C++ Using a reference function from header file in the cpp? - c++

I have a header file and a cpp file. In the .h file I declared a class and a function with returning a reference:
.h file:
#include <iostream>
class testclass {
Car &createCar(int x, int y);
}
.cpp file:
#include<testclass.h>
Car testclass:&createCar(int x, int y)
{
....
}
But when I try to access the function in the .cpp file I get an error:
Declaration is not compatible

The function definition in .cpp file should be compatible with its decleration in .h file so modify it as follows.
.cpp file:
#include"testclass.h"
Car& testclass::createCar(int x, int y)
{
....
}
Note that I modified <testclass.h> to "testclass.h". use the brackets only with the built in headers.
Follow the following line if you want to know why you should use "testclass.h" instead of <testclass.h> and which one of them you should use Link

In your .h file, & is not a reference to a function. The & is part of the function's return type. So, the function actually returns a reference to a Car instance. It would help you to understand it if you actually write it that way:
Car& createCar(int x, int y);
As such, in the .cpp file, you need to move the & to the return type to match the declaration:
#include <iostream>
class testclass {
Car& createCar(int x, int y);
};
#include "testclass.h"
Car& testclass::createCar(int x, int y)
{
....
}

Related

VSCode C++ navigate to header file class definition instead of implementation file

Given classheader.h containing:
class foo_{
private:
int num;
public:
int getnum() const;
}
and classimpl.cpp that contains:
#include "classheader.h"
int foo_::getnum() const{
return num;
}
from any other file that calls foo_'s getnum(), pressing F12 (go to definition) takes one to classimpl.cpp. Is there a way to get to the line: int getnum() const; in the header file via a shortcut?
Neither of Peek's Definition or Declaration or References seems to take one to the header file.

Error in C++ : redefinition of class constructor using templates

Anybody know how I can fix these errors?
i have been looking at it for a while and just cannot figure out what to do.
Error:
indexList.cpp:18: error: redefinition of `indexList<T>::indexList()'
indexList.cpp:18: error: `indexList<T>::indexList()' previously declared here
indexList.cpp:30: error: redefinition of `bool indexList<T>::append(T)'
indexList.cpp:30: error: `bool indexList<T>::append(T)' previously declared here
cpp file:
//
//
//
//
//
//
#include "indexList.h"
#include <iostream>
using namespace std;
//constuctor
//Descriptions: Initializes numberOfElement to 0
// Initializes maxSize to 100
//Parameters: none
//Return: none
template <class T>
indexList<T>::indexList()
{
numberOfElements = 0;
maxSize = 100;
}
//Name: append
//Purpose: Adds element to the end of the list. If array is full, returns false
//Paramters: value - thing to append
//Return: true if append succeeds, false otherwise
template <class T>
bool indexList<T>::append(T value)
{
if (maxSize > numberOfElements)
{
list[numberOfElements] = value;
numberOfElements ++;
return true;
}
else
return false;
}
I didn't put all the the cpp file because the rest of the errors are similar to the ones above, and it is quite long
header:
#include <iostream>
using namespace std;
#ifndef INDEXLIST_H
#define INDEXLIST_H
template <class T>
class indexList
{
public:
indexList();
bool append(T value);
bool insert(int indx, T value);
bool replace(int indx, T newValue);
bool retrieve(int indx, T &value) const;
bool remove(int indx);
void sort();
int search(T value) const;
private:
T list[100];
int numberOfElements;
int maxSize;
};
template <class T>
ostream &operator<<(ostream &outStream, const indexList<T> &lst);
#include "indexList.cpp"
#endif
I did put the entire header
Each of your two files tries to include the other, which can cause the preprocessor to output some repeated code.
Take the #include "indexList.h" out of the file indexList.cpp.
Also, your build process should not attempt to compile indexList.cpp into an object file.
Another way to arrange things would be to just put all the contents you currently have in indexList.cpp near the end of indexList.h, and there would be no indexList.cpp file at all.
What you've done is ok, but you must realise that the .cpp file should not itself be compiled into an object - instead, just include the .h file from your application code:
// main.cc
#include "indexList.h"
int main()
{
indexList<int> il;
}
c++ -o main main.cc
I'd bet it's because you've tried to do a c++ -c indexList.cpp or c++ indexList.cpp that you get the errors (or perhaps your make tool is trying that automatically for all .cpp files in your source code directories - you could try renaming indexList.cpp to indexList.inl or .inc or whatever - remember to change the name in indexList.h too - to see if that fixes the problem), as in that situation the definitions are seen twice: once as the compile includes indexList.h, and again as it finishes compiling indexList.cpp.
There's no need to include indexList.h from within the .cpp anyway - that makes it look as if the indexList.cpp is designed for separate compilation.
Put any of your templated methods in an indexList.inl file, and include that from your header. Don't include the header from this file.
Put any other methods in your indexList.cpp file. Include the header from this file.

