This is the function:
void print(int arr[], int size)
{
int* count = new int [size];
for(int i = 0; i < size; i++){
count[arr[i]]++;
cout << count[arr[i]] << endl;
}
}
When I call (in my main) print(arr, sizeof(a)/sizeof(a[0])) where a = {4, 2, 4, 5, 2, 3}, I would get the updated count of each number in the array.
Now, let's say I want to do something very similar to this but in my int main():
int* my_arr = new int[10];
my_arr[1]++;
cout << "my_arr[1] = " << my_arr[1];
The last statement prints something like 15799121, which I assume is the memory address of my_arr[1].
How is this not the same in print()? Shouldn't cout << count[arr[i]] << endl; produce the same result?
For default initialization,
otherwise, nothing is done: the objects with automatic storage duration (and their subobjects) are initialized to indeterminate values.
That means given new int [size], the elements of the array are initialized to indeterminate values, use of these values leads to UB, means anything is possible.
You might want value initialization, i.e. new int [size](); all the elements would be initialized to 0 exactly.
Related
Here is my code, and I thought that each cout line will print the respective object the pointer points to. Why is there an error? This prints some random list of numbers, with first always correct.
int* f()
{
int array[10] = {1,2,3,4,5,6,7,8,9,10};
int *p = array;
return p;
}
int main()
{
int* ptr = f();
cout << *(ptr+0) << endl;
cout << *(ptr+1) << endl;
cout << *(ptr+2) << endl;
cout << endl;
}
Your pointer points to array with autamtic storage. The array dies when the function returns and the pointer dangles.
The solution is not using pointer, using vector or dynamic array.
Local arrays are created on the stack, and have automatic storage duration. In your case array is created on the stack and get destroyed when the function f() ends.
there are two ways you can manage so that array remains active through out your program execution.
1) dynamically allocated arrays
//c++
int *array = new int[5];
array[0] = 1;
array[1] = 2;
array[2] = 3;
array[3] = 4;
array[4] = 5;
//c++ 11
int *array{ new int[]{ 1, 2, 3, 4, 5 } };
Please always remember to free dynamically allocated array using delete[] if you need to free space.
2) static array
static int array[10] = {1,2,3,4,5,6,7,8,9,10};
Static variables are variables defined using static memory allocation. for more information please see https://en.wikipedia.org/wiki/Static_variable
I have this function:
void reverse(int* nums, unsigned int size)
This function is supposed to reverse the values in the array it is getting.
Now for reversing I thought to create another array with the size of the array passed in. Assigning this new one from the end of the original array to the start.
But I am a kind of new in C++, So I don't know how to create dynamic array in the size of the parameter of the function.
It's actually not necessary to allocate a new array here. See if you can find a way to solve this problem just by rearranging the existing elements in-place.
Given that this seems like it's an exercise with pointers, you can allocate space by using the new[] operator:
int* auxiliaryArray = new int[size];
You'd then free it by writing
delete[] auxiliaryArray;
However, this isn't the preferred way of doing this in C++. The better route is to use std::vector, which does all its own memory management. That would look like this:
std::vector<int> auxSpace(size);
You can then access elements using the square brackets as you could in a real array. To do this, you'll need to #include <vector> at the top of your program.
In C++, the recommended way to create an array of variable size would be to use an std::vector
#include <vector>
void reverse(int* nums, unsigned int size)
{
std::vector<int> V(size);
...
}
But that approach isn't the best here for performance because it requires additional memory to be allocated of the size of the array, which could be big. It would be better to start from the outside of the array and swap members one by one that are at mirroring positions (so if the size is 5, swap 0 and 4, then swap 1 and 3 and leave 2 alone). This only requires temporary storage of a single int.
You can do it without the need to create another array:
void reverse(int* array, const int size){
for(int i = 0; i < size / 2; i++){
int tmp = array[i];
array[i] = array[size - 1 - i];
array[size - 1 - i] = tmp;
}
}
int main(){
int array[] = {1, 3, 5, 7, 9, 11};
const int size = sizeof(array) / sizeof(array[0]);
reverse(array, size);
for(int i(0); i < size; i++)
std::cout << array[i] << ", ";
}
As you can see above in the loop you only need to swap the first element (element 0) with the n-1 element and the second one with n-1-1 and son on...
Remember arrays are indexed from 0 through n-1.
If you want to allocate new array which is not practical:
int* reverse2(int* array, const int size){
int* tmp = new int[size];
for(int i(size - 1), j(0); j < size; j++, i--)
tmp[j] = array[i];
return tmp;
}
int main(){
int array[] = {1, 3, 5, 7, 9, 11};
for(int i(0); i < size; i++)
std::cout << array[i] << ", ";
std::cout << std::endl;
int* newArray = reverse2(array, size);
for(int i(0) ; i < size; i++)
std::cout << newArray[i] << ", ";
std::cout << std::endl;
delete[] newArray;
return 0;
}
If you want to use a new array you can, but I think is to kill flies with a cannon.
