rather than a raw pointer to prevent it from becoming dangling. The problem is that there's no easy way to create a shared_ptr from a raw pointer when you don't have an actual shared_ptr as well.
One way to get around this is to use shared_from_this:
class A : public enable_shared_from_this<A> {
public:
void doSomethingThreaded(function<void()> cleanupFunction, function<bool()> getStopFlag) {
somethingThread = thread([cleanupFunction, getStopFlag, this]() {
shared_ptr<A> temp = shared_from_this();
doSomething(getStopFlag);
cleanupFunction();
});
this creates an extra shared_ptr to the A object that keeps it alive until the thread finishes.
Note that you still have the problem with join/detach that James Kanze identified -- Every thread must have either join or detach called on it exactly once before it is destroyed. You can fulfill that requirement by adding a detach call to the thread lambda if you never care about the thread exit value.
You also have potential for problems if doSomethingThreaded is called multiple times on a single A object...
For those who are interested, I took abit of both answers given (i.e. James' detach suggestion, and Chris' suggestion about shared_ptr's).
My resultant code looks like this and seems neater and doesn't cause a crash on shutdown or client disconnect:
using namespace std;
class A {
public:
void doSomething(function<bool()> getStopFlag) {
...
}
private:
...
}
class B {
public:
void runServer();
void stop() {
stopFlag = true;
waitForListToBeEmpty();
}
private:
void waitForListToBeEmpty() { ... };
void handleAccept(...) {
shared_ptr<A> newClient(new A());
{
unique_lock<mutex> lock(listMutex);
clientData.push_back(newClient);
}
thread clientThread([this, newClient]() {
// Capture the shared_ptr until thread over and done with.
newClient->doSomething([this]() {
return stopFlag;
});
cleanup(newClient);
});
// Detach to remove the need to store these threads until their completion.
clientThread.detach();
}
void cleanup(shared_ptr<A> data) {
unique_lock<mutex> lock(listMutex);
clientData.remove(data);
}
list<shared_ptr<A>> clientData; // Can remove this if you don't
// need to connect with your clients.
// However, you'd need to make sure this
// didn't get deallocated before all clients
// finished as they reference the boolean stopFlag
// OR make it a shared_ptr to an atomic boolean
mutex listMutex;
atomc<bool> stopFlag;
}

A way to destroy "thread" class

Here is a skeleton of my thread class:
class MyThread {
public:
virutal ~MyThread();
// will start thread with svc() as thread entry point
void start() = 0;
// derive class will specialize what the thread should do
virtual void svc() = 0;
};
Somewhere in code I create an instance of MyThread and later I want to destroy it.
In this case MyThread~MyThread() is called. MyThread:svc() is still running and using the object's data members. So I need a way politely inform MyThread:svc() to stop spinning, before proceeding with the destructor.
What is the acceptable way to destroy the thread object?
Note: I'm looking for platform agnostic solution.
UPD: It's clear that the root of problem is that there's no relationship between C++ object representing thread and OS thread. So the question is: in context of object destuction, is there an acceptable way to make thread object behave like an ordinary C++ object or should it be treated as an unusual one (e.g. should we call join() before destoying it?
Considering your additional requirements posted as comment to Checkers' reply (which is the
most straightforward way to do that):
I agree that join in DTor is problematic for various reasons. But from that the lifetime of your thread object is unrelated to the lifetime of the OS thread object.
First, you need to separate the data the thread uses from the thread object itself. They are distinct entities with distinct lifetime requirements.
One approach is to make the data refcounted, and have any thread that wants to access it hold a strong reference to the data. This way, no thread will suddenly grab into the void, but the data will be destroyed as soon as noone touches it anymore.
Second, about the thread object being destroyed when the thread joins:
I am not sure if this is a good idea. The thread object is normally a way to query the state of a thread - but with a thread object that dies as soon as the thread finishes, noone can tell you wether the thread finished.
Generally, I'd completely decouple the lifetime of the thread object from the lifetime of the OS thread: Destroying your thread object should not affect the thread itself. I see two basic approaches to this:
Thread Handle Object - reference counted again, returned by thread creator, can be released as early as one likes without affecting the OS thread. It would expose methods such as Join, IsFinished, and can give access to the thread shared data.
(If the thread object holds relevant execution state, the threafFunc itself could hold a reference to it, thereby ensuring the instance won't be released before the thread ends)
Thin Wrapper - You simply create a temporary around an OS thread handle. You could not hold additional state for the thread easily, but it might be just enough to make it work: At any place, you can turn an OS thread handle into an thread object. The majority of communication - e.g. telling the thread to terminate - would be via the shared data.
For your code example, this means: separate the start() from the svc()
You'd roughly work with this API (XxxxPtr could be e.g. boost::shared_ptr):
class Thread
{
public:
bool IsFinished();
void Join();
bool TryJoin(long timeout);
WorkerPtr GetWorker();
static ThreadPtr Start(WorkerPtr worker); // creates the thread
};
class Worker
{
private:
virtual void Svc() = 0;
friend class Thread; // so thread can run Svc()
}
Worker could contain a ThreadPtr itself, giving you a guarantee that the thread object exists during execution of Svc(). If multiple threads are allowed to work on the same data, this would have to be a thread list. Otherwise, Thread::Start would have to reject Workers that are already associated with a thread.