C++ class template undefined reference to function [duplicate]

This question already has answers here:
undefined reference to template function [duplicate]
(2 answers)
Closed 6 years ago.
I keep getting undefined reference when i call the two functions from my template class "add" and "greater" in my main function.
So, i have:
number.h
#ifndef NUMBER_H
#define NUMBER_H
template <class T>
class number {
public:
T x;
T y;
number (int a, int b){
x=a; y=b;}
int add (T&);
T greater ();
};
#endif
number.cpp
#include "number.h"
template <class T>
int number<T>::add (T& rezAdd){
rezAdd = x+y;
return 1;
}
template <class T>
T number<T>::greater (){
return x>y? x : y;
}
And my main file is: resolver.cpp
#include <stdio.h>
#include <stdlib.h>
#include "number.h"
int main (int argc, char **argv) {
int aux;
number<int> c(3,5);
c.add(aux);
printf ("number added [%d]\n", c.add(aux));
printf ("greater number: [%d]\n", c.greater());
return 0;
}
The errors that i keep getting are:
g++ -Wall -o tema1 resolver.cpp number.cpp
/tmp/ccX483J4.o: In function `main':
resolver.cpp:(.text+0x34): undefined reference to `number<int>::add(int&)'
resolver.cpp:(.text+0x47): undefined reference to `number<int>::add(int&)'
resolver.cpp:(.text+0x64): undefined reference to `number<int>::greater()'
collect2: ld returned 1 exit status
make: *** [all] Error 1
Thanks for the help in advance!
I prefer to have all of my functions in the .cpp file, regardless of whether they are template functions or regular functions. And there is a way to do that with some basic #ifndef magic. Here's what you can do:
main.cpp
#include "myclass.hpp"
int main()
{
// ...
}
myclass.hpp
#ifndef MYCLASS
#define MYCLASS
template<class T>
class MyClass
{
T val;
public:
MyClass(T val_);
}
#define MYCLASS_FUNCTIONS
#include "myclass.cpp"
#endif
myclass.cpp
#ifndef MYCLASS_FUNCTIONS
#include "myclass.hpp"
// regular functions:
// ...
#else
// template functions:
template<class T>
MyClass<T>::MyClass(T val_)
:val(val_)
{}
// ...
#endif
Here's how the precompiler sees it. We have two .cpp files.
When we compile main.cpp we:
include myclass.hpp
check that MYCLASS is undefined, and it is
define it
give compiler the definitions of the generated class (from template class)
include myclass.cpp
define MYCLASS_FUNCTIONS
check if MYCLASS_FUNCTIONS is defined, it is
give compiler the definitions of the generated functions (from template functions)
When we compile myclass.cpp
check if MYCLASS_FUNCTIONS is defined, it isn't
include myclass.hpp
check that MYCLASS is undefined, and it is
define it
give compiler the definitions of the class
include myclass.cpp
include myclass.hpp again
this time MYCLASS is defined so do nothing inside, return to myclass.cpp
check if MYCLASS_FUNCTIONS is defined, it is
give compiler the definition of the generated functions (from template functions)
exit include twice
pass to the compiler all the regular functions
Your class is named wrong. Your class is named cai where all your functions belong to a class named number: http://ideone.com/ZayX0c
One more thing.. you cannot have templates in the .cpp file. Template functions/defintions go in the header along with the class declaration. This is the reason for your undefined function error. Non-template functions go in the .cpp.
#include <cstdio>
#include <cstdlib>
template <class T>
class number {
public:
T x;
T y;
number (int a, int b){
x=a; y=b;}
int add (T&);
T greater ();
};
template <class T>
int number<T>::add (T& rezAdd){
rezAdd = x+y;
return 1;
}
template <class T>
T number<T>::greater (){
return x>y? x : y;
}
int main (int argc, char **argv) {
int aux;
number<int> c(3,5);
c.add(aux);
printf ("number added [%d]\n", c.add(aux));
printf ("greater number: [%d]\n", c.greater());
return 0;
}
Move the definitions of the add and greater function templates into your number.h.
Remember that add and greater aren't functions, they're function templates. To create actual functions, the compiler has to instantiate the template for specific types, such as int, and it can only do that if it has access to the template's definition at the point where it discovers that an instance is needed.
When you compile number.cpp, the compiler has access to the templates' definitions, but it doesn't see any code that requires a specific instance (such as number<int>), so it doesn't generate instances.
When you compile resolver.cpp, the compiler sees that it needs to instantiate those templates for the int type, but it can't since it doesn't have their definitions. So it generates "external references", basically notes telling the linker to look for those functions in some other object file.
The result is that the function templates don't get instantiated in either object file — in one because the compiler didn't know that it should, and in the other because it couldn't — so when the linker goes looking for them (to resolve those external references), it can't find them. That's why you get the error.
Moving the template function definitions into the header makes them visible to the compiler while it's compiling main.cpp, so it's able to instantiate those functions for the int type. Function templates typically need to be defined in header files, rather than .cpp files, for exactly this reason.