Looks like you are using plain C code and not C++. I say that because of the signature of the function. The signature of the function in a common C++ code could be something like this other:
void reverse(std::vector& items);
You can reverse the current array without a new array, using the current one. You are passing the pointer to the first item of the array, and the content is not constant so that you can modify it. A better signature for the function could be:
void reverse(int* const nums, const unsigned int size);
Looks like a pointer problem. Think about the boundaries to iterate the positions of the array. Would you need to iterate the whole array? Maybe only half array? ;)
As bonus track, what about to exchange the values without an auxiliar variable? (this is true into this case that we are using the fundamental type int... remember the binary arithmetic).
array[pos_head] ^= array[pos_tail];
array[pos_tail] ^= array[pos_head];
array[pos_head] ^= array[pos_tail];
I know that the following is not correct:
int arr[2][3] = {}; //some array initialization here
int** ptr;
ptr = arr;
But I am quite surprised that the following lines actually work
int arr[2][3] = {}; //some array initialization here
auto ptr = arr;
int another_arr[2][3] = {}; //some array initialization here
ptr = another_arr;
Can anyone possibly explain what is the type assigned to ptr in the second block of code, and what happened underneath?
Well, arrays decay to pointers when used practically everywhere. So naturally there's decay going on in your code snippet too.
But it's only the "outer-most" array dimension that decays to a pointer. Since arrays are row-major, you end up with int (*)[3] as the pointer type, which is a pointer to a one-dimensional array, not a two dimensional array. It points to the first "row".
If you want ptr's deduction to be a pointer to the array instead, then use the address-of operator:
auto ptr = &arr;
Now ptr is int(*)[2][3].
In
auto ptr = arr;
arr decays into a pointer to its first element in the normal way; it's equivalent to
auto ptr = &arr[0];
Since arr[0] is an array of three ints, that makes ptr a int (*)[3] - a pointer to int[3].
another_arr decays in exactly the same way, so in
ptr = another_arr;
both sides of the assignment have the type int (*)[3], and you can assign a T* to a T* for any type T.
A pointer to arr itself has type int(*)[2][3].
If you want a pointer to the array rather than a pointer to the array's first element, you need to use &:
auto ptr = &arr;
First, let's look at why you can't assign int arr[2][3] to int **. To make it easier to visualise, we'll initialise your array with a sequence, and consider what it looks like in memory:
int arr[2][3] = {{1,2,3},{4,5,6}};
In memory, the array data is stored as a single block, just like a regular, 1D array:
arr: [ 1, 2, 3, 4, 5, 6 ]
The variable arr contains the address of the start of this block, and from its type (int[2][3]) the compiler knows to interpret an index like arr[1][0] as meaning "take the value that is at position (1*2 + 0) in the array".
However for a pointer-to-pointer (int**), it is expected that the pointer-to-pointer contains either a single memory address or an array of memory addresses, and this/these adress(es) point to (an)other single int value or array of ints. Let's say we copied the array arr into int **ptrptr. In memory, it would look like this:
ptrptr: [0x203F0B20, 0x203F17D4]
0x203F0B20: [ 1, 2, 3 ]
0x203F17D4: [ 4, 5, 6 ]
So in addition to the actual int data, an extra pointer must be stored for each row of the array. Rather than converting the two indexes into a single array lookup, access must be performed by making a first array lookup ("take the second value in ptrptr to get an int*"), then nother array lookup ("take the first value in the array at the address held by the previously obtained int*").
Here's a program that illustrates this:
#include <iostream>
int main()
{
int arr[2][3] = {{1,2,3},{4,5,6}};
std::cout << "Memory addresses for int arr[2][3]:" << std::endl;
for (int i=0; i<2; i++)
{
for (int j=0; j<3; j++)
{
std::cout << reinterpret_cast<void*>(&arr[i][j]) << ": " << arr[i][j] << std::endl;
}
}
std::cout << std::endl << "Memory addresses for int **ptrptr:" << std::endl;
int **ptrptr = new int*[2];
for (int i=0; i<2; i++)
{
ptrptr[i] = new int[3];
for (int j=0; j<3; j++)
{
ptrptr[i][j] = arr[i][j];
std::cout << reinterpret_cast<void*>(&ptrptr[i][j]) << ": " << ptrptr[i][j] << std::endl;
}
}
// Cleanup
for (int i=0; i<2; i++)
{
delete[] ptrptr[i];
ptrptr[i] = nullptr;
}
delete[] ptrptr;
ptrptr = nullptr;
return 0;
}
Output:
Memory addresses for int arr[2][3]:
0x7ecd3ccc0260: 1
0x7ecd3ccc0264: 2
0x7ecd3ccc0268: 3
0x7ecd3ccc026c: 4
0x7ecd3ccc0270: 5
0x7ecd3ccc0274: 6
Memory addresses for int **ptrptr:
0x38a1a70: 1
0x38a1a74: 2
0x38a1a78: 3
0x38a1a90: 4
0x38a1a94: 5
0x38a1a98: 6
Notice how the memory addresses always increase by 4 bytes for arr, but for ptrptr there is a jump of 24 bytes between values 3 and 4.