Motivation: What to do with rogue threads that block?
Assuming a thread fails to terminate within time for one reason or another, even though you told it to. You simply have three choices:
Deadlock, your applicaiton hangs. That usually happens if you join in the destructor.
Violently terminate the thread. That's potentially a violent termination of the app.
Let the thread run to completion on it's own data - you can notify the user, who can safely save & exit. Or you simply let the rogue thread dance on it's own copy of the data (not reference by the main thread anymore) until it completes.
Usually any OS-specific threads API will allow you to "join" a thread. That is, to block indefinitely on a thread handle until the thread functions returns.
So,
Signal the thread function to return (e.g. by setting a flag in its loop to false).
Join the thread, to make sure the actual thread terminates before you try to delete the thread object.
Then you can proceed with destruction of the thread object (you may also join in the destructor, though some people object to blocking destructors.).
I've had a project before with a similar "thread worker" class and a corresponding "work item" class (a-la Java's Thread and Runnable, except thread does not terminate but waits for a new Runnable object to be executed).
In the end, there was no difference if you join in a separate "shutdown" function or in the destructor, except a separate function is a bit more clear.
If you join in a destructor and a thread blocks, you will wait indefinitely.
If you join in a separate function and a thread blocks, you will wait indefinitely.
If you detach the thread and let it finish on its own, it will usually block application from exiting, so you will wait indefinitely.
So there is no straightforward way to make a thread behave like a regular C++ object and ignore its OS thread semantics, unless you can guarantee that your thread code can terminate almost immediately when notified to do so.
You could havee somthing like this in your svc method
while (alive){ //loops}
//free resources after while.
In your destructor, you could set the alive member to false. Or, you could have a pleaseDie() method, that sets the alive member to false, and can be called from the outside requesting the Thread instance to stop processing.
void
Thread::pleaseDie()
{
this->alive = false;
}
You first need a way to communicate with the thread to tell it to shut down. The best mechanism to do this depends on what svc() is doing. If, for example, it is looping on a message queue, you could insert a "please stop" message in that queue. Otherwise, you could simply add a member bool variable (and synchronize access to it) that is periodically checked by the svc(), and set by the thread wanting to destroy the object. Your could add a pure virtual stop() function to your base class, giving the implementor a clear signal that it has to implement svc() to make its class "runnable", and to implement stop() to make it "stoppable".
After asking the thread to stop, you must wait for it to exit before destroying the object. Again, there are several ways to do this. One is to make the stop() function blocking. It could wait, for example, for a "ok, I'm really stopped now" condition variable to be set by the thread running svc(). Alternatively, the caller could "wait" on the thread running svc(). The way to "wait" is platform dependent.
Most thread systems allow you to send a signal to a thead.
Example: pthreads
pthread_kill(pthread_t thread, int sig);
This will send a signall to a thread.
You can use this to kill the thread. Though this can leave a few of the resources hanging in an undefined state.
A solution to the resource problem is to install a signall handler.
So that when the signal handler is called it throws an exception. This will cause the thread stack to unwind to the entry point where you can then get the thread to check a variable about weather it is sill alive.
NOTE: You should never allow an exception to propogate out of a thread (this is so undefined my eyes bleed thinking about it). Basically catch the exception at the thread entry point then check some state variable to see if the thread should really exit.
Meanwhile the thread that sends the signal should wait for the thread to die by doing a join.
The only issues are that when you throw out of signal handler function you need to be careful. You should not use a signal that is asynchronus (ie one that could have been generated by a signal in another thread). A good one to use is SIGSEGV. If this happens normally then you have accessed invalid memory any you thread should think about exiting anyway!
You may also need to specify an extra flag on some systems to cope.
See This article
A working example using pthreads:
#include <pthread.h>
#include <iostream>
extern "C" void* startThread(void*);
extern "C" void shouldIexit(int sig);
class Thread
{
public:
Thread();
virtual ~Thread();
private:
friend void* startThread(void*);
void start();
virtual void run() = 0;
bool running;
pthread_t thread;
};
// I have seen a lot of implementations use a static class method to do this.
// DON'T. It is not portable. This is because the C++ ABI is not defined.
//
// It currently works on several compilers but will break if these compilers
// change the ABI they use. To gurantee this to work you should use a
// function that is declared as extern "C" this guarantees that the ABI is
// correct for the callback. (Note this is true for all C callback functions)
void* startThread(void* data)
{
Thread* thread = reinterpret_cast<Thread*>(data);
thread->start();
}
void shouldIexit(int sig)
{
// You should not use std::cout in signal handler.
// This is for Demo purposes only.
std::cout << "Signal" << std::endl;
signal(sig,shouldIexit);
// The default handler would kill the thread.
// But by returning you can continue your code where you left off.
// Or by throwing you can cause the stack to unwind (if the exception is caught).