Templates and separate compilation

I want to write a program in C++ with separate compilation and I wrote this:
main.cpp
#include <iostream>
#include "Stack.h"
using namespace std;
int main(int argc,char* argv[])
{
Stack<int> st;
st.push(1);
return 0;
}
Stack.h
#ifndef _STACK_H
#define _STACK_H
template<typename T>
class Stack
{
private:
struct Node
{
Node* _prev;
T _data;
Node* _next;
};
int _size;
Node* _pos;
public:
Stack();
T pop();
void push(T const &el);
int getSize() const;
};
#endif
Stack.hpp
#include "Stack.h"
#include <malloc.h>
template <typename T>
Stack<T>::Stack()
{
_size = 0;
_pos = (Node*)malloc(sizeof(Node));
_pos->_prev = NULL;
_pos->_next = NULL;
}
template <typename T>
T Stack<T>::pop()
{
if (_size == 0)
return NULL;
T tmp = _pos->_data;
if (_pos->_prev == NULL)
free(_pos);
else
{
_pos->_prev->_next = _pos->_next;
if (_pos->_next != NULL)
{
_pos->_next->_prev = _pos->_prev;
}
free(_pos);
}
_size--;
return tmp;
}
template <typename T>
void Stack<T>::push(T const &el)
{
Node* n = (Node*)malloc(sizeof(Node));
_pos->_next = n;
n->_prev = _pos;
n->_data = *el;
_pos = n;
_size ++;
}
template<typename T>
int Stack<T>::getSize() const {return _size;};
I compiled the program with g++ and I get this error:
ccyDhLTv.o:main.cpp:(.text+0x16): undefin
ed reference to `Stack<int>::Stack()'
ccyDhLTv.o:main.cpp:(.text+0x32): undefin
ed reference to `Stack<int>::push(int const&)'
collect2: ld returned 1 exit status
I know that the problem is because I'm using templates but I do not know how to fix it.
OS - Windows
compilation line - g++ main.cpp Stack.h Stack.hpp -o main.exe
Template classes need to have the method definitions inside the header file.
Move the code you have in the .cpp file inside the header, or create a file called .impl or .imp, move the code there, and include it in the header.
The compiler needs to know the method definitions to generate code for all specializations.
Before you ask, no, there is no way to keep the implementation outside the header.
I would say it will be more pragmatic to first understand how separate compilation works for normal (untempelated) files and then understand how g++ compiler does it for template.
First in normal files, when the header file containing only the declarations are #included in main file, the preprocessor replaces the declarations from the header and puts it to the main file. Then after the preprocessing phase is over, the compiler does one by one compilation of the pure C++ source code contained in .cpp files and translates it into object file. At this point the compiler doesn't mind the missing definitions (of functions/classes) and the object files can refer to symbols that are not defined. The compiler, hence can compile the source code as long as it is well formed.
Then during the linking stage the compiler links several files together and it is during this stage the linker will produce error on missing/duplicate definitions. If the function definition is correctly present in the other file then the linker proceeds and the function called from the main file is successfully linked to the definition and can be used.
For templates, things work differently. It will be illustrative to consider an example, so I pick a simple one:
consider the header file for template array class:
array.h
#ifndef _TEMPLATE_ARRAY_H_
#define _TEMPLATE_ARRAY_H_
template <class T>
class Array
{
private:
T *m_list;
int m_length;
public:
Array() //default constructor
{
m_list = nullptr;
m_length = 0;
}
Array(int length)
{
m_list = new T[length];
m_length = length;
}
~Arrary()
{
delete[] m_list;
m_list = nullptr;
}
//undefined functions
int getLength();
T getElement(const int pos);
};
and the corresponding array.cpp file :
include "array.h"
template <class T>
array<T>::getLength()
{ return m_length; }
template <class T>
T Array<T>::getElement(const int pos)
{ return m_list[pos]; }
Now consider the main file where two instances of the templated object array, one for int and another for double is created.