A simple assignment can't create the pointer-to-pointer structure needed for type int **, which is why the loops were necessary in the above program. The best it can do is to decay the int[2][3] type into a pointer to a row of that array, i.e. int (*)[3]. That's what your auto ptr = arr; ends up as.
What is the type of [...]
Did you already try to ask the compiler to tell you the type of an expression?
int main()
{
int arr[2][3] = {{0,1,2}, {3,4,5}}; // <-- direct complete initialized here
auto ptr = arr; // <-- address assignment only
cout << "arr: " << typeid(arr).name() << endl;
cout << "ptr: " << typeid(ptr).name() << endl;
return 0;
}
I've to confess that the output
arr: A2_A3_i
ptr: PA3_i
seems to be not very readable at first glance (compared to some other languages), but when in doubt it may help. It's very compact, but one may get used to it soon. The encoding is compiler-dependent, in case you are using gcc, you may read Chapter 29. Demangling to understand how.
Edit:
some experimentation with some simple_cpp_name function like this rudimentary hack
#include <typeinfo>
#include <cxxabi.h>
#include <stdlib.h>
#include <string>
std::string simple_cpp_name(const std::type_info& ti)
{
/// simplified code extracted from "Chapter 29. Demangling"
/// https://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html
char* realname = abi::__cxa_demangle(ti.name(), 0, 0, 0);
std::string name = realname;
free(realname);
return name;
}
will show you that auto &rfa = arr; makes rfa having the same type as arr which is int [2][3].
I need to implement a function that modifies an array. The new array may be a different size. cout prints 1. I understand what's wrong with this code but I just cannot figure out what the syntax is.
//tried this..
int reduce(int *array[])
{
*array = new int[1];
(*array)[0] = 6;
return 0;
}
//also tried this..
int reduce(int array[])
{
array = new int [1];
array[0] = 6;
return 0;
}
int main()
{
int a[1] = {1};
int *p = a;
reduce(&p);
cout << a[0];
return 0;
}
Don't understand your question correctly, but this is what you may do:
void reduce(int *a, int size)
{
for (int i =0; i < size; ++i) {
*(a+i) = 6; // or whatever value to want to
}
}
Call it this way:
int main(){
int a[5] = {1, 1, 1, 1, 1};
int *p = a;
reduce(p, 5);
for (int i =0; i < 5; ++i) { cout << a[i]<<endl; }
return 0;
}
EDIT
What you are trying to do can be vaguely done this way:
int * reduce (int **b, int size) {
*b = new int[size];
for (int i =0; i < size; ++i) {
*(*b + i) = 6;
}
return *b;
}
int main(){
int a[5] = {1, 1, 1, 1, 1};
int *p = a;
p = reduce(&p, 5);
cout << p[0];
cout << p[1];
cout << p[2];
cout << p[3];
cout << p[4];
delete [] p;
return 0;
}
But it still wont change where a is pointing to.
What you are trying to do is not possible with statically defined arrays.
When you use an array like
int a[1] = {1};
you cannot change the size of the array at run time, you cannot make it point to dynamically allocated memory. You may only access and modify the elements the array. That's it.
The function reduce changes where p points to but it does not change the elements of a.
If you want to modify the contents of a, you can simply use a as an argument, and set the values.
MODIFIED:
You want to modify array a, try this :
int reduce(int **array)
{
*array = new int[1];
(*array)[0] = 6;
return 0;
}
int main()
{
int *a = new int[1];
reduce(&a);
cout << a[0];
return 0;
}
First of all, the formal parameter int* array[] actually is the same as int** array (you can think of it as a two-dimensional array). This is probably not what you want.