// If you do not catch the exception it is implementation defined weather the
// stack is unwound.
throw int(3); // use int for simplicity in demo
}
Thread::Thread()
:running(true)
{
// Note starting the thread in the constructor means that the thread may
// start before the derived classes constructor finishes. This may potentially
// be a problem. It is started here to make the code succinct and the derived
// class used has no constructor so it does not matter.
if (pthread_create(&thread,NULL,startThread,this) != 0)
{
throw int(5); // use int for simplicity in demo.
}
}
Thread::~Thread()
{
void* ignore;
running = false;
pthread_kill(thread,SIGSEGV); // Tell thread it may want to exit.
pthread_join(thread,&ignore); // Wait for it to finish.
// Do NOT leave before thread has exited.
std::cout << "Thread Object Destroyed" << std::endl;
}
void Thread::start()
{
while(running)
{
try
{
this->run();
}
catch(...)
{}
}
std::cout << "Thread exiting" << std::endl;
}
class MyTestThread:public Thread
{
public:
virtual void run()
{
// Unless the signal causes an exception
// this loop will never exit.
while(true)
{
sleep(5);
}
}
};
struct Info
{
Info() {std::cout << "Info" << std::endl;}
~Info() {std::cout << "Done: The thread Should have exited before this" << std::endl;}
};
int main()
{
signal(SIGSEGV,shouldIexit);
Info info;
MyTestThread test;
sleep(4);
std::cout << "Exiting About to Exit" << std::endl;
}
> ./a.exe
Info
Exiting About to Exit
Signal
Thread exiting
Thread Object Destroyed
Done: The thread Should have exited before this
>
You should add dedicated thread management class (i.e. MyThreadMngr), that handles this and other tasks, like book keeping, owning the thread handles etc. The Thread itself should somehow signal to the thread manager that its going to terminate and MyThreadMngr should i.e. have a loop like Tom proposed.
There will probably be more actions that suite into such a thread manager class.
I reckon the easiest way to do this is to wrap the thread execution code in a loop
while(isRunning())
{
... thread implementation ...
}
You can also stop your thread by doing specific calls, for instance when you're using a WIN32 thread you can call TerminateThread on the thread handle in the destructor.
i give a simple and clean design, no signal, no sync, no kill needed.
per your MyThread, i suggest renaming and adding as below:
class MyThread {
public:
virutal ~MyThread();
// will be called when starting a thread,
// could do some initial operations
virtual bool OnStart() = 0;
// will be called when stopping a thread, say calling join().
virtual bool OnStop() = 0;
// derive class will specialize what the thread should do,
// say the thread loop such as
// while (bRunning) {
// do the job.
// }
virtual int OnRun() = 0;
};
the thread interface user will control the lifetime of MyThread.
and actually the real thread object is as below:
class IThread
{
public:
virtual API ~IThread() {}
/* The real destructor. */
virtual void Destroy(void) = 0;
/* Starts this thread, it will call MyThread::OnStart()
* and then call MyThread::OnRun() just after created
* the thread. */
virtual bool Start(void) = 0;
/* Stops a thread. will call MyThread::OnStop(). */
virtual void Stop(void) = 0;
/* If Wait() called, thread won't call MyThread::OnStop().
* If could, it returns the value of MyThread::OnRun()
* returned */
virtual int Wait(void) = 0;
/* your staff */
virtual MyThread * Command(void) = 0;
};
/* The interface to create a thread */
extern IThread * ThrdCreate(MyThread *p);
See the complete interfaces
http://effoaddon.googlecode.com/svn/trunk/devel/effo/codebase/addons/thrd/include/thrd_i.h
Coding Examples
Case 1. Controlled thread loop
class ThreadLoop : public MyThread
{
private:
bool m_bRunning;
public:
virtual bool OnStart() { m_bRunning = true; }
virtual bool OnStop() { m_bRunning = false; }
virtual int OnRun()
{
while (m_bRunning) {
do your job;
}
}
};
int main(int argc, char **argv)
{
ThreadLoop oLoop;
IThread *pThread = ThrdCreate(&oLoop);
// Start the thread, it will call Loop::OnStart()
//and then call Loop::OnRun() internally.
pThread->Start();
do your things here. when it is time to stop the thread, call stop().
// Stop the thread, it will call Loop::OnStop(),
// so Loop::OnRun() will go to the end
pThread->Stop();
// done, destroy the thread
pThread->Destroy();
}
Case 2. Don't know when the thread will stop
class ThreadLoop : public MyThread
{
public:
virtual bool OnStart() { }
virtual bool OnStop() { }
virtual int OnRun()
{
do your job until finish.
}
};
int main(int argc, char **argv)
{
ThreadLoop oLoop;
IThread *pThread = ThrdCreate(&oLoop);
// Start the thread, it will call Loop::OnStart()
//and then call Loop::OnRun() internally.
pThread->Start();
do your things here. Since you don't know when the job will
finish in the thread loop. call wait().
// Wait the thread, it doesn't call Loop::OnStop()
pThread->Wait();
// done, destroy the thread
pThread->Destroy();
}
A complete IThread implementation:
see
http://effoaddon.googlecode.com/svn/trunk/devel/effo/codebase/addons/thrd/src/thrd/thrd.cpp