main.cpp
#include "array.h"
#include <iostream>
int main()
{
Array<int> int_array;
Array<double> double_array;
std::cout << int_array.getLength() <<"\n";
std::cout << double_array.getLength() << "\n";
}
When this piece of code is compiled, the preprocessor first copies the template declarations from the header file to the main file as usual. Because in the main file Array< int > and Array< double > objects are instantiated, compiler instantiates two different definitions of Array class, one each for double and int and then instantiate the Array objects in the main.cpp file.
Note till this point the function definitions for Array< int >::getLength() and Array< double >::getLength() is still missing in the main.cpp file but since the source code is well formed the compiler compiles the main.cpp file without any hassle. In short there's no difference b/w templated object/function compilation and non-templated function compilation till now.
In the meanwhile the code file for array.cpp containing the template function definitions for Array< T >::getLength() and Array< T >::getElement() is compiled, but by this time the compiler would have forgotten that main.cpp needs Array< int >::getLength() and Array< double >::getLength() and would happily compile the code array.cpp without generating any instances for int and double version of the function definition needed by the main.cpp file. (Remember that compiler compiles each file separately!)
It is during the linking phase horrible template errors start popping because of the missing function definitions for int and double version of template function definition that are required by the main file. In the case of non-template declarations and definitions, the programmer makes sure to define the sought function in a file which can be linked together with the file calling the function. But in the case of templates, the linker which executes after the compilation phase, cannot do a task that a compiler is suppose to do, i.e generate a code, in this case for int and double type of the template function
There are ways to get around this
Having gone through the entire story, one can easily conclude that the entire fuss up around template separate compilation is due to linkage (i.e) if all codes are written correctly, class and functions declared in header and defined in another separate file). Ways of getting around this are :
Define the class and functions in the header files themselves rather than in separate file so that the contents of header file when included in the main file, includes the templated definitions which cause appropriate instances of necessary functions to be defined by the compiler.
Instantiate the type definitions you know you will need in the separate file where the template definitions are written. This will then directly be linked to the function calls in the main file.
Another way to get around this is to name the .cpp file where definitions are written to .inl* file (from the e.g drawn above, chagne array.cpp to array.inl); inl means inline and include the .inl file from the bottom of the header file. This yields the same result as defining all functions within the header file but helps keeping the code a little cleaner.
There's another way, i.e #include .cpp file with templated definitions in the main file which I personally don't prefer because of non-standard usage of #include.
It is absolutely possible to have templates and separate compilation, but only if you know in advance for which types the template will be instantiated.
Header file sep_head.h:
template< typename T >
class sep{
public:
sep() {};
void f();
};
Main:
#include "sep_head.h"
int main() {
sep<int> s; s.f();
sep<double> sd; sd.f();
sep<char> sc; sc.f();
return 0;
}
Implementation:
#include "sep_head.h"
template< typename T >
void sep<T>::f() {}
template class sep<int>;
template class sep<double>;
template class sep<char>;