The answer of #everettjf will only work if you do not change the size of the array. A possible solution (that completely replaces the array) would be
#include <iostream>
void print_array(int[],int);
int* reduce(int array[]) {
// get rid of the old array
delete[] array;
// create a new one
array = new int[7]{8,4,6,19,3,56,23};
// need to return the new address, so that
// the main function is informed on the new
// address
return array;
}
int main() {
// initialize array
int *a = new int[1]{4};
print_array(a,1);
// "change" array by completely replacing it
a=reduce(a);
print_array(a,7);
return 0;
}
// simply prints out the array; no error checking!
void print_array(int array[], int length) {
std::cout << "[";
for (int i = 0; i < length ; ++i) {
std::cout << array[i] << " ";
}
std::cout << "]" << std::endl;
}
In the reduce function, the initial array is completely deleted. Afterwards, you can create a new one (I chose to just use 7 random numbers). It is important to return that pointer back to the caller (the main method). Otherwise the a pointer in the main method would point to invalid
If you are not forced (by some kind of excercise, for example) to use arrays, you should look into http://en.cppreference.com/w/cpp/container/vector
The premise of your question is invalid. It is not possible to resize an array of automatic storage duration (aka a in main()) after its definition by ANY means in standard C++.
Dynamic memory allocations in either of your reduce() functions will not cause a in main() to be resized.
reduce(&p) will calls the first version of reduce() , which will then change p (so it points at the dynamically allocated memory) but not affect a.
If main() calls reduce(a) or reduce(p) (the two are equivalent, given the initialisation int *p = a) will change neither a nor p, but instead cause a memory leak.
The underlying problem, I suspect, is that you believe - incorrectly - that pointers and arrays are the same thing. They are actually different things, but can be used in the same way in various contexts. And your code is one of the contexts in which they cannot be used interchangeably.
If you want a resizeable array, use a static container (like std::vector<int>) and - if you want a function to resize it, pass it by reference. It manages its own memory dynamically, so is able to dynamically resize itself.
Assuming I have 2 array of different size i.e
int arr[] = {0,1,2,3,4,5,6,7,8,9};
int *arr2 = new int[5];
I want to shallow copy some of them,
Deep copy equivalent would be
int j =0;
if(!(i%2))
{
arr2[j]=arr[i];
j++;
}
Right now a print of arr2 will output : 0, 2, 4, 6 ,8
The reason I want to shallow copy is because I want arr2 to update with any changes to arr.
That is if I loop and square all the elements in arr
I want arr2 to output : 0, 4, 16, 36 ,64
These 2 arrays are part of the same class, one is my polygonal information, and the other part is data driven. arr is actually 4000+ elements in size, and arr2 is close to 3000. At the moment my algorithm works great with deep copy. but because I need to deep copy 3000 elements per update frame, i am wasting resources and was wondering if i could somehow do this via shallow copy so I don't have to have to update arr2 every frame. The way my code needs it to work, arr actually has repeated values of arr2. arr2 is a list of points that is animated. then the data is duplicated to arr which hold the positional data for vertices. this is because arr contains multiple bezier patches, some of them share one edge or more with another patch. but i want that to be ignored when animating else there are breaks in the surface.
It is important that the copy involves indices like
arr2[j]=arr[i];
because that is how my code is setup.
And that the operation be low load.
You will need an array of integer pointers for that.
int *arr2[5];
for (int i = 0, j = 0; i < 10; i++) {
if (!(i%2)) {
arr2[j]= &arr[i];
j++;
}
}
So you need to set each element of arr2 to point to corresponding element in arr by arr2[j]= &arr[i];
When you need to access element in arr2, you call some thing like: int a = *arr2[j];
Later on let say you change arr[0] to 10 arr[0] = 10; then int a = *arr2[0]; will give you 10.
As an alternative to the pointer array approach, here's a crude C++03 example of how to this programmatically. Which one is better depends on how complex the operator[] here needs to be in the real use case, and how much smaller the 2nd array is (ie. how much extra memory it needs, causing cache misses etc).
#include <iostream>
class c_array_view {
public:
c_array_view(int *array) : array_(array) {}
int& operator[](size_t index) { return array_[index*2]; }
static size_t convert_length(size_t original) { return original / 2; }
private:
int *array_;
};
int main()
{
int arr[] = {0,1,2,3,4,5,6,7,8,9};
size_t arr_len = sizeof arr / sizeof arr[0];
c_array_view arr2(arr);
size_t arr2_len = arr2.convert_length(arr_len);
for(unsigned i = 0; i < arr_len; ++i) {
std::cout << "arr: " << i << " = " << arr[i] << std::endl;
}
std::cout << std::endl;
for(unsigned j = 0; j < arr2_len; ++j) {
std::cout << "arr2: " << j << " = " << arr2[j] << std::endl;
}
std::cout << std::endl;
arr2[2] = 42;
std::cout << "modifeid arr2[2] to 42, now arr[4] = " << arr[4] << std::endl;
return 0;
}
The c_array_view could be turned into a template, a nice general purpose class which would take the mapping function as a C++11 lambda, etc, this just demonstrates the principle.
if you want squares then you should not do arr2[j]=arr[i]. The correct answer would be
arr2[j]=arr[i]*arr[i];