Why am I getting this redefinition of class error?

Apologies for the code dump:
gameObject.cpp:
#include "gameObject.h"
class gameObject
{
private:
int x;
int y;
public:
gameObject()
{
x = 0;
y = 0;
}
gameObject(int inx, int iny)
{
x = inx;
y = iny;
}
~gameObject()
{
//
}
int add()
{
return x+y;
}
};
gameObject.h:
class gameObject
{
private:
int x;
int y;
public:
gameObject();
gameObject(int inx, int iny);
~gameObject();
int add();
};
Errors:
||=== terrac, Debug ===|
C:\terrac\gameObject.cpp|4|error: redefinition of `class gameObject'|
C:\terrac\gameObject.h|3|error: previous definition of `class gameObject'|
||=== Build finished: 2 errors, 0 warnings ===|
I can't figure out what's wrong. Help?
You're defining the class in the header file, include the header file into a *.cpp file and define the class a second time because the first definition is dragged into the translation unit by the header file. But only one gameObject class definition is allowed per translation unit.
You actually don't need to define the class a second time just to implement the functions. Implement the functions like this:
#include "gameObject.h"
gameObject::gameObject(int inx, int iny)
{
x = inx;
y = iny;
}
int gameObject::add()
{
return x+y;
}
etc
add in header files
#pragma once
the implementation in the cpp file should be in the form
gameObject::gameObject()
{
x = 0;
y = 0;
}
gameObject::gameObject(int inx, int iny)
{
x = inx;
y = iny;
}
gameObject::~gameObject()
{
//
}
int gameObject::add()
{
return x+y;
}
not within a
class gameObject
{
}
definition block
You should wrap the .h file like so:
#ifndef Included_NameModel_H
#define Included_NameModel_H
// Existing code goes here
#endif
You're defining the same class twice is why.
If your intent is to implement the methods in the CPP file then do so something like this:
gameObject::gameObject()
{
x = 0;
y = 0;
}
gameObject::~gameObject()
{
//
}
int gameObject::add()
{
return x+y;
}
If you are having issues with templates or you are calling the class from another .cpp file
try using '#pragma once' in your header file.
Either try adding #pragma once at the top of your file, or the old way... Place this at the top of your code
#ifndef GAME_H //ensuring that this object is only initialized once
#define GAME_H
and this below the last line
#endif
Which will ensure only a single initialization of the class.
Include a few #ifndef name #define name #endif preprocessor that should solve your problem.
The issue is it going from the header to the function then back to the header so it is redefining the class with all the preprocessor(#include) multiple times.
You define the class gameObject in both your .cpp file and your .h file.
That is creating a redefinition error.
You should define the class, ONCE, in ONE place.
(convention says the definition is in the .h, and all the implementation is in the .cpp)
Please help us understand better, what part of the error message did you have trouble with?
The first part of the error says the class has been redefined in gameObject.cpp
The second part of the error says the previous definition is in gameObject.h.
How much clearer could the message